用户名: 密码: 验证码:
双组分IPN/蒙脱土复合吸水材料深部液流转向剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前国内高含水油田水驱效率低下、注入水无效循环的现状,根据对驱替液深部液流转向剂材料的要求,在调研总结国内外深部液流转向体系的基础上,以互穿网络聚合物理论为指导,通过两步法制备了具有缓慢吸水膨胀和高强度特性的双组分互穿网络聚合物/蒙脱土复合吸水材料。
     以力学性能、吸水性能为指标研究了引发剂、交联剂、蒙脱土等对吸水网络形成的影响以及温度、引发剂、单体等因素对反应速率的影响。研究了影响控制吸水网络的形成因素。通过扫描电镜、透射电镜、小角X光衍射等分析测试方法,证实了互穿聚合物网络结构的存在。
     在Flory材料吸水热力学理论基础上推导了复合吸水材料的吸水公式,揭示了复合吸水材料的缓膨机理,控制吸水网络对吸水膨胀的束缚是缓膨的决定性因素。通过对吸水动力学研究,发现复合吸水材料的吸水过程可以分为四个阶段,吸水倍率达到10g/g需要20天以上,达到准吸水平衡需要50天以上,具备缓膨的特性。探讨了温度、矿化度、酸碱度等因素对吸水的影响。
     采用RS600流变仪和万能材料实验机研究了复合吸水材料吸水后的力学性能,表明弹性模量G’的数量级为104Pa,黏性模量G’’在102-103Pa之间;吸水25.8g/g样品,压缩形变80%后破裂,破裂压力为0.6-0.8MPa,说明材料弹性好,恢复能力强。首次设计并进行了受限膨胀实验,结果表明,材料吸水膨胀的膨胀力大小与吸水倍率成反比,在地层中空间受限的情况下可以实现吸水膨胀。
     复合吸水材料颗粒可以顺利注入并降低渗透率,颗粒膨胀后可有效降低渗透率,并可以在填砂管微孔中运移。颗粒用量越大,降低渗透率效果越明显。进入高渗透层段后,通过吸水膨胀改善渗透率差异,使驱替液转向,提高原油采收率。吸水后的复合吸水材料颗粒以拉伸变形的方式通过比自身尺寸小的喉道,通过后立即恢复原状。
     通过研究表明复合吸水材料可应用于温度40-80℃、矿化度小于200000mg/L的油藏,具有广范的应用前景。
To change the present situation of inefficient water displacement and noneffective water circulating in domestic high water-cut oil field, according to the requirement of materials which are used as the in-depth fluid diverting agent, on the basis of investigating and summarizing of in-depth fluid diverting agent system development of internal and external, the water absorption materials with interpenetrating polymer networks and montmorillnite (WIPN) were prepared via two processes on the directing of interpenetrating polymer networks theory. The materials can slowly absorb water and maintain high strength after absorbing water.
     With mechanical property and water absorbing property as the evaluating indicator, the effect factors of sopping network forming were studied, the factors include initiator, crosslinking agent and montmorillnite; the effects of temperature, indicator and monomer to reaction rate were researched. The effect factors of control swelling network establishing were discussed. The existence of interpenetrating polymer networks was confirmed by SEM, TEM, small angle X-ray diffraction and etc analysis techniques.
     On the basis of Flory’s material water absorbing thermodynamics theory, the water absorbing formula of WIPN was deducted; it shows that the crosslinking density of control swelling network is the main factor of delaying water absorbing. It was found by studying water absorbing dynamics that the water absorbing process of WIPN is composed with four stages. To obtain 10g/g water absorbing rate, it need more than 20 days; it need over 50 days to achieve the approximate water absorbing balance, it can be see that the aim of delaying water absorbing was achieved. The effects of temperature, mineralization degree and pH value to water absorbing property were discussed.
     The mechanical property of WIPN after water absorbing was studied by RS600 rheometer and Istron Universal Tester. The results show that the elastic modulus G’is more than 104Pa; the viscous modulus G’’is between 102Pa and 103Pa; the sample, which absorb water 25.8g/g, is broken by compress when its deformation is over 80%; the broken press is between 0.6 MPa and 0.8 MPa. Those indicate that the materials hold excellent elasticity and recovery property. The experiment of restricted swelling was designed and done. The results indicate that the water absorption rate is more; the swelling force of WIPN is less; the water absorbing expansion of WIPN can be realized when the oil reservoir space is limited.
     If the grain size of WIPN particles is less than the pore throat diameter, it can be injected successfully and cause permeability reducing. After the WIPN particles absorb, it can migrate in micropore and reduce further permeability. The dosage of WIPN particles is more; the effect of reducing permeability is more notable. When the WIPN particles are injected in high permeability area, they can improve permeability difference by water absorbing and cause displacement fluid diverting and enhance oil recovery. If the throat size is less than the WIPN particles diameter, the water absorbed particles can pass the throat by stretching and deforming, particles can come back the previous condition after passing throat.
     The results show that WIPN can be used in reservoirs in which the temperature is between 40℃and 80℃, the mineralization degree is less than 200000mg/L.
引文
[1]冈秦麟.高含水期油田改善水驱效果新技术,北京:石油工业出版社,1999
    [2] Smith J E, Quantative Evalution of Polyacrylamide Crosslinked Gels for Use in Enhanced Oil Recovery[C] Presented at the International ACS Symposium, Anaheim, California, September,1986:9-12
    [3]陈伟立.高含水油田:深度开发依然可期.中国石化报,2007-02-06
    [4] Smith J E.Performance of 18 polymers in aluminium citrate colloidal dispersion gels[A].SPE 28989,1995 .
    [5]万仁溥,罗英俊.采油技术手册(第十分册);堵水技术.北京:石油工业出版社,1991,61-139
    [6] F.H. Wu, T.J. Chiu, Dwyann Dalrymple. et al. Development of an Expert System for Water Control Applications. SPE 27552 presented at the European Petroleum Computer Conference, Aberdeen, U.K., 1994:119-126
    [7] M.J. Miller, H.S. Fogler. A Model To Estimate the Performance of Foamed Gel for Conformance Control. SPE 27775 presented at the SPE/DOE Ninth Symposium on Improved Oil Recovery, Tulsa, Oklahoma, U.S.A., 1994: 461-473
    [8]陈月明等.区块整体调剖的RE决策技术.第九次全国堵水会议论文集,北京:石油工业出版社,1997
    [9]白宝君等.区块整体调剖筛选技术研究.石油钻采工艺,1999,21(1):64-67
    [10]赵福麟,张贵才等.区块整体调剖堵水的PI决策技术.全国第九次陆上油田堵水技术工作会议交流材料,1997
    [11]李宜坤,覃合,蔡磊.国内堵水调剖的现状及发展趋势.钻采工艺,2006,29(5):105-107
    [12]熊春明,唐孝芬.国内外堵水调剖技术最新进展及发展趋势.石油勘探与开发,2007,34(1):83-88
    [13] Liu Xiang-E. Development and application of the Water Control and Profile Modification Technology in China Oil Fields. SPE29907, 1995.
    [14] Y.Z.Liu, B.Bai, Y.X.li, et al. Optimization Design for Conformance Control Based on Profile Modification Treatments of Multiple Injectors in a Reservoir. SPE 64731, 2000
    [15] R.S.Seright. Placement of Gels to Modify Injection Profile. SPE/DOE17332, 1988
    [16] F.Mata, S.Ali. Water Shutoff Treatments Using an Internally Catalyzed System in Boscan Field: Case Histories. SPE102219, 2006.
    [17] A.M.Al-Dhafeeri, R.S.Seright, H.A.Nasr-Ei-Din, et al. High-Permeability Carbonate Zone (Super-K) in Ghawar Field (Saudi Arabia): Identified, Characterized, and Evaluated for Gel Treatments. SPE97542, 2005.
    [18] J.Der Sarkissian, M.Prado, O.Rauseo. Lessons Learned from Four Selective Water-Shutoff Treatments in Mature Reservoirs. SPE96528, 2005.
    [19] G.Swanson, I.Ershaghi. Water Control Problems and Solutions-Los Angeles Basin Statistics and Case Histories. SPE94003, 2005.
    [20] M.Prado, J.Palencia, I.Fernandez, et al. Two Different Water Shutoff Applications in a Poorly Consolidated Sandstone Reservoir with Strong Waterdrive. SPE93060, 2005.
    [21] R.D.Sydansk, A.M.Al-Dhafeeri, Y.Xiong, et al. Polymer Gels Formulated with a Combination of High and Low Molecular-Weight Polymers Provide Improved Performance for Water-Shutoff Treatments of Fractured Production Wells. SPE89402, 2004
    [22] H.A.Nasr-Ei-Din, K.U.Raju, V.V.Hilab. Injection of Incompatible Water as a Means of Water Shut-Off. SPE, 2004
    [23]林伟民,傅饶,雷霆,等.具有近疏远调作用的双液法深部调剖剂LF-1.油田化学,2004,21(2):146-149
    [24] John E.Paulsen, Roald Sφrheim. Biological Water Profile Control-Designing a Concept for North Sea Application. SPE 35376, 1996
    [25]魏兆胜,王岚岚,吕振山,等.生物聚合物深部调剖技术室内及矿场应用研究.石油学报,2006,27(3):75-79
    [26] P.H.Krumrine, S.D.Boyce. Profile Modification and Water Control with Silica Gel-Based Systems. SPE 13578, 1985.
    [27] Xiaofen Tang, Yuzhang Liu, He Qin, et al. A New Method of In-depth Profile Modification for High-Temperature and High-Salinity Reservoir. SPE88486, 2004
    [28] J.C.Mack,J.E.Smith.In Depth Colloidal Dispersion Gels Improve Oil Recovery Efficiency. SPE 27780,1994.
    [29] R. C. Fielding,D. H. Glbbons,F. P. Legrand.In-depth Drive Fluid Diversion Using anEvolution of Colloidal Dispersion Gels and New Bulk Gels: An Operational Case History of North Rainbow Ranch Unit. SPE 27773,1994.
    [30] H. T. Dovan,R. D. Hutchins.Development of a New Aluminum-Polymer Gel System for Permeability Adjustment. SPE 12641,1984.
    [31] A. Zaitoun,R. Rahbarl,N. Kohler.Thin Polyacrylamide Gels for Water Control in High-Permeability Production Wells. SPE 22785, 1991.
    [32] M. Bartosek,A. Mennella,T. P. Lockhart,et al.Polymer Gels for Conformance Treatments : Propagation of Cr(Ⅲ) Crosslinking Complexes in Porous Media.SPE/DOE 27828,1994.
    [33] J. E. Smith. Performance of 18 Polymers in Aluminum Citrate Colloidal Dispersion Gels.SPE 28989,1995.
    [34] R. Ranganathan,et al.An Experimental Study of the In Situ Gelation Behavior of a Polyacrylamide/Aluminum Citrate“Colloidal Dispersion”Gel in a Porous Medium and its Aggregate Growth During Gelation Reaction. SPE 37220,1997.
    [35] J. E. Smith,J. C. Mack. Gels Correct In-Depth Reservoir Permeability Variation. Oil & Gas J.,1997,Jan. 6:33-39.
    [36]陈铁龙,刘庆昌,赵继宽,等.阳离子和总矿化度对弱凝胶性能的影响.西南石油学院学报,2003,25(1):59-61
    [37]郑卫宏,李卫庆,李科生,等.弱凝胶调驱技术在濮城油田西区沙二上2+3层系的应用.断块油气田,2002,9(3):39-41.
    [38]李明远,林梅钦,郑晓宇,等.交联聚合物溶液深部调剖矿场试验.油田化学,2000,17(2):144-147.
    [39]黄煦,郭雄华,栾林明,等.适合胜利孤东油田的聚合物/无机铝弱凝胶体系及其试应用.油田化学,2002,19(1):77-79.
    [40]谢朝阳,俞庆森,李建阁,等.胶态分散凝胶深度调剖技术在大庆油田聚驱开发中的应用.浙江大学学报(理学版),2002,29(5):535-541
    [41]Wang HongGuan, Guo WanKui, Jiang HongFu. Study and Application of Weak Gel System Prepared by Complex Polymer Used for Depth Profile Modification. SPE 65379, 2001
    [42] Zhongmao Wang, Bo Dong. Delayed Polymer Crosslinking Technique Used for Profile Control in Deep Fractured Reservoir with Low-Permeability. SPE50892, 1998.
    [43] Laura Romero-Zeron, F.Manalo, A.Kantzas. Characterization of Crosslinked Gel Kinetics andGel Strength Using NMR.SPE 86548, 2004
    [44] J.D.Purkaple, L.E.Summers. Evaluation of Commercial Crosslinked Polyacrylamide Gel Systems for Injection Profile Modification. SPE/DOE 17331, 1988
    [45]潘伟义.弱凝胶深部调剖作用机理研究.中国地质大学(北京),2006,4-6
    [46] J.P.Coste, Y.Liu, B.Bai, et al. In-Depth Field Diversion by Pre-Gelled Particlea. Laboratory Study and Pilot Testing. SPE59362, 2000
    [47] Y.Liu, B. Bai, P.J.Shuler. Application and Development of Chemical-Based Conformance Control Treatments in China Oil Fields. SPE99641, 2006
    [48] Puchun Zhao, Huating Zhao, Baojun Bai, et al. Improve Injection Profile by Combining Plugging Agent Treatment and Acid Stimulation. SPE89394, 2004
    [49] Bai Baojun, Liu Yuzhang, Coste J-P, et a1. Preformed particle gel for conformance control: transport mechanism through porous media. SPE89468,2004
    [50] Bai Baojun, 1i liangxiong, l,iu Yuzhang, et a1. Preformed particle gel for conformance control: factors affecting its properties and applications. SPE 89389,2004
    [51]张建国,张依华,党娟华,等.油田堵水调剖用吸水膨胀聚合物的研究.化学与生物工程,2004,2:42-43,53
    [52]赵振兴,李芮丽,王临红.一种利用采油污泥制备体膨型颗粒调剖剂的方法.cn1781860,2006-6-7
    [53]李秀峰,张树堂,荆丽萍.复合型固体颗粒调剖剂.cn1439692,2003-9-3
    [54]杨广俊,李子合,崔连荣,等.石油油井用堵水剂.cn1345907,2002-4-24
    [55]吴凤祥.预交联颗粒调剖堵水剂及其生产方法.cn1552793,2004-12-8
    [56]李芮丽,赵振兴,周正刚,等.一种耐温耐盐型吸水树脂.cn1464007,2003-12-31
    [57]姚广聚、蒲万芬,荣元帅,等.抗盐性预交联凝胶调剖剂RY性能评价.精细石油化工进展,2004,5(11):33-35
    [58]董雯,张贵才,葛际江,等.高耐盐水膨体CH-6的合成及性能评价.精细石油化工,2006,23(6):33-37
    [59]荣元帅,蒲万芬.淀粉接枝共聚AM/AMPS预交联凝胶调剖剂ROS性能评价.试采技术,2004,25(3):25-27
    [60]霍春光,徐进,杨辉.一种自动破解再运移颗粒凝胶调剖堵水剂.cn1827730,2006-9-6
    [61]李云渤,王建军,孙丙运,等.高耐盐性预交联水膨体的合成条件优化.特种油气藏,2004,11(1):92-95
    [62]唐孝芬,刘玉章,刘戈辉,等.预交联凝胶颗粒调剖剂性能评价方法.石油钻采工艺,2004,26(4):72-75
    [63]王志瑶,李颖,吕昌森,等.预交联体膨颗粒类调剖剂性能评价方法研究.大庆石油地质与开发,2005,24(6):77-79
    [64]卢祥国,王伟,苏延昌,等.预交联体膨聚合物性质特征研究.油田化学,2005,22(4):324-327
    [65]韩秀贞,李明远,林梅钦,等.交联聚合物微球体系水化性能分析.油田化学,2006,23(2):162-165
    [66]谢全,蒲万芬,刑杨梅,等.预交联凝胶封堵性实验研究.特种油气藏,2006,13(4):92-94
    [67]吴应川,白宝君,赵化廷,等.影响预交联凝胶颗粒性能的因素分析.油气地质与采收率,2005,12(4):55-58
    [68]崔景胜,胡玉国,张伟东,等.体膨型预交联调驱剂TY-101在港西18-6-1井的应用.石油与天然气化工,2002,31(3):146-149
    [69]王鑫,王清发,卢军.体膨颗粒深部调驱技术及其在大庆油田的应用.油田化学,2004,21(2):150-153
    [70]吴志红,吴静,刘国胜,等.预交联颗粒调剖剂在文南油田的应用.内蒙古石油化工,2005,2:106-107
    [71]李进良,兑爱玲,王德强,等.复合预交联颗粒调剖工艺技术研究及应用.内蒙古石油化工,2004,30(4):146-148
    [72]王利美.预交联颗粒凝胶调驱技术应用及认识.内蒙古石油化工,2003,29(4):141
    [73]南国立,万忠杰,郑卫宏.中原油田实施预交联颗粒凝胶调驱存在的问题与对策研究.江汉石油学院学报,2003,25(3):113-114
    [74]柴德民,张峻,张桂意,等.胜坨油田水膨体堵剂的研究与应用.油气地质与采收率,2004,11(2):73-75
    [75] Dawson C Jeffrey,Le H V,et a1.Method of controlling production of excess water in oil and gas wells[P].U.S.Patent 5465792,1995, 11-14
    [76] Dawson C Jeffrey,Le H V,et a1. Compositions and methods for modifying the permeability of subterranean formations[P].U.S.Patent 5735349, 1998, 04-07.
    [77] Harry Frampton. Downhole fluid control processes[P].U.S.Patent 5701955,1997, 12-30.
    [78]雷光伦.亚微米聚合物活性微球调剖驱油剂.cn1594493,2005-3-16
    [79]雷光伦,郑家朋.孔喉尺度聚合物微球的合成及全程调剖驱油新技术研究.中国石油大学学报(自然科学版),2007,31(1):87-90
    [80]刘玉章,熊春明,罗健辉,等.高含水油田深部液流转向技术研究.油田化学,2006,23(3):248-251
    [81] H.Tianjiang, Z.Huating, Y.Bin, et al. Evaluation and Field Applications of Water Treatment Residue as a Profile Control Agent. SPE92950, 2005
    [82] Shen Chen. Profile Control Technology of Thermal Recovery in Shengli Oilfield. SPE50120, 1998
    [83] SPERLING L H. Interpenetrating Polymer Networks and Related Materials. New-York: Plenum Press, 1981
    [84]吴季怀,林建明,魏月琳,等.高吸水保水材料.北京:化学工业出版社,2005,85-97
    [85] Schramm G.实用流变测量学.李晓辉译.北京:石油工业出版社,1998,96-100
    [86] Padmanabha R M,Mohana R K. Design and synthesis of superabsorbent polymers. J Appl rolym Sci,2001,80:2635-2639
    [87] Allcock H R, Frederick W L. Contemporary Polymer Chemistry; Frentice-Hall; Englewood Cliffs, NJ, 1981
    [88] Liu Z S, Remple G L. J. Appl. Polym. Sci., 1997, 64: 1345
    [89]李金峰,孙以实,阮竹.丙烯酰胺与N,N’-亚甲基双丙烯酰胺的共聚反应研究.高分子学报,1990,(5):593-599
    [90]傅万里,刘竞超,陈小飞,等.环氧树脂/黏土纳米复合材料的研究.粘接,2002,23(2):5-8
    [91]王一中,武保华,余鼎声.聚苯乙烯/蒙脱土嵌入混杂材料的研究.合成树脂及塑料,2000,17(2):22-24
    [92]魏月琳,吴季怀,林建明.黏土/聚丙烯酰胺系高吸水性复合材料的研究.化工新型材料,2002,30(6):40-43
    [93]瞿雄伟,罗艳红,丁会利.聚氯乙烯/黏土熔融插层复合的研究.材料工程,2002,23(4):9-11
    [94]许鑫华,李景庆,郭瑞松,等.聚乙二醇/锂化蒙脱土溶液插层纳米复合的研究.离子交换与吸附,2001,17(5):346-351
    [95] Zhang Liqun,Wang Yizhong,Wang Yiqing, et a1.Morphology and mechanical properties of clay/styrene-butadiene rubber nanocomposites.J Appl Polym Sci,2000,78(8):1873-1878
    [96] Wang Yizhong ,Zhang Liqun,Tang Chonghong,et a1.Preparation and characterization of rubber-clay nanocomposites.J Appl Polym Sci,2000,78(8):1879-l883
    [97] Wu Youping, Zhang Liqun, Wang Yiqing, et al.Structure of carboxlated acrylonitrile-butadiene rubber (CNBR)-clay nano-composites by co-coagulating rubber latex and clay aqueous suspension. J Appl Polym Sci,2001,82(11):2842-2846
    [98] Yoshiak F..Clay and Clay Minera1.[J],1984,32(4):320-326
    [99] Yeong S.C., Hyeong T.H.,Chun I.I.. Chem. Mater. [J],2004,16:2522-2529
    [100] Paul J. Flory. Principles of Polymer Chemistry,Cornell University Press,1953,577-593
    [101] Yao Kangde (姚康德), Liu Jing (刘静).Water in polymers, Polymer Materials Science and Engineering (高分子材料科学与工程),1999,15 (1):5-9
    [102] KABRA B G, GEHRKE S H, HWANG S T. Modification of the dynamic swelling behavior of poly(2-hydroethyl methyacrylate) in water. J Appl Polym Sci, 1991, 42: 2409
    [103] AIFREY T,GURNEE E F,LIOYD W G. Diffusion in glassy polymer[J]. J Polym Sci, 1966, C12: 249
    [104]石艳丽,李珍,张高奇,等.CMC/PNIPAAm半互穿网络水凝胶的溶胀动力学研究.功能高分子学报,2005,18(1):111-116
    [105]张书香,陈勇,焦书科.吸水膨胀弹性体在不同介质中的溶胀行为.高分子学报,1998,4:438-443
    [106]张俊平,刘瑞凤,李安,等.丙烯酰胺/凹凸棒复合吸水性树脂的制备及溶胀行为.高分子材料科学与工程,2005,21(3):169-172
    [107]林海琳,崔英德,黎新明,等.醚化海藻酸钠-丙烯酸-聚乙烯醇高吸水树脂在环境介质中的溶胀行为.化工学报,2006,57(6):1468-1473
    [108] Castal D. Ricard A. Audebert R. J. App1. Polym. Sci. 1990,39:11
    [109] Dean J A. Lange s Handbook of Chemistry(Thirteenth Edition). McGraw-Hill Book Company,l985,380
    [110]王铁,张黎明.聚电解质/黏土杂化水凝胶的溶胀性能.中山大学学报(自然科学版),2004,43(5):52-54
    [111]赵福麟,张贵才,孙铭勤,等.粘土双液法调剖剂封堵地层大孔道的研究.石油学报,1994,15(1):56-65
    [112]张小平,赵修太,郑延成.无机颗粒类堵水剂与地层渗透率的匹配关系.钻采工艺,1995,18(4):80-82
    [113]李克华,王春雨,赵福麟.颗粒堵剂粒径与地层孔径的匹配关系研究.断块油气田,2000,7(5):24-25
    [114]王业飞,汪庐山,李继勇,等.粘土胶SMD的注入特性与地层渗透率的关系.油田化学,2001,18(2):144-147
    [115]马红卫,刘玉章,李宜坤,等.柔性转向剂在多孔介质中的运移规律研究.石油钻采工艺,2007,29(4):80-82,99
    [116]秦积瞬,李爱芬.油层物理.石油大学出版社,2005,100-101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700