用户名: 密码: 验证码:
亲水颗粒和短链双亲分子协同稳定的Pickering乳液
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳液是一种液体以液滴的形式分散在另一种与之互不相溶的液体中形成的胶体分散体系,人们对于传统乳化剂(表面活性剂和具有表面活性的聚合物)稳定的乳液体系从理论和实际应用上的研究都已经较为成熟。在20世纪初,Pickering和Ramsden关于固体颗粒可以作为乳液稳定剂的发现,为制备性能优异的乳液提供了一种新方法。迄今为止,Pickering乳液已成功应用于食品、化妆品、医药和原油开采等领域,同时随着纳米科技的兴起,也被成功应用于多孔结构、微胶囊、中空结构及其它具有特殊功能的材料制备,进一步扩展了Pickering乳液的应用范围。在Pickering乳液的许多应用中,因为很多乳液产品需要长时间的保持其自身特性,所以乳液必须要稳定。影响乳液稳定性的因素有很多,其中颗粒的润湿性是Pickering乳液稳定性的关键因素。一般来说,纳米颗粒本身不具备适宜的亲水疏水性,很难吸附在油水界面上从而得到稳定的乳液。
     在很多的研究工作中,表面活性剂经常被用于调控颗粒的润湿性,使颗粒更容易在油水界面上吸附从而获得稳定的Pickering乳液。然而,表面活性剂与颗粒在共同稳定乳液的过程中还会存在竞争作用,它们在油/水界面的竞争吸附往往会影响乳液的稳定性,表面活性剂甚至能够直接导致颗粒从油/水界面脱附,为Pickering乳液的应用带来诸多不利影响。与表面活性剂相比,短链双亲分子在油水界面上的吸附能力较弱且无法单独稳定乳液,因此,它们作为颗粒改性剂的使用可以有效的避免这一问题的出现。不仅如此,短链双亲分子在水溶液中具有高的溶解度和临界聚集浓度,在固体颗粒含量较高的分散体系中对颗粒进行润湿性调节时更具优势。迄今为止,人们对短链双亲分子与颗粒的协同作用已有了初步的认识,但是对该复合体系在稳定乳液过程中表现出来的规律仍然缺乏系统的研究。
     本文选择了两种带相反电荷且具有不同形貌的亲水性颗粒作为模型颗粒一带有负电荷的圆盘状锂皂石(Laponite)和带有正电荷的层状双金属氢氧化物(Layered double hydroxide compounds,简称LDH)。首先,系统研究了Laponite颗粒和短链脂肪胺共同稳定的乳液体系。继而,我们在LDH颗粒稳定的乳液体系中引入了一种具有荧光性质的短链双亲分子甲基橙,得到了稳定的乳液并以此为模板制备了中空胶囊。最后,我们在短链羧酸钠(丁酸钠和苯甲酸钠)原位改性的LDH颗粒稳定的乳液中发现了非球形乳液滴并对此进行了研究。
     本文的主要内容包括以下三部分:
     1.短链脂肪胺改性的Laponite颗粒稳定的乳液
     考察了由盘状Laponite颗粒与短链脂肪胺(二乙胺DEA和三乙胺TEA)混合水分散体系制备的Pickering乳液的稳定性。首先,我们考察了当锂皂石颗粒浓度较低(0.5wt%)时短链胺的加入对分散体系和最终所得乳液性质的影响。红外光谱和zeta电位的表征证明了短链胺分子在锂皂石颗粒表面的吸附。由于DEA和TEA分子结构中都存在极性氨基,在一定pH的水溶液中会发生部分水解而带正电,因此可与带有相反电荷的锂皂石颗粒产生静电相互作用而吸附在颗粒表面。随着胺浓度的增加,胺分子在锂皂石颗粒表面的吸附量逐渐增加并最终达到平台,此时胺分子在颗粒表面的吸附达到饱和。胺分子的吸附使锂皂石颗粒表面变得部分疏水,表现为其三相接触角随着胺浓度的增加而增大并最终到达平台值。对应的乳液也随着胺浓度的增大逐渐变得稳定,到达平台之后不再发生变化。荧光显微镜和扫描电子显微镜观察共同证实了短链胺改性的锂皂石颗粒在乳液滴表面的吸附。
     当Laponite浓度较高(4.0wt%)时,我们通过流变实验证实了胺分子的加入使锂皂石颗粒水分散体系的粘度降低,有利于乳液的形成。并且,高浓度分散体系和乳液稳定性随着胺浓度的增加的变化规律与低浓度时基本一致,但是所制备的乳液稳定性极佳,放置长达六个月的时间也不会出现分水分油的现象。
     2. LDH颗粒与甲基橙共同稳定的乳液
     颗粒在乳液滴表面的自组装使Pickering乳液可以作为模板来制备中空胶囊等材料,而具有特殊性质的功能性颗粒稳定的乳液通常可以得到功能性材料。利用功能分子来调节颗粒润湿性将为一些特殊功能材料的制备提供一种简便的方法。以往将颗粒改性的方法仅仅局限于对颗粒润湿性的调节,功能性分子很少被用于调节颗粒润湿性从而稳定乳液以得到相应的功能性材料。
     我们引入了一种常见的荧光染料甲基橙作为双亲分子对LDH颗粒进行修饰并制备了稳定的Pickering乳液。这里甲基橙的特点在于可以同时将LDH颗粒进行疏水改性并赋予其荧光性质。为了考察甲基橙在LDH颗粒稳定的乳液中所发挥的作用,我们首先讨论了甲基橙作为双亲分子对LDH分散体系及其稳定的乳液的影响,通过吸附等温线和zeta电位测试证明了甲基橙分子在LDH表面的吸附,颗粒三相接触角的增大证实了甲基橙分子的吸附的确使LDH颗粒的疏水性增强,从而提高了所得乳液的稳定性,表现为乳液体积分数的增大和乳液滴平均粒径的减小。然后我们利用甲基橙分子的荧光性质在激光共聚焦显微镜下原位观察到了甲基橙改性的LDH颗粒在乳液滴表面的吸附。值得注意的是,甲基橙不仅可以吸附在LDH的外表面上,还可以通过阴离子交换进入其层间,为改性的LDH颗粒带来特殊的荧光性质。最后,我们以所得的Pickering乳液为模板制备了由甲基橙插层的LDH颗粒构成的中空胶囊,并且通过SEM观察了中空胶囊的形貌及壳层表面的片状颗粒的排布。甲基橙所发挥的荧光双亲分子的作用为荧光材料的制备提供了一种简便的方法。
     3.LDH颗粒与短链羧酸钠共同稳定的非球形Pickering乳液
     我们在短链羧酸钠(丁酸钠和苯甲酸钠)原位改性的LDH颗粒稳定的乳液中意外的发现了大量的非球形乳液滴。我们对此现象进行了研究,考察了乳化转速、短链羧酸钠浓度和类型对乳液滴的非球形化程度的影响。乳液滴的非球形化程度与乳液析油体积分数的变化趋势一致,较高的非球形化程度往往对应着较大的乳液析油体积分数,由此可以推断出非球形乳液滴的形成主要是乳化过程中液滴之间的有限聚结所导致的。
     短链羧酸钠的类型和浓度对乳液滴的非球形化程度也有着显著的影响。当乳化转速固定时,不论是丁酸钠还是苯甲酸钠对应的乳液体系,乳液滴的非球形化程度均随着短链羧酸钠浓度的增大而减小,超过一定浓度后达到平台值。界面流变实验结果表明,短链羧酸钠浓度和类型的变化对乳液滴非球形化程度的影响与乳液滴表面的颗粒膜强度有关。我们通过对LDH/短链羧酸钠混合水分散体系中颗粒接触角和zeta电位的表征证明了颗粒疏水性的增加和静电斥力的减小,这两种因素使体系界面膜的粘弹性增加,进而导致乳液滴变形程度减小。此外,我们将乳液滴的内相固化后通过SEM对其形貌进行了观察,发现片状颗粒在非球形乳液滴表面明显呈“拥挤”状态,再次确认了非球形乳液滴的形成是乳液滴之间的有限聚结所导致的。
An emulsion is a thermodynamically unstable system which consists of dispersed droplets of one immiscible liquid in another. The system shows a tendency to break to reduce the interfacial area. Therefore a stabilizer is needed, including surfactants, surface-active polymers and solid particles. Emulsions stabilized by colloid particles, commonly named Pickering emulsions, have been studied extensively for their widespread use in practical applications, such as food, pharmaceutics, cosmetics, oil recovery and wastewater treatment since the beginning of20th century. In many of these applications, the stability of emulsions is necessary to keep their properties over long periods of time. Up to now, various theories about emulsions stabilized by solid particles have been developed and recently a thorough understanding of them has been achieved. According to these theories, particle wettability is a crucial parameter which determines the type and stability of the emulsions. Stable emulsions are prepared with particles of intermediate wettability.
     To meet the need of appropriate wettability for stability of emulsions, the particles are usually modified via addition of surfactants. There is strong synergy in most combinations of particles and surfactants in stabilizing emulsions. Cationic, anionic, and nonionic surfactants have all been applied successfully to tailor the wettability of particles in liquids and thus prepare stable emulsions. However, there is always competitive adsorption at the oil/water interfaces between the modified particles and the free surfactant molecules in the bulk solution. The free surfactant molecules can even dominate and determine the properties of emulsions. This will bring about many disadvantages in the practical applications of Pickering emulsions. The introduction of short-chain amphiphiles can resolve this problem effectively, due to the incapability of displacing particles at the oil/water interfaces. In addition, the short amphiphiles exhibit high solubility and critical micelle concentrations in water, enabling the surface modification of high concentrations of particles.
     Based on the study on emulsion field above, two kinds of hydrophilic particles with different shapes and opposite charges, layered double hydroxides (LDH) and Laponite, are investigated. First, liquid paraffin-in-water emulsions stabilized by Laponite particles modified with short-chain aliphatic amines (diethylamine, DEA or triethylamine, TEA) were prepared. Then, methyl orange molecules have been used as fluorescent amphiphiles in preparation of emulsions stabilized by LDH particles. The self-assembly of fluorescent particles at droplet surfaces is accomplished, which has been exploited to produce hollow colloidosomes. Nonspherical droplets in emulsions stabilized by LDH particles in situ modified with sodium alkyl carboxylates (sodium butyrate, C4Na or sodium benzoate, C7Na) can be obtained directly through emulsification. The presence of nonspherical droplets is mainly attributed to the partial coalescence of neighboring droplets.
     The present dissertation includes three topics.
     1. Pickering emulsions stabilized by Laponite particles modified with short-chain aliphatic amines
     Liquid paraffin-in-water emulsions were successfully prepared by mixing oil with Laponite suspensions after in situ modification of the particles with short-chain aliphatic amines, DEA and TEA. The adsorption of DEA or TEA brings about enhancement of particle hydrophobicity and decrease of zeta potential, which make it easier for them to adsorb at oil-water interfaces. It was found that, at low clay concentration (0.5wt%), stable emulsions can be obtained when the clay-amine suspensions are flocculated. The emulsion stability improves with amine addition and reaches a plateau above a certain amine concentration. The variation of mean droplet size of emulsions is consistent with the emulsion stability. Emulsions of best stability are formed from the most unstable particle suspensions. The adsorption of the modified clay particles on the droplet surface results in emulsion stabilization, which was confirmed by laser-induced fluorescent confocal micrographs and SEM observations.
     Furthermore, extremely stable emulsions, where no oil and aqueous phase release within the observation time (6months after emulsification), were prepared in high concentrated suspensions (4.0wt%). The emulsion stability can be attributed to the particle adsorption onto the droplet surface, and more importantly, the gel structure of the suspension. This kind of emulsions with high particle loading and outstanding stability can be potential candidates for macroporous materials.
     2. Pickering emulsions stabilized by LDH particles and methyl orange
     The adsorption of colloidal particles on liquid droplets in Pickering emulsions has also been exploited to produce colloidosomes and macroporous materials. Emulsions stabilized by the functional particles could result in the materials with expected function. However, very few studies focused on the particle hydrophobization through the adsorption of functional amphiphiles, although it could offer a facile way to fabricate functional materials. Liquid paraffin-in-water emulsions have been prepared by mixing oil with LDH dispersions after in situ modification of the particles with MO. The roles of MO in the emulsions stabilized by LDH particles have been investigated in detail. MO can tailor the wettability of particles in liquids, confirmed by the increased contact angles and enhanced emulsion stability. Then the fluorescence of MO was exploited to offer the in situ microscopic images of particle adsorption onto droplet surface using confocal fluorescence microscopy. Finally, with the obtained emulsion as a soft template, hollow colloidosomes composed of MO-modified LDH with fluorescence were fabricated and observed with SEM.
     Owing to the fluorescence and amphiphilic property of MO, the LDH particles are rendered fluorescent and partially hydrophobic in a single-step process, leading to the self-assembly of fluorescent particles at oil/water interfaces. This could open further opportunities for the development of a facile way to fabricate fluorescent materials. Moreover, due to the fact that some dye molecules may affect the particles at liquid interfaces, we also offer a valuable warning for future investigations that fluorescent dyes should not be blindly employed as probes in Pickering emulsions.
     3. Nonspherical droplets of emulsions stabilized by layered double hydroxide particles modified with sodium alkyl carboxylates
     Nonspherical droplets of emulsions stabilized by layered double hydroxide (LDH) particles in situ modified with sodium alkyl carboxylates (sodium butyrate, C4Na or sodium benzoate, C7Na) were prepared directly through emulsification. The nonspherical degree of droplets as a function of sodium alkyl carboxylate concentration at different rotating speeds was discussed and the origin of nonspherical droplets was investigated.
     Based on the results of nonspherical degree, optical microscope images and releasing oil fraction, the generation of nonspherical droplets can be ascribed to partial coalescence of droplets with vacant holes in the particle layer induced by shear during emulsification. The increased contact angles of hydrophilic LDH particles (closer to90°) as a result of the increased sodium alkyl carboxylate concentration leads to the strong affinity of particles for the water/oil interface. Besides, the decreased zeta potential of LDH particles confers the decrease of the electrostatic repulsion among the particles. In this case, a denser particle layer will form at the oil/water interface. Besides, the decrease of particle surface charge density can also promote the attachment of particles at the droplet surface. These factors would facilitate the formation of a stronger structure composed of particles at the interface, corresponding to a lower value of deformation degree. SEM was employed to observe the morphology and surfaces of emulsion droplets. The nonspherical droplets were surrounded with the jammed plate-like particles, demonstrating that nonspherical shapes are preserved by the jammed particle shells resulted from the partial coalescence of neighboring droplets as well.
引文
[1]Ramsden, W., Separation of Solids in the Surface-Layers of Solutions and 'Suspensions'(Observations on Surface-Membranes, Bubbles, Emulsions, and Mechanical Coagulation). Preliminary Account[J], Proceedings of the Royal Society of London,1903,72:156-164.
    [2]Pickering, S. U., CXCVI.-Emulsions[J], Journal of the Chemical Society, Transactions,1907,91:2001-2021.
    [3]Binks, B. P.; Lumsdon, S. O., Influence of particle wettability on the type and stability of surfactant-free emulsions[J], Langmuir,2000,16:8622-8631.
    [4]Schulman, J. H.; Leja, J., Control of contact angles at the oil-water-solid interfaces. Emulsions stabilized by solid particles (BaSO4)[J], Transactions of the Faraday Society,1954,50:598-605.
    [5]Kalashnikova, I.; Bizot, H.; Bertoncini, P.; Cathala, B.; Capron, I., Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions[J], Soft Matter, 2013,9:952-959.
    [6]Madivala, B.; Vandebril, S.; Fransaer, J.; Vermant, J., Exploiting particle shape in solid stabilized emulsions[J], Soft Matter,2009,5:1717-1727.
    [7]Tambe, D. E.; Sharma, M. M., The effect of colloidal particles on fluid-fluid interfacial properties and emulsion stability[J], Advances in Colloid and Interface Science,1994,52:1-63.
    [8]Binks, B. P.; Lumsdon, S. O., Pickering emulsions stabilized by monodisperse latex particles:Effects of particle size[J], Langmuir,2001,17:4540-4547.
    [9]Vignati, E.; Piazza, R.; Lockhart, T. P., Pickering emulsions:Interfacial tension, colloidal layer morphology, and trapped-particle motion[J], Langmuir,2003,19: 6650-6656.
    [10]Yan, N.; Masliyah, J. H., Effect of pH on Adsorption and Desorption of Clay Particles at Oil-Water Interface[J], Journal of Colloid and Interface Science,1996, 181:20-27.
    [11]Yang, F.; Niu, Q.; Lan, Q.; Sun, D. J., Effect of dispersion pH on the formation and stability of Pickering emulsions stabilized by layered double hydroxides particles[J], Journal of Colloid and Interface Science,2007,306:285-295.
    [12]Amalvy, J. I.; Armes, S. P.; Binks, B. P.; Rodrigues, J. A.; Unali, G. F., Use of sterically-stabilised polystyrene latex particles as a pH-responsive particulate emulsifier to prepare surfactant-free oil-in-water emulsions[J], Chemical Communications,2003:1826-1827.
    [13]Fujii, S.; Cai, Y. L.; Weaver, J. V. M.; Armes, S. P., Syntheses of shell cross-linked micelles using acidic ABC triblock copolymers and their application as pH-responsive particulate emulsifiers[J], Journal of the American Chemical Society, 2005,127:7304-7305.
    [14]Fujii, S.; Read, E. S.; Binks, B. P.; Armes, S. P., Stimulus-Responsive Emulsifiers Based on Nanocomposite Microgel Particles[J], Advanced Materials,2005,17: 1014-1018.
    [15]Lan, Q.; Liu, C.; Yang, F.; Liu, S. Y.; Xu, J.; Sun, D. J., Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions[J], Journal of Colloid and Interface Science,2007,310:260-269.
    [16]Ngai, T.; Behrens, S. H.; Auweter, H., Novel emulsions stabilized by pH and temperature sensitive microgels[J], Chemical Communications,2005,0:331-333.
    [17]Read, E. S.; Fujii, S.; Amalvy, J. I.; Randall, D. P.; Armes, S. P., Effect of Varying the Oil Phase on the Behavior of pH-Responsive Latex-Based Emulsifiers: Demulsification versus Transitional Phase Inversion[J], Langmuir,2004,20: 7422-7429.
    [18]Binks, B. P.; Rodrigues, J. A., Inversion of Emulsions Stabilized Solely by Ionizable Nanoparticles[J], Angewandte Chemie,2005,117:445-448.
    [19]Binks, B. P.; Lumsdon, S. O., Stability of oil-in-water emulsions stabilised by silica particles[J], Physical Chemistry Chemical Physics,1999,1:3007-3016.
    [20]Horozov, T. S.; Binks, B. P.; Gottschalk-Gaudig, T., Effect of electrolyte in silicone oil-in-water emulsions stabilised by fumed silica particles[J], Physical Chemistry Chemical Physics,2007,9:6398-6404.
    [21]Ashby, N. P.; Binks, B. P., Pickering emulsions stabilised by Laponite clay particles[J], Physical Chemistry Chemical Physics,2000,2:5640-5646.
    [22]Binks, B. P.; Murakami, R.; Armes, S. P.; Fujii, S., Temperature-induced inversion of nanoparticle-stabilized emulsions[J], Angewandte Chemie-International Edition,2005,44:4795-4798.
    [23]Tsuji, S.; Kawaguchi, H., Thermosensitive pickering emulsion stabilized by poly(N-isopropylacrylamide)-carrying particles[J], Langmuir,2008,24:3300-3305.
    [24]Du, K.; Liddle, J. A.; Berglund, A. J., Three-dimensional real-time tracking of nanoparticles at an oil-water interface[J], Langmuir,2012,28:9181-9188.
    [25]Chen, W.; Tan, S.; Ng, T.-K.; Ford, W. T.; Tong, P., Long-Ranged Attraction between Charged Polystyrene Spheres at Aqueous Interfaces [J], Physical Review Letters,2005,95:218301.
    [26]Dai, L. L.; Tarimala, S.; Wu, C.-y.; Guttula, S.; Wu, J., The Structure and Dynamics of Microparticles at Pickering Emulsion Interfaces [J], Scanning,2008,30: 87-95.
    [27]Ortega, F.; Ritacco, H.; Rubio, R. G, Interfacial microrheology:Particle tracking and related techniques[J], Current Opinion in Colloid & Interface Science,2010,75: 237-245.
    [28]Hunter, T. N.; Pugh, R. J.; Franks, G. V.; Jameson, G. J., The role of particles in stabilising foams and emulsions[J], Advances in Colloid and Interface Science,2008, 137:57-81.
    [29]Horozov, T. S.; Binks, B. P., Particle-Stabilized Emulsions:A Bilayer or a Bridging Monolayer?[J], Angewandte Chemie,2006,118:787-790.
    [30]Reed, K. M.; Borovicka, J.; Horozov, T. S.; Paunov, V. N.; Thompson, K. L. Walsh, A.; Armes, S. P., Adsorption of Sterically Stabilized Latex Particles at Liquid Surfaces:Effects of Steric Stabilizer Surface Coverage, Particle Size, and Chain Length on Particle Wettability[J], Langmuir,2012,28:7291-7298.
    [31]Binks, B. P.; Rodrigues, J. A.; Frith, W. J., Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant[J], Langmuir, 2007,23:3626-3636.
    [32]Binks, B. P.; Rodrigues, J. A., Enhanced stabilization of emulsions due to surfactant-induced nanoparticle flocculation[J], Langmuir,2007,23:7436-7439.
    [33]Whitby, C. P.; Fornasiero, D.; Ralston, J., Effect of oil soluble surfactant in emulsions stabilised by clay particles[J], Journal of Colloid and Interface Science, 2008,323:410-419.
    [34]Akartuna, I.; Studart, A. R.; Tervoort, E.; Gonzenbach, U. T.; Gauckler, L. J., Stabilization of oil-in-water emulsions by colloidal particles modified with short amphiphiles[J],Langmuir,2008,24:7161-7168.
    [35]Binks, B. P.; Rodrigues, J. A., Double inversion of emulsions by using nanoparticles and a di-chain surfactant[J], Angew. Chem.-Int. Edit.,2007,46: 5389-5392.
    [36]Studart, A. R.; Gonzenbach, U. T.; Akartuna, I.; Tervoort, E.; Gauckler, L. J., Materials from foams and emulsions stabilized by colloidal particles[J], Journal of Materials Chemistry,2007,17:3283-3289.
    [37]Akartuna, I.; Tervoort, E.; Studart, A. R.; Gauckler, L. J., General Route for the Assembly of Functional Inorganic Capsules[J], Langmuir,2009,25:12419-12424.
    [38]Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A., Colloidosomes:Selectively Permeable Capsules Composed of Colloidal Particles[J], Science,2002,298:1006-1009.
    [39]Finkle, P.; Draper, H. D.; Hildebrand, J. H., The theory of emulsification[J], The Journal of the American Chemical Society,1923,45:2780-2788.
    [40]Ras, R. H. A.; Nemeth, J.; Johnston, C. T.; DiMasi, E.; Dekany, I.; Schoonheydt, R. A., Hybrid Langmuir-Blodgett monolayers containing clay minerals:effect of clay concentration and surface charge density on the film formation[J], Physical Chemistry Chemical Physics,2004,6:4174-4184.
    [41]Aveyard, R.; Binks, B. P.; Clint, J. H., Emulsions stabilised solely by colloidal particles[J], Advances in Colloid and Interface Science,2003,100:503-546.
    [42]Simovic, S.; Prestidge, C. A., Nanoparticles of varying hydrophobicity at the emulsion droplet-water interface:Adsorption and coalescence stability[J], Langmuir, 2004,20:8357-8365.
    [43]Kaptay, G., On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagrams[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,282-283: 387-401.
    [44]Kruglyakov, P. M.; Nushtayeva, A. V.; Vilkova, N. G, Experimental investigation of capillary pressure influence on breaking of emulsions stabilized by solid particles[J], Journal of Colloid and Interface Science,2004,276:465-474.
    [45]Stancik, E. J.; Kouhkan, M.; Fuller, G. G., Coalescence of Particle-Laden Fluid Interfaces[J], Langmuir,2004,20:90-94.
    [46]Stancik, E. J.; Widenbrant, M. J. O.; Laschitsch, A. T.; Vermant, J.; Fuller, G G, Structure and dynamics of particle monolayers at a liquid-liquid interface subjected to extensional flow[J], Langmuir,2002,18:4372-4375.
    [47]Pieranski, P., Two-dimensional interfacial colloidal crystals[J], Physical Review Letters,1980,45:569-72.
    [48]Whitby, C. P.; Fischer, F. E.; Fornasiero, D.; Ralston, J., Shear-induced coalescence of oil-in-water Pickering emulsions [J], Journal of Colloid and Interface Science,2011,361:170-177.
    [49]Wang, J.; Yang, F.; Tan, J. J.; Liu, G. P.; Xu, J.; Sun, D. J., Pickering Emulsions Stabilized by a Lipophilic Surfactant and Hydrophilic Platelike Particles[J], Langmuir, 2010,26:5397-5404.
    [50]Hsu, M. F.; Nikolaides, M. G.; Dinsmore, A. D.; Bausch, A. R.; Gordon, V. D.; Chen, X.; Hutchinson, J. W.; Weitz, D. A.; Marquez, M., Self-assembled Shells Composed of Colloidal Particles:Fabrication and Characterization [J], Langmuir, 2005,21:2963-2970.
    [51]Walsh, A.; Thompson, K. L.; Armes, S. P.; York, D. W., Polyamine-Functional Sterically Stabilized Latexes for Covalently Cross-Linkable Colloidosomes[J], Langmuir,2010,26:18039-18048.
    [52]Duan, H. W.; Wang, D. Y.; Sobal, N. S.; Giersig, M.; Kurth, D. G.; Mohwald, H., Magnetic colloidosomes derived from nanoparticle interfacial self-assembly[J], Nano Lett.,2005,5:949-952.
    [53]Khapli, S.; Kim, J. R.; Montclare, J. K.; Levicky, R.; Porfiri, M.; Sofou, S., Frozen Cyclohexane-in-Water Emulsion as a Sacrificial Template for the Synthesis of Multilayered Polyelectrolyte Microcapsules[J], Langmuir,2009,25:9728-9733.
    [54]Noble, P. F.; Cayre,O. J.; Alargova, R. G.; Velev, O. D.; Paunov, V. N., Fabrication of "hairy" colloidosomes with shells of polymeric microrods[J], Journal of the American Chemical Society,2004,126:8092-8093.
    [55]Aranberri, I.; Binks, B. P.; Clint, J. H.; Fletcher, P. D. I., Synthesis of macroporous silica from solid-stabilised emulsion templates[J], Journal of Porous Materials,2009,16:429-437.
    [56]Gurevitch, I.; Silverstein, M. S., Polymerized pickering HIPEs:Effects of synthesis parameters on porous structure[J], Journal of Polymer Science Part A: Polymer Chemistry,2010,48:1516-1525.
    [57]Akartuna, I.; Tervoort, E.; Wong, J. C. H.; Studart, A. R.; Gauckler, L. J., Macroporous polymers from particle-stabilized emulsions[J], Polymer,2009,50: 3645-3651.
    [58]Subramaniam, A. B.; Abkarian, M.; Mahadevan, L.; Stone, H. A., Colloid science: Non-spherical bubbles[J], Nature,2005,438:930.
    [59]Bon, S. A. F.; Mookhoek, S. D.; Colver, P. J.; Fischer, H. R.; van der Zwaag, S., Route to stable non-spherical emulsion droplets[J], European Polymer Journal,2007, 43:4839-4842.
    [60]Fujii, S.; Aichi, A.; Muraoka, M.; Kishimoto, N.; Iwahori, K.; Nakamura, Y.; Yamashita, I., Ferritin as a bionano-particulate emulsifier[J], Journal of Colloid and Interface Science,2009,338:222-228.
    [61]Kim, S.-H.; Heo, C.-J.; Lee, S. Y.; Yi, G.-R.; Yang, S.-M., Polymeric Particles with Structural Complexity from Stable Immobilized Emulsions[J], Chemistry of Materials,2007,19:4751-4760.
    [62]Datta, S. S.; Shum, H. C.; Weitz, D. A., Controlled Buckling and Crumpling of Nanoparticle-Coated Droplets[J], Langmuir,2010,26:18612-18616.
    [63]Schmitt-Rozieres, M.; Kragel, J.; Grigoriev, D. O.; Liggieri, L.; Miller, R.; Vincent-Bonnieu, S.; Antoni, M., From Spherical to Polymorphous Dispersed Phase Transition in Water/Oil Emulsions[J], Langmuir,2009,25:4266-4270.
    [64]Studart, A. R.; Shum, H. C.; Weitz, D. A., Arrested Coalescence of Particle-coated Droplets into Nonspherical Supracolloidal Structures(?)[J], The Journal of Physical Chemistry B,2009,113:3914-3919.
    [65]Pawar, A. B.; Caggioni, M.; Ergun, R.; Hartel, R. W.; Spicer, P. T., Arrested coalescence in Pickering emulsions[J], Soft Matter,2011,7:7710-7716.
    [66]Tan, J.; Zhang, M.; Wang, J.; Xu, J.; Sun, D., Temperature induced formation of particle coated non-spherical droplets[J], Journal of Colloid and Interface Science, 2011,359:171-178.
    [67]Yan, N.; Masliyah, J. H., Characterization and demulsification of solids-stabilized oil-in-water emulsions Part 1. Partitioning of clay particles and preparation of emulsions[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,1995,96:229-242.
    [68]Stiller, S.; Gers-Barlag, H.; Lergenmueller, M.; Pflucker, F.; Schulz, J.; Wittern, K. P.; Daniels, R., Investigation of the stability in emulsions stabilized with different surface modified titanium dioxides[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,232:261-267.
    [69]Yan, N.; Gray, M. R.; Masliyah, J. H., On water-in-oil emulsions stabilized by fine solids[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001,193:97-107.
    [70]Binks, B. P.; Lumsdon, S. O., Catastrophic Phase Inversion of Water-in-Oil Emulsions Stabilized by Hydrophobic Silica[J], Langmuir,2000,16:2539-2547.
    [71]Frelichowska, J.; Bolzinger, M.-A.; Chevalier, Y., Pickering emulsions with bare silica[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009, 343:70-74.
    [72]Yang, F.; Liu, S. Y.; Xu, J.; Lan, Q.; Wei, F.; Sun, D. J., Pickering emulsions stabilized solely by layered double hydroxides particles:The effect of salt on emulsion formation and stability[J], Journal of Colloid and Interface Science,2006, 302:159-169.
    [73]Shen, M.; Resasco, D. E., Emulsions Stabilized by Carbon Nanotube-Silica Nanohybrids[J], Langmuir,2009,25:10843-10851.
    [74]Wiley, R. M., Limited coalescence of oil droplets in coarse oil-in-water emulsions[J], Journal of Colloid Science,1954,9:427-437.
    [75]Arditty, S.; Whitby, C. P.; Binks, B. P.; Schmitt, V.; Leal-Calderon, F., Some general features of limited coalescence in solid-stabilized emulsions[J], European Physical Journal E,2003,11:273-281.
    [76]Midmore, B. R., Preparation of a novel silica-stabilized oil/water emulsion[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,132: 257-265.
    [77]Frelichowska, J.; Bolzinger, M. A.; Chevalier, Y., Effects of solid particle content on properties of o/w Pickering emulsions[J], Journal of Colloid and Interface Science, 2010,351:348-356.
    [78]Binks, B. P.; Philip, J.; Rodrigues, J. A., Inversion of Silica-Stabilized Emulsions Induced by Particle Concentration[J], Langmuir,2005,21:3296-3302.
    [79]Briggs, T. R., Emulsions with Finely Divided Solids[J], Journal of Industrial & Engineering Chemistry,1921,13:1008-1010.
    [80]Lagaly, G.; Reese, M.; Abend, S., Smectites as colloidal stabilizers of emulsions-I. Preparation and properties of emulsions with smectites and nonionic surfactants[J], Applied Clay Science,1999,14:83-103.
    [81]Sun, G.; Li, Z.; Ngai, T., Inversion of Particle-Stabilized Emulsions to Form High-Internal-Phase Emulsions[J], Angewandte Chemie,2010,122:2209-2212.
    [82]Zhang, J.; Li, L.; Wang, J.; Sun, H.; Xu, J.; Sun, D., Double Inversion of Emulsions Induced by Salt Concentration[J], Langmuir,2012,28:6769-6775.
    [83]Tan, J. J.; Wang, J.; Wang, L. Y.; Xu, J.; Sun, D. J., In situ formed Mg(OH)(2) nanoparticles as pH-switchable stabilizers for emulsions[J], Journal of Colloid and Interface Science,2011,359:155-162.
    [84]Liu, H.; Wang, C.; Zou, S.; Wei, Z.; Tong, Z., Simple, Reversible Emulsion System Switched by pH on the Basis of Chitosan without Any Hydrophobic Modification[J], Langmuir,2012,28:11017-11024.
    [85]Binks, B. P.; Whitby, C. P., Nanoparticle silica-stabilised oil-in-water emulsions: Improving emulsion stability[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,253:105-115.
    [86]Binks, B. P.; Lumsdon, S. O., Effects of oil type and aqueous phase composition on oil-water mixtures containing particles of intermediate hydrophobicity[J], Physical Chemistry Chemical Physics,2000,2:2959-2967.
    [87]Binks, B. P.; Rodrigues, J. A., Types of Phase Inversion of Silica Particle Stabilized Emulsions Containing Triglyceride Oil[J], Langmuir,2003,19:4905-4912.
    [88]Tsugita, A.; Takemoto, S.; Mori, K.; Yoneya, T.; Otani, Y., Studies on O/W emulsions stabilized with insoluble montmorillonite-organic complexes[J], Journal of Colloid and Interface Science,1983,95:551-560.
    [89]Binks, B. P.; Rodrigues, J. A., Influence of surfactant structure on the double inversion of emulsions in the presence of nanoparticles[J], Colloid Surf. A-Physicochem. Eng. Asp.,2009,345:195-201.
    [90]Cui, Z. G.; Yang, L. L.; Cui, Y. Z.; Binks, B. P., Effects of Surfactant Structure on the Phase Inversion of Emulsions Stabilized by Mixtures of Silica Nanoparticles and Cationic Surfactant[J], Langmuir,2009.
    [91]Cui, Z. G.; Shi, K. Z.; Cui, Y. Z.; Binks, B. P., Double phase inversion of emulsions stabilized by a mixture of CaCO3 nanoparticles and sodium dodecyl sulphate[J], Colloid Surf. A-Physicochem. Eng. Asp.,2008,329:67-74.
    [92]Wang, J.; Yang, F.; Li, C. F.; Liu, S. Y.; Sun, D. J., Double phase inversion of emulsions containing layered double hydroxide particles induced by adsorption of sodium dodecyl sulfate[J], Langmuir,2008,24:10054-10061.
    [93]Cui, Z. G.; Cui, C. F.; Zhu, Y.; Binks, B. P., Multiple Phase Inversion of Emulsions Stabilized by in Situ Surface Activation of CaCO3 Nanoparticles via Adsorption of Fatty Acids[J], Langmuir,2011,28:314-320.
    [94]Midmore, B. R., Synergy between silica and polyoxyethylene surfactants in the formation of O/W emulsions[J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,1998,145:133-143.
    [95]Gosa, K. L.; Uricanu, V., Emulsions stabilized with PEO-PPO-PEO block copolymers and silica[J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,2002,197:257-269.
    [96]Li, C.-F.; Zhang, S.-Y.; Wang, J.; Feng, X.-S.; Sun, D.-J.; Xu, J., Interactions between Brij Surfactants and Laponite Nanoparticles and Emulsions Stabilized by Their Mixtures[J], Acta Chimica Sinica,2008,66:2313-2320.
    [97]Legrand, J.; Chamerois, M.; Placin, F.; Poirier, J. E.; Bibette, J.; Leal-Calderon, F., Solid colloidal particles inducing coalescence in bitumen-in-water emulsions[J], Langmuir,2005,21:64-70.
    [98]Thijssen, J. H. J.; Schofield, A. B.; Clegg, P. S., How do (fluorescent) surfactants affect particle-stabilized emulsions?[J], Soft Matter,2011,7:7965-7968.
    [99]Tigges, B.; Dederichs, T.; Moeller, M.; Liu, T.; Richtering, W.; Weichold, O., Interfacial Properties of Emulsions Stabilized with Surfactant and Nonsurfactant Coated Boehmite Nanoparticles[J], Langmuir,2010,26:17913-17918.
    [100]Pichot, R.; Spyropoulos, F.; Norton, I. T., O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles:The effect of surfactant type and concentration[J], Journal of Colloid and Interface Science,2010,352:128-135.
    [101]Mackie, A. R.; Gunning, A. P.; Wilde, P. J.; Morris, V. J., Competitive displacement of β-lactoglobulin from the air/water interface by sodium dodecyl sulfate[J], Langmuir,2000,16:8176-8181.
    [102]Mackie, A. R.; Gunning, A. P.; Wilde, P. J.; Morris, V. J., Orogenic displacement of protein from the oil/water interface[J], Langmuir,2000,16:2242-2247.
    [103]Wilde, P.; Mackie, A.; Husband, F.; Gunning, P.; Morris, V., Proteins and emulsifiers at liquid interfaces[J], Advances in Colloid and Interface Science,2004, 108-109:63-71.
    [104]Vashisth, C.; Whitby, C. P.; Fornasiero, D.; Ralston, J., Interfacial displacement of nanoparticles by surfactant molecules in emulsions[J], Journal of Colloid and Interface Science,2010,349:537-543.
    [105]Studart, A. R.; Libanori, R.; Moreno, A.; Gonzenbach, U. T.; Tervoort, E.; Gauckler, L. J., Unifying Model for the Electrokinetic and Phase Behavior of Aqueous Suspensions Containing Short and Long Amphiphiles[J], Langmuir,2011, 27:11835-11844.
    [106]Megias-Alguacil, D.; Tervoort, E.; Cattin, C.; Gauckler, L. J., Contact angle and adsorption behavior of carboxylic acids on α-Al2O3 surfaces[J], Journal of Colloid and Interface Science,2011,353:512-518.
    [107]Tervoort, E.; Tervoort, T. A.; Gonzenbach, U.; Perednis, D.; Gauckler, L. J., Influence of Short-Chain Carboxylic Acids on the Mechanical Properties and Structure of Coagulated Alumina Suspensions[J], Journal of the American Ceramic Society,2005,88:2504-2509.
    [108]Studart, A. R.; Amstad, E.; Antoni, M.; Gauckler, L. J., Rheology of Concentrated Suspensions Containing Weakly Attractive Alumina Nanoparticles[J], Journal of the American Ceramic Society,2006,89:2418-2425.
    [109]Studart, A. R.; Pandolfelli, V. C.; Tervoort, E.; Gauckler, L. J., Gelling of Alumina Suspensions Using Alginic Acid Salt and Hydroxyaluminum Diacetate[J], Journal of the American Ceramic Society,2002,85:2711-2718.
    [110]Gonzenbach, U. T.; Studart, A. R.; Tervoort, E.; Gauckler, L. J., Stabilization of foams with inorganic colloidal particles[J], Langmuir,2006,22:10983-10988.
    [111]Gonzenbach, U. T.; Studart, A. R.; Tervoort, E.; Gauckler, L. J., Ultrastable particle-stabilized foams[J], Angew. Chem.-Int. Edit.,2006,45:3526-3530.
    [112]Gonzenbach, U. T.; Studart, A. R.; Tervoort, E.; Gauckler, L. J., Tailoring the microstructure of particle-stabilized wet foams[J], Langmuir,2007,23:1025-1032.
    [113]Liu, Q.; Zhang, S. Y.; Sun, D. J.; Xu, J., Aqueous foams stabilized by hexylamine-modified Laponite particles[J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,2009,338:40-46.
    [114]Liu, Q.; Luan, L. Y.; Sun, D. J.; Xu, J., Aqueous foam stabilized by plate-like particles in the presence of sodium butyrate[J], Journal of Colloid and Interface Science,2010,343:87-93.
    [115]Sturzenegger, P. N.; Gonzenbach, U. T.; Koltzenburg, S.; Gauckler, L. J., Controlling the formation of particle-stabilized water-in-oil emulsions[J], Soft Matter, 2012,8:3471-3479.
    [116]Akartuna, I.; Studart, A. R.; Tervoort, E.; Gauckler, L. J., Macroporous Ceramics from Particle-stabilized Emulsions[J], Advanced Materials,2008,20: 4714-4718.
    [117]Li, J.; Stover, H. D. H., Doubly pH-Responsive Pickering Emulsion[J], Langmuir,2008,24:13237-13240.
    [118]Perkins, R.; Brace, R.; Matijevic, E., Colloid and surface properties of clay suspensions. I. Laponite CP[J], J. Colloid Interface Sci,1974,48:417-426.
    [119]Cummins, H. Z., Liquid, glass, gel:The phases of colloidal Laponite[J], Journal of Non-Crystalline Solids,2007,353:3891-3905.
    [120]Labanda, J.; Llorens, J., Effect of aging time on the rheology of Laponite dispersions[J], Colloid Surf. A-Physicochem. Eng. Asp.,2008,329:1-6.
    [121]Gibaud, T.; Barentin, C.; Taberlet, N.; Manneville, S., Shear-induced fragmentation of laponite suspensions [J], Soft Matter,2009,5:3026-3037.
    [122]Shahin, A.; Joshi, Y. M., Irreversible Aging Dynamics and Generic Phase Behavior of Aqueous Suspensions of Laponite[J], Langmuir,2010,26:4219-4225.
    [123]Van Olphen, H., Rheological phenomena of clay sols in connection with the charge distribution on the micelles[J], Discussions of the Faraday Society,1951,11: 82-84.
    [124]Del Hoyo, C., Layered double hydroxides and human health:An overview[J], Applied Clay Science,2007,36:103-121.
    [125]Gunawan, P.; Xu, R., Direct control of drug release behavior from layered double hydroxides through particle interactions[J], Journal of Pharmaceutical Sciences,2008,97:4367-4378.
    [126]Musumeci, A. W.; Schiller, T. L.; Xu, Z. P.; Minchin, R. F.; Martin, D. J.; Smith, S. V., Synthesis and Characterization of Dual Radiolabeled Layered Double Hydroxide Nanoparticles for Use in In Vitro and In Vivo Nanotoxicology Studies[J], The Journal of Physical Chemistry C,2009,114:734-740.
    [127]He, J.; Sato, H.; Yang, P.; Yamagishi, A., Creation of a stereoselective solid surface by self-assembly of a chiral metal complex onto a nano-thick clay film[J], Electrochemistry Communications,2003,5:388-391.
    [128]Wang, N.; Liu, S.; Zhang, J.; Wu, Z.; Chen, J.; Sun, D., Lamellar phase in colloidal suspensions of positively charged LDHs platelets[J], Soft Matter,2005,1: 428-430.
    [129]Li, L.; Ma, R. Z.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T., Hollow nanoshell of layered double hydroxide[J], Chemical Communications,2006:3125-3127.
    [130]Gunawan, P.; Xu, R., Direct Assembly of Anisotropic Layered Double Hydroxide (LDH) Nanocrystals on Spherical Template for Fabrication of Drug-LDH Hollow Nanospheres[J], Chemistry of Materials,2009,21:781-783.
    [131]Liu, G. P.; Liu, S. Y.; Dong, X. Q.; Yang, F.; Sun, D. J., Rearrangement of layered double hydroxide nanoplatelets during hollow colloidosome preparation[J], J. Colloid Interface Sci,2010,345:302-306.
    [132]Hibino, T.; Kobayashi, M., Delamination of layered double hydroxides in water[J], Journal of Materials Chemistry,2005,15:653-656.
    [133]Adachi-Pagano, M.; Forano, C.; Besse, J. P., Delamination of layered double hydroxides by use of surfactants[J], Chemical Communications,2000:91-92.
    [134]Jobbagy, M.; Regazzoni, A. E., Delamination and restacking of hybrid layered double hydroxides assessed by in situ XRD[J], Journal of Colloid and Interface Science,2004,275:345-348.
    [135]Naik, V. V.; Ramesh, T. N.; Vasudevan, S., Neutral Nanosheets that Gel: Exfoliated Layered Double Hydroxides in Toluene[J], J. Phys. Chem. Lett,2011,2: 1193-1198.
    [136]Naik, V. V.; Vasudevan, S., Sol-Gel Transition in Dispersions of Layered Double-Hydroxide Nanosheets[J], Langmuir,2011,27:13276-13283.
    [1]Studart, A. R.; Gonzenbach, U. T.; Akartuna, I.; Tervoort, E.; Gauckler, L. J., Materials from foams and emulsions stabilized by colloidal particles[J], Journal of Materials Chemistry,2007,17:3283-3289.
    [2]Akartuna, I.; Tervoort, E.; Studart, A. R.; Gauckler, L. J., General Route for the Assembly of Functional Inorganic Capsules[J], Langmuir,2009,25:12419-12424.
    [3]Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A., Colloidosomes:Selectively Permeable Capsules Composed of Colloidal Particles[J], Science,2002,298:1006-1009.
    [4]Binks, B. P.; Lumsdon, S. O., Influence of particle wettability on the type and stability of surfactant-free emulsions[J], Langmuir,2000,16:8622-8631.
    [5]Schulman, J. H.; Leja, J., Control of contact angles at the oil-water-solid interfaces. Emulsions stabilized by solid particles (BaSO4)[J], Transactions of the Faraday Society,1954,50:598-605.
    [6]Aveyard, R.; Binks, B. P.; Clint, J. H., Emulsions stabilised solely by colloidal particles[J], Advances in Colloid and Interface Science,2003,100:503-546.
    [7]Binks, B. P.; Kirkland, M., Interfacial structure of solid-stabilised emulsions studied by scanning electron microscopy[J], Physical Chemistry Chemical Physics, 2002,4:3727-3733.
    [8]Binks, B. P.; Lumsdon, S. O., Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica[J], Langmuir,2000,16:2539-2547.
    [9]Lan, Q.; Liu, C.; Yang, F.; Liu, S. Y.; Xu, J.; Sun, D. J., Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions[J], J. Colloid Interface Sci,2007,310:260-269.
    [10]Stiller, S.; Gers-Barlag, H.; Lergenmueller, M.; Pflucker, F.; Schulz, J.; Wittern, K. P.; Daniels, R., Investigation of the stability in emulsions stabilized with different surface modified titanium dioxides[J], Colloid Surf. A-Physicochem. Eng. Asp.,2004, 232:261-267.
    [11]Binks, B. P.; Rodrigues, J. A., Enhanced stabilization of emulsions due to surfactant-induced nanoparticle flocculation[J], Langmuir,2007,23:7436-7439.
    [12]Binks, B. P.; Rodrigues, J. A.; Frith, W. J., Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant[J], Langmuir, 2007,23:3626-3636.
    [13]Gosa, K. L.; Uricanu, V., Emulsions stabilized with PEO-PPO-PEO block copolymers and silica[J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,2002,197:257-269.
    [14]Binks, B. P.; Desforges, A.; Duff, D. G., Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant[J], Langmuir,2007,23: 1098-1106.
    [15]Midmore, B. R., Synergy between silica and polyoxyethylene surfactants in the formation of O/W emulsions[J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,1998,145:133-143.
    [16]Midmore, B. R., Effect of Aqueous Phase Composition on the Properties of a Silica-Stabilized W/O Emulsion[J], Journal of Colloid and Interface Science,1999, 213:352-359.
    [17]Tambe, D. E.; Sharma, M. M., The effect of colloidal particles on fluid-fluid interfacial properties and emulsion stability[J], Advances in Colloid and Interface Science,1994,52:1-63.
    [18]Akartuna, I.; Studart, A. R.; Tervoort, E.; Gonzenbach, U. T.; Gauckler, L. J., Stabilization of oil-in-water emulsions by colloidal particles modified with short amphiphiles[J],Langmuir,2008,24:7161-7168.
    [19]King, H. E.; Milner, S. T.; Lin, M. Y.; Singh, J. P.; Mason, T. G, Structure and rheology of organoclay suspensions[J], Physical Review E,2007,75:p.021403.
    [20]Shalkevich, A.; Stradner, A.; Bhat, S. K.; Muller, F.; Schurtenberger, P., Cluster, glass, and gel formation and viscoelastic phase separation in aqueous clay suspensions[J], Langmuir,2007,23:3570-3580.
    [21]Abend, S.; Lagaly, G., Bentonite and double hydroxides as emulsifying agents[J], Clay Minerals,2001,36:557-570.
    [22]Binks, B. P.; Clint, J. H.; Whitby, C. P., Rheological behavior of water-in-oil emulsions stabilized by hydrophobic bentonite particles[J], Langmuir,2005,21: 5307-5316.
    [23]Guerra, D. L.; Leidens, V. L.; Viana, R. R.; Airoldi, C., Application of Brazilian kaolinite clay as adsorbent to removal of U(VI) from aqueous solution:Kinetic and thermodynamic of cation-basic interactions[J], Journal of Solid State Chemistry,2010, 183:1141-1149.
    [24]Michot, L. J.; Baravian, C.; Bihannic, I.; Maddi, S.; Moyne, C.; Duval, J. F. L.; Levitz, P.; Davidson, P., Sol-Gel and Isotropic/Nematic Transitions in Aqueous Suspensions of Natural Nontronite Clay. Influence of Particle Anisotropy.2. Gel Structure and Mechanical Properties[J], Langmuir,2009,25:127-139.
    [25]Nonomura, Y.; Kobayashi, N., Phase inversion of the Pickering emulsions stabilized by plate-shaped clay particles[J], J. Colloid Interface Sci,2009,330: 463-466.
    [26]Rezanavaz, R.; Aghjeh, M. K. R.; Babaluo, A. A., Rheology, Morphology, and Thermal Behavior of HDPE/Clay Nanocomposites[J], Polymer Composites,2010,31: 1028-1036.
    [27]Swartzen-Allen, S. L.; Matijevic, E., Colloid and surface properties of clay suspensions:Ⅱ. Electrophoresis and cation adsorption of montmorillonite[J], J. Colloid Interface Sci,1975,50:143-153.
    [28]Wang, X. L.; Sun, P. C.; Xue, G.; Winter, H. H., Late-State Ripening Dynamics of a Polymer/Clay Nanocomposite[J], Macromolecules,2010,43:1901-1906.
    [29]Gibaud, T.; Barentin, C.; Taberlet, N.; Manneville, S., Shear-induced fragmentation of laponite suspensions[J], Soft Matter,2009,5:3026-3037.
    [30]Labanda, J.; Llorens, J., Effect of aging time on the rheology of Laponite dispersions[J], Colloid Surf. A-Physicochem. Eng.Asp.,2008,329:1-6.
    [31]Perkins, R.; Brace, R.; Matijevic, E., Colloid and surface properties of clay suspensions. I. Laponite CP[J], J. Colloid Interface Sci.,1974,48:417-426.
    [32]Cummins, H. Z., Liquid, glass, gel:The phases of colloidal Laponite[J], Journal of Non-Crystalline Solids,2007,353:3891-3905.
    [33]Ashby, N. P.; Binks, B. P., Pickering emulsions stabilised by Laponite clay particles[J], Physical Chemistry Chemical Physics,2000,2:5640-5646.
    [34]Whitby, C. P.; Fornasiero, D.; Ralston, J., Effect of oil soluble surfactant in emulsions stabilised by clay particles[J], Journal of Colloid and Interface Science, 2008,323:410-419.
    [35]Wang, J.; Yang, F.; Tan, J. J.; Liu, G. P.; Xu, J.; Sun, D. J., Pickering Emulsions Stabilized by a Lipophilic Surfactant and Hydrophilic Platelike Particles [J], Langmuir, 2010,26:5397-5404.
    [36]Wang, J.; Liu, G. P.; Wang, L. Y.; Li, C. F.; Xu, J. A.; Sun, D. J., Synergistic stabilization of emulsions by poly(oxypropylene)diamine and Laponite particles[J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,2010,353: 117-124.
    [37]Wang, J.; Ren, X.; Feng, X.; Liu, S.; Sun, D., Study of assembly of arachidic acid/LDHs hybrid films containing photoactive dyes[J], J. Colloid Interface Sci., 2008,318:337-347.
    [38]Liu, Q.; Zhang, S. Y.; Sun, D. J.; Xu, J., Aqueous foams stabilized by hexylamine-modified Laponite particles[J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,2009,338:40-46.
    [39]Speight, J. G, Lange's Handbook of Chemistry.16th ed.; McGraw-Hill:New York,2005; Vol.16, p 2620-2669.
    [40]Chernyshova, I. V.; Rao, K. H.; Vidyadhar, A.; Shchukarev, A. V., Mechanism of adsorption of long-chain alkylamines on silicates. A spectroscopic study.1. Quartz[J], Langmuir,2000,16:8071-8084.
    [41]Xu, Z.; Li, J. W.; Dong, Y, Extracting the free energy of adsorption and the base-ionization constant of triethylamine at the silica/CH3CN interface using nonlinear optical molecular probes [J], Langmuir,1998,14:1183-1188.
    [42]Nishimura, S.; Scales, P. J.; Tateyama, H.; Tsunematsu, K.; Healy, T. W., Cationic Modification of Muscovite Mica:An Electrokinetic Study[J], Langmuir,1995,11: 291-295.
    [43]Lan, Q.; Yang, F.; Zhang, S. Y.; Liu, S. Y.; Xu, H.; Sun, D. J., Synergistic effect of silica nanoparticle and cetyltrimethyl ammonium bromide on the stabilization of O/W emulsions[J], Colloid Surf. A-Physicochem. Eng. Asp.,2007,302:126-135.
    [44]Rutland, M. W.; Christenson, H. K., The effect of nonionic surfactant on ion adsorption and hydration forces[J], Langmuir,1990,6:1083-1087.
    [45]T. Yalcin; A. Alemdar; Ece, O. I.; N. GO ngOr, The viscosity and zeta potential of bentonite dispersions in presence of anionic surfactants[J], Materials Letters,2002, 57:420-424.
    [46]Fujii, S.; Aichi, A.; Muraoka, M.; Kishimoto, N.; Iwahori, K.; Nakamura, Y.; Yamashita, I., Ferritin as a bionano-particulate emulsifier[J], Journal of Colloid and Interface Science,2009,338:222-228.
    [47]Shen, M.; Resasco, D. E., Emulsions Stabilized by Carbon Nanotube-Silica Nanohybrids[J], Langmuir,2009,25:10843-10851.
    [48]Hobbie, E. K.; Bauer, B. J.; Stephens, J.; Becker, M. L.; McGuiggan, P.; Hudson, S. D.; Wang, H., Colloidal Particles Coated and Stabilized by DNA-Wrapped Carbon Nanotubes[J], Langmuir,2005,21:10284-10287.
    [49]Liu, G. P.; Liu, S. Y.; Dong, X. Q.; Yang, F.; Sun, D. J., Rearrangement of layered double hydroxide nanoplatelets during hollow colloidosome preparation[J], J. Colloid Interface Sci.,2010,345:302-306.
    [I]Aveyard, R.; Binks, B. P.; Clint, J. H., Emulsions stabilised solely by colloidal particles[J], Advances in Colloid and Interface Science,2003,100:503-546.
    [2]Binks, B. P., Particles as surfactants-similarities and differences[J], Current Opinion in Colloid & Interface Science,2002,7:21-41.
    [3]Kruglyakov, P. M.; Nushtayeva, A. V., Phase inversion in emulsions stabilised by solid particles[J], Advances in Colloid and Interface Science,2004,108:151-158.
    [4]Binks, B. P.; Lumsdon, S. O., Influence of particle wettability on the type and stability of surfactant-free emulsions[J], Langmuir,2000,16:8622-8631.
    [5]Schulman, J. H.; Leja, J., Control of contact angles at the oil-water-solid interfaces. Emulsions stabilized by solid particles (BaSO4)[J], Transactions of the Faraday Society,1954, 50:598-605.
    [6]Pickering, S. U., CXCVI.-Emulsions[J], Journal of the Chemical Society, Transactions,1907,91:2001-2021.
    [7]Binks, B. P.; Kirkland, M., Interfacial structure of solid-stabilised emulsions studied by scanning electron microscopy[J], Physical Chemistry Chemical Physics, 2002,4:3727-3733.
    [8]Binks, B. P.; Lumsdon, S. O., Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica[J], Langmuir,2000,16:2539-2547.
    [9]Lan, Q.; Liu, C.; Yang, F.; Liu, S. Y.; Xu, J.; Sun, D. J., Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions[J], J. Colloid Interface Sci.,2007,310:260-269.
    [10]Stiller, S.; Gers-Barlag, H.; Lergenmueller, M.; Pflucker, F.; Schulz, J.; Wittern, K. P.; Daniels, R., Investigation of the stability in emulsions stabilized with different surface modified titanium dioxides[J], Colloid Surf. A-Physicochem. Eng. Asp.,2004, 232:261-267.
    [11]Haase, M. F.; Grigoriev, D.; Moehwald, H.; Tiersch, B.; Shchukin, D. G., Nanoparticle Modification by Weak Polyelectrolytes for pH-Sensitive Pickering Emulsions[J], Langmuir,2011,27:74-82.
    [12]Binks, B. P.; Rodrigues, J. A.; Frith, W. J., Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant[J], Langmuir, 2007,23:3626-3636.
    [13]Binks, B. P.; Desforges, A.; Duff, D. G., Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant[J], Langmuir,2007,23: 1098-1106.
    [14]Binks, B. P.; Rodrigues, J. A., Enhanced stabilization of emulsions due to surfactant-induced nanoparticle flocculation[J], Langmuir,2007,23:7436-7439.
    [15]Akartuna, I.; Studart, A. R.; Tervoort, E.; Gonzenbach, U. T.; Gauckler, L. J., Stabilization of oil-in-water emulsions by colloidal particles modified with short amphiphiles[J], Langmuir,2008,24:7161-7168.
    [16]Ding, P. X.; Liu, W. X.; Zhao, Z. H., Roles of short amine in preparation and sizing performance of partly hydrolyzed ASA emulsion stabilized by Laponite particles[J], Colloid Surf. A-Physicochem. Eng. Asp.,2011,384:150-156.
    [17]Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A., Colloidosomes:Selectively Permeable Capsules Composed of Colloidal Particles[J], Science,2002,298:1006-1009.
    [18]Studart, A. R.; Gonzenbach, U. T.; Akartuna, I.; Tervoort, E.; Gauckler, L. J., Materials from foams and emulsions stabilized by colloidal particles[J], J. Mater. Chem.,2007,17:3283-3289.
    [19]Akartuna, I.; Tervoort, E.; Studart, A. R.; Gauckler, L. J., General Route for the Assembly of Functional Inorganic Capsules[J], Langmuir,2009,25:12419-12424.
    [20]Kumar, R.; Roy, I.; Ohulchanskyy, T. Y.; Goswami, L. N.; Bonoiu, A. C.; Bergey, E. J.; Tramposch, K. M.; Maitra, A.; Prasad, P. N., Covalently Dye-Linked, Surface-Controlled, and Bioconjugated Organically Modified Silica Nanoparticles as Targeted Probes for Optical Imaging[J], ACS Nano,2008,2:449-456.
    [21]Liu, A.; Han, S.; Che, H.; Hua, L., Fluorescent Hybrid with Electron Acceptor Methylene Viologen Units inside the Pore Walls of Mesoporous MCM-48 Silica[J], Langmuir,2010,26:3555-3561.
    [22]Thijssen, J. H. J.; Schofield, A. B.; Clegg, P. S., How do (fluorescent) surfactants affect particle-stabilized emulsions?[J], Soft Matter,2011,7:7965-7968.
    [23]Wang, J.; Ren, X.; Feng, X.; Liu, S.; Sun, D., Study of assembly of arachidic acid/LDHs hybrid films containing photoactive dyes[J], J. Colloid Interface Sci., 2008,318:337-347.
    [24]Wang, N.; Liu, S.; Zhang, J.; Wu, Z.; Chen, J.; Sun, D., Lamellar phase in colloidal suspensions of positively charged LDHs platelets[J], Soft Matter,2005,1: 428-430.
    [25]Luan, L.; Li, W.; Liu, S.; Sun, D., Phase Behavior of Mixtures of Positively Charged Colloidal Platelets and Nonadsorbing Polymer[J], Langmuir,2009,25: 6349-6356.
    [26]Liu, G. P.; Liu, S. Y.; Dong, X. Q.; Yang, F.; Sun, D. J., Rearrangement of layered double hydroxide nanoplatelets during hollow colloidosome preparation[J], J. Colloid Interface Sci.,2010,345:302-306.
    [27]Wang, J.; Yang, F.; Li, C. F.; Liu, S. Y.; Sun, D. J., Double phase inversion of emulsions containing layered double hydroxide particles induced by adsorption of sodium dodecyl sulfate[J], Langmuir,2008,24:10054-10061.
    [28]Wang, J.; Liu, G P.; Wang, L. Y.; Li, C. F.; Xu, J. A.; Sun, D. J., Synergistic stabilization of emulsions by poly(oxypropylene)diamine and Laponite particles[J], Colloid Surf. A-Physicochem. Eng. Asp.,2010,353:117-124.
    [29]Li, W.; Yu, L.; Liu, G.; Tan, J.; Liu, S.; Sun, D., Oil-in-water emulsions stabilized by Laponite particles modified with short-chain aliphatic amines[J], Colloids Surf. A, Physicochem. Eng. Aspects,2012,400:44-51.
    [30]Zhang, P.; Qian, G R.; Shi, H. S.; Ruan, X. X.; Yang, J.; Frost, R. L., Mechanism of interaction of hydrocalumites (Ca/Al-LDH) with methyl orange and acidic scarlet GR[J],J. Colloid Interface Sci.,2012,365:110-116.
    [31]Ai, L. H.; Zhang, C. Y.; Meng, L. Y, Adsorption of Methyl Orange from Aqueous Solution on Hydrothermal Synthesized Mg-Al Layered Double Hydroxide[J], J. Chem. Eng Data,2011,56:4217-4225.
    [32]Lan, Q.; Yang, F.; Zhang, S. Y.; Liu, S. Y.; Xu, H.; Sun, D. J., Synergistic effect of silica nanoparticle and cetyltrimethyl ammonium bromide on the stabilization of 0/W emulsions[J], Colloid Surf. A-Physicochem. Eng. Asp.,2007,302:126-135.
    [33]Rutland, M. W.; Christenson, H. K., The effect of nonionic surfactant on ion adsorption and hydration forces[J], Langmuir,1990,6:1083-1087.
    [34]T. Yalcin; A. Alemdar; Ece, O. I.; N. GU ngOr, The viscosity and zeta potential of bentonite dispersions in presence of anionic surfactants[J], Materials Letters,2002, 57:420-424.
    [35]Wang, J.; Yang, F.; Tan, J. J.; Liu, G. P.; Xu, J.; Sun, D. J., Pickering Emulsions Stabilized by a Lipophilic Surfactant and Hydrophilic Platelike Particles[J], Langmuir, 2010,26:5397-5404.
    [36]Yang, F.; Liu, S.; Xu, J.; Lan, Q.; Wei, F.; Sun, D., Pickering emulsions stabilized solely by layered double hydroxides particles:The effect of salt on emulsion formation and stability[J], J. Colloid Interface Sci,2006,302:159-169.
    [37]Yang, F.; Niu, Q.; Lan, Q.; Sun, D. J., Effect of dispersion pH on the formation and stability of Pickering emulsions stabilized by layered double hydroxides particles[J], J. Colloid Interface Sci,2007,306:285-295.
    [38]Fujii, S.; Aichi, A.; Muraoka, M.; Kishimoto, N.; Iwahori, K.; Nakamura, Y.; Yamashita, I., Ferritin as a bionano-particulate emulsifier[J], J. Colloid Interface Sci., 2009,338:222-228.
    [39]Shen, M.; Resasco, D. E., Emulsions Stabilized by Carbon Nanotube-Silica Nanohybrids[J],Langmuir,2009,25:10843-10851.
    [40]Hobbie, E. K.; Bauer, B. J.; Stephens, J.; Becker, M. L.; McGuiggan, P.; Hudson, S. D.; Wang, H., Colloidal Particles Coated and Stabilized by DNA-Wrapped Carbon Nanotubes[J],Langmuir,2005,21:10284-10287.
    [41]Mandal, S.; Tichit, D.; Lerner, D. A.; Marcotte, N., Azoic Dye Hosted in Layered Double Hydroxide:Physicochemical Characterization of the Intercalated Materials[J], Langmuir,2009,25:10980-10986.
    [42]Costantino, U.; Coletti, N.; Nocchetti, M.; Aloisi, G. G.; Elisei, F., Anion exchange of methyl orange into Zn-Al synthetic hydrotalcite and photophysical characterization of the intercalates obtained[J], Langmuir,1999,15:4454-4460.
    [43]Yan, D. P.; Lu, J.; Wei, M.; Evans, D. G.; Duan, X., Sulforhodamine B Intercalated Layered Double Hydroxide Thin Film with Polarized Photoluminescence[J], J. Phys. Chem. B,2009,113:1381-1388.
    [44]Mohanambe, L.; Vasudevan, S., Aromatic Molecules in Restricted Geometries: Photophysics of Naphthalene Included in a Cyclodextrin Functionalized Layered Solid[J], The Journal of Physical Chemistry B,2005,109:22523-22529.
    [45]Noble, P. F.; Cayre, O. J.; Alargova, R. G.; Velev, O. D.; Paunov, V. N., Fabrication of "hairy" colloidosomes with shells of polymeric microrods[J], Journal of the American Chemical Society,2004,126:8092-8093.
    [46]Khapli, S.; Kim, J. R.; Montclare, J. K.; Levicky, R.; Porfiri, M.; Sofou, S., Frozen Cyclohexane-in-Water Emulsion as a Sacrificial Template for the Synthesis of Multilayered Polyelectrolyte Microcapsules[J], Langmuir,2009,25:9728-9733.
    [47]Velev, O. D.; Nagayama, K., Assembly of Latex Particles by Using Emulsion Droplets.3. Reverse (Water in Oil) System[J], Langmuir,1997,13:1856-1859.
    [1]Breen, T. L.; Tien, J.; Oliver, S. R. J.; Hadzic, T.; Whitesides, G. M., Design and self-assembly of open, regular,3D mesostructures[J], Science,1999,284:948-951.
    [2]Gangwal, S.; Cayre, O. J.; Velev, O. D., Dielectrophoretic Assembly of Metallodielectric Janus Particles in AC Electric Fields[J], Langmuir,2008,24: 13312-13320.
    [3]Kim, S. H.; Hollingsworth, A. D.; Sacanna, S.; Chang, S. J.; Lee, G.; Pine, D. J.; Yi, G. R., Synthesis and Assembly of Colloidal Particles with Sticky Dimples[J], J. Am. Chem. Soc,2012,134:16115-16118.
    [4]Zhang, Z. K.; Pfleiderer, P.; Schofield, A. B.; Clasen, C.; Vermant, J., Synthesis and Directed Self-Assembly of Patterned Anisometric Polymeric Particles[J], J. Am. Chem. Soc.,2011,133:392-395.
    [5]Ho, C. C.; Keller, A.; Odell, J. A.; Ottewill, R. H., Preparation of monodisperse ellipsoidal polystyrene particles[J], Colloid Polym Sci,1993,271:469-479.
    [6]Zhao, K.; Harrison, C.; Huse, D.; Russel, W. B.; Chaikin, P. M., Nematic and almost-tetratic phases of colloidal rectangles[J], Physical Review E,2007,76: 040401.
    [7]Cayre, O.; Paunov, V. N.; Velev, O. D., Fabrication of asymmetrically coated colloid particles by microcontact printing techniques[J], Journal of Materials Chemistry,2003,13:2445-2450.
    [8]Subramaniam, A. B.; Abkarian, M.; Mahadevan, L.; Stone, H. A., Colloid science: Non-spherical bubbles[J], Nature,2005,438:930.
    [9]Choi, S. Q.; Jang, S. G.; Pascall, A. J.; Dimitriou, M. D.; Kang, T.; Hawker, C. J.; Squires, T. M., Synthesis of Multifunctional Micrometer-Sized Particles with Magnetic, Amphiphilic, and Anisotropic Properties[J], Advanced Materials,2011,23: 2348-2352.
    [10]Bon, S. A. F.; Mookhoek, S. D.; Colver, P. J.; Fischer, H. R.; van der Zwaag, S., Route to stable non-spherical emulsion droplets[J], European Polymer Journal,2007, 43:4839-4842.
    [11]Fujii, S.; Aichi, A.; Muraoka, M.; Kishimoto, N.; Iwahori, K.; Nakamura, Y.; Yamashita, I., Ferritin as a bionano-particulate emulsifier[J], Journal of Colloid and Interface Science,2009,338:222-228.
    [12]Datta, S. S.; Shum, H. C.; Weitz, D. A., Controlled Buckling and Crumpling of Nanoparticle-Coated Droplets[J], Langmuir,2010,26:18612-18616.
    [13]Kim, S.-H.; Heo, C.-J.; Lee, S. Y.; Yi, G.-R.; Yang, S.-M., Polymeric Particles with Structural Complexity from Stable Immobilized Emulsions[J], Chemistry of Materials,2007,19:4751-4760.
    [14]Schmitt-Rozieres, M.; Kragel, J.; Grigoriev, D. O.; Liggieri, L.; Miller, R.; Vincent-Bonnieu, S.; Antoni, M., From Spherical to Polymorphous Dispersed Phase Transition in Water/Oil Emulsions[J], Langmuir,2009,25:4266-4270.
    [15]Studart, A. R.; Shum, H. C.; Weitz, D. A., Arrested Coalescence of Particle-coated Droplets into Nonspherical Supracolloidal Structures[J], The Journal of Physical Chemistry B,2009,113:3914-3919.
    [16]Pawar, A. B.; Caggioni, M.; Ergun, R.; Hartel, R. W.; Spicer, P. T., Arrested coalescence in Pickering emulsions[J], Soft Matter,2011,7:7710-7716.
    [17]Tan, J.; Zhang, M.; Wang, J.; Xu, J.; Sun, D., Temperature induced formation of particle coated non-spherical droplets[J], Journal of Colloid and Interface Science, 2011,359:171-178.
    [18]Whitby, C. P.; Fischer, F. E.; Fornasiero, D.; Ralston, J., Shear-induced coalescence of oil-in-water Pickering emulsions[J], J. Colloid Interface Sci.,2011, 361:170-177.
    [19]Wang, J.; Yang, F.; Tan, J. J.; Liu, G. P.; Xu, J.; Sun, D. J., Pickering Emulsions Stabilized by a Lipophilic Surfactant and Hydrophilic Platelike Particles[J], Langmuir, 2010,26:5397-5404.
    [20]Binks, B. P.; Whitby, C. P., Nanoparticle silica-stabilised oil-in-water emulsions: improving emulsion stability[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,253:105-115.
    [21]Binks, B. P.; Rodrigues, J. A., Enhanced stabilization of emulsions due to surfactant-induced nanoparticle flocculation[J], Langmuir,2007,23:7436-7439.
    [22]Wang, J.; Ren, X.; Feng, X.; Liu, S.; Sun, D., Study of assembly of arachidic acid/LDHs hybrid films containing photoactive dyes[J], J. Colloid Interface Sci., 2008,318:337-347.
    [23]Wang, N.; Liu, S.; Zhang, J.; Wu, Z.; Chen, J.; Sun, D., Lamellar phase in colloidal suspensions of positively charged LDHs platelets[J], Soft Matter,2005,1: 428-430.
    [24]Luan, L.; Li, W.; Liu, S.; Sun, D., Phase Behavior of Mixtures of Positively Charged Colloidal Platelets and Nonadsorbing Polymer[J], Langmuir,2009,25: 6349-6356.
    [25]Binks, B. P.; Desforges, A.; Duff, D. G., Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant[J], Langmuir,2007,23: 1098-1106.
    [26]Binks, B. P.; Rodrigues, J. A.; Frith, W. J., Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant[J], Langmuir, 2007,23:3626-3636.
    [27]Liu, Q.; Luan, L. Y.; Sun, D. J.; Xu, J., Aqueous foam stabilized by plate-like particles in the presence of sodium butyrate[J], Journal of Colloid and Interface Science,2010,343:87-93.
    [28]Wang, J.; Liu, G. P.; Wang, L. Y.; Li, C. F.; Xu, J. A.; Sun, D. J., Synergistic stabilization of emulsions by poly(oxypropylene)diamine and Laponite particles[J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,2010,353: 117-124.
    [29]Li, W.; Yu, L.; Liu, G.; Tan, J.; Liu, S.; Sun, D., Oil-in-water emulsions stabilized by Laponite particles modified with short-chain aliphatic amines[J], Colloids Surf. A, Physicochem. Eng. Aspects,2012,400:44-51.
    [30]Akartuna, I.; Studart, A. R.; Tervoort, E.; Gonzenbach, U. T.; Gauckler, L. J., Stabilization of oil-in-water emulsions by colloidal particles modified with short amphiphiles[J], Langmuir,2008,24:7161-7168.
    [31]Gonzenbach, U. T.; Studart, A. R.; Tervoort, E.; Gauckler, L. J., Ultrastable particle-stabilized foams[J],Angew. Chem.-Int. Edit.,2006,45:3526-3530.
    [32]Studart, A. R.; Libanori, R.; Moreno, A.; Gonzenbach, U. T.; Tervoort, E.; Gauckler, L. J., Unifying Model for the Electrokinetic and Phase Behavior of Aqueous Suspensions Containing Short and Long Amphiphiles[J], Langmuir,2011, 27:11835-11844.
    [33]Whitby, C. P.; Fornasiero, D.; Ralston, J.; Liggieri, L.; Ravera, F., Properties of Fatty Amine-Silica Nanoparticle Interfacial Layers at the Hexane-Water Interface[J], J. Phys. Chem. C,2012,116:3050-3058.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700