用户名: 密码: 验证码:
分子印迹聚合物的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本博士论文以分子印迹技术为基础,在我组前期引入了辅助识别聚合物链(Assistant recognition polymer chains, ARPCs)探讨印迹技术的基础上进一步研究。本论文共分两部分,第一部分用ARPC合成的蛋白质印迹聚合物(Protein-imprinted polymer, PIP)作为人工抗体来纯化天然高分子量微量蛋白、同时PIP还可以用作人工抗体研究蛋白质之间的相互作用;第二部分探讨了利用分子印迹制备可以识别肿瘤表面细胞的特征跨膜蛋白的纳米微球。
     在论文的第一部分工作中,我们以克隆的(immunoglobulin binding protein, BiP) BiP蛋白为模板、用带有芳香性基团吡啶的ARPC来制备PIP。BiP是内质网中的一种高分子量微量蛋白,在内质网(Endoplasmic Reticulum, ER)中含量很低,ER提取液中的BiP只有0.0590%;而PIP的特异性吸附ER提取液后,BiP的含量可达2.620%,富集了45倍。这是我组首次利用印迹聚合物的方法富集“高分子量”的天然微量蛋白。我组曾利用免疫共沉淀法证明了BiP和FKBP23在ER中特异性结合,该结合同时还受钙离子浓度的调节。在本课题中,我们利用PIP来替代免疫共沉淀法研究BiP和FKBP23之间的相互作用,其结果与免疫共沉淀的结果一致,在钙离子浓度较高时(>3mmM)二者不结合,而在钙离子浓度较低时(<2mM)二者特异性结合。
     在论文的第二部分工作中,我们以肿瘤(erythroblastosis B2, ErbB-2)表面的一段特异性多肽为研究对象,研究利用带有印迹功能的纳米微球。ErbB2所属的表皮生长因子受体家族具有广泛的生物活性,其基因的活化表达和多种癌症相关。首先,利用硅烷试剂把ErbB2膜外一段特异性多肽键合到玻璃板上然后,使用不同的方法在没有多肽的条件下合成了壳聚糖纳米微球,微球的尺度在50nm-150nm之间。最后,在载体玻璃板上多肽存在的情况下,在多肽的末端辅以ARPC合成了聚壳聚糖-丙烯酸微球。该研究为后续壳聚糖载锚定肿瘤多肽、以期载药治疗肿瘤奠定了基础。
This dissertation is composed of two parts:the first part is concerned to the using protein imprinted polymer (PIP) as artificial antibody to study in biochemistry; the second part is concerned to the study of synthesizing nano chitosan by imprinting the specific peptides on transmembrane protein erythroblastosis B2 (ErbB-2) of tumor.
     In the firsr part, we used a new method for enrichment of the low-content cellular protein in high molecular weight by molecular imprinting. The template protein, bacterial cloned immunoglobulin binding protein (BiP), was selectively assembled with assistant recognition polymer chain (ARPC) from their library, which consisted of numerous limited length polymer chains with randomly distributed recognitions and immobilizing sites. The assemblies of protein and ARPC were adsorbed by polymeric beads and immobilized by cross-linking polymerization. After the template was removed, the synthesized imprinted polymer was used to adsorb authentic BiP from endoplasmic re-ticulum (ER) extract, whose proportional content was then enriched 45 times. It is the first time that the low-content cellular natural protein with relatively high molecular weight (78 kDa) was enriched by molecular imprinted polymer. In the previous study of our group, we found that FK506-binding protein (FKBP23) could bind to immunoglobulin-binding protein (BiP) by biological method co-immunoprecipitation. Here this result was confirmed again by chemical method using PIP instead of co-immunoprecipitation. In addition, these two methods both confirmed that the binding between BiP and FKBP23 was regulated by [Ca2+] and that the binding could not be detected at a high [Ca2+]. Therefore, this new type of PIP provided a feasible alternative to biological antibodies in biochemical research.
     In the second part, specific peptides from ERBB-2, many different tumors were motivated by which, were bond onto glass sheet by using OTCS (Octadecyl trichlorosilane). Then, nano-chitosan was synthesized by using different methods without pepetide. The TEM of the particles showed that the polychitosan-acrylic acid microspheres was 50-150 nanometer, which meeted our demand. Finally, nano-chitosan microspheres in the presence of peptides on glass sheet and ARPC were synthesized. These will be a foundation for the further research on targeted therapy by nano-chitosan.
引文
[1]Pauling L. A Theory of the structure and process of formation of antibodies. J Am Chem Soc, 1940,62 (3):2643-2657
    [2]Dickey F H. The role of organic peroxides in the induction of mutations. Proc Natl Acad Sci, 1949,35 (5):227-229
    [3]Wulff G, Sarhan A. Uber die Anwendung von enzymanalog gebauten Polymeren zur Racemattrennung. Angewandte Chemie,1972,84 (8):364
    [4]Vlatakis G, Andersson L I, Muller R, et al. Drug assay using antibody mimics made by molecular imprinting. Nature,1993,361:645-647
    [5]Shea K J, Spivak D A, Sellergren B. Polymer complements to nucleotide bases. Selective binding of adenine derivatives to imprinted polymers. J Am Chem Soc,1993,115 (8): 3368-3369
    [6]Ji H S, Mc Niven S, Ikebukuro K, et al. Selective piezoelectric odor sensors using molecularly imprinted polymers. Anal Chim Acta,1999,390(13):93~100
    [7]Mosbach K, Haupt K. Some new developments and challenges in non~covalent molecular imprinting technology. J Mol Recogni,1998,11:62~68
    [8]Kugimiya A, Takeuchi T. Molecularly Imprinted Polymer-Coated Quartz Crystal Microbalance for Detection of Biological Hormone. Electroanalysis,1999,11(15):1158~1160
    [9]Liu J Q, Wulff G. Functional mimicry of the active site of carboxypeptidase a by a molecular imprinting strategy:cooperativity of an amidinium and a copper ion in a transition-state imprinted cavity giving rise to high catalytic activity. J Am Chem Soc,2004,126(24): 7452~7453
    [10]Liu J Q, Wulff G. Molecularly imprinted polymers with strong carboxypeptidase a-like activity:combination of an amidinium function with a zincion binding site in transition~ state imprinted cavities. Angew Chem Int Ed Engl,2004,43(10):1287~1290
    [11]Mao S Z, Dong Z Y, Liu J Q, et al. Semisynthetic tellurosubtilisin with glutathione peroxidase activity. J Am Chem Soc,2005,127 (33):11588~11589
    [12]Sieman M, Andersson L I, Mosbach K. Selective recognition of the herbicide atrazine by noncovalent molecularly imprinted polymers. J Agric FoodChem,1996,44 (1):141~145
    [13]Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies. Angew Chem Int Ed Engl,1995,34:1812~1832
    [14]Mosbach K, Ramstroem. O. The emerging technique of molecular imprinting and its future impact on biotechnology. Bio/Technology,1996,14:163~170
    [15]Wulff G, Laucer M, Bohnke H. Rapid Proton Transfer as Cause of an Unusually Large Neighboring Group Effect. Angew Chem Int Ed Engl,1984,23:741~742
    [16]Wulff G,Haarer J.Enzyme-analog built polymers.29.The preparation of defined chiral cavities for the racemic resolution of free sugars. Makromol Chem,1991,192:1329~1333
    [17]Wulff G, Schulze I, Zabrocki K, et al. Enzyme-analog built polymers.11. Binding sites in polymers with different numbers of binding groups. Makromol Chem,1980,181 (3):531~ 544
    [18]Andersson L I, O'Shannessy D J, Mosbach K. Molecular recognition in synthetic polymers: preparation of chiral stationary phases by molecular imprinting of amino acid amides. Chromatographia,1990,513:167~179
    [19]Wulff G, Vietmeier J. Enzyme-analog built polymers.26. Enantioselective synthesis of amino acids using polymers possessing chiral cavities obtained by an imprinting procedure with template molecules. Makromol Chem,1989,190 (7):1727~1735
    [20]Shea K J, Sasaki D Y. On the control of microenvironment shape of functionalized network polymers prepared by template polymerization. J Am Chem Soc,1989,111 (9):3442~ 3444.
    [21]Dickert F L, Besenbook H, Tortschanoff G. Molecular Imprinting Through van der Waals Interactions:Fluorescence Detection of PAHs in Water. Adv Mater,1998,10(2):149~151
    [22]Andersson L 1, Mosbach K. Enantiomeric resolution on molecularly imprinted polymers prepared with only non-covalent and non-ionic interactions. J Chromatogr,1990,516:313~ 322
    [23]Sellergren B, Shea K J. Chiral ion-exchange chromatography:Correlation between solute retention and a theoretical ion-exchange model using imprinted polymers. J Chromatogr, 1993,654:17-28
    [24]Sellergren B, Ekberg B, Mosbach K. Molecular imprinting of amino acid derivatives in macroporous polymers:Demonstration of substrate-and enantio-selectivity by chromatographic resolution of racemic mixtures of amino acid derivatives.J Chromatogr, 1985,347:1~10
    [25]Kempe M, Mosbach K. Direct resolution of naproxen on a non-covalently molecularly imprinted chiral stationary phase. J Chromatogr A,1994,664(2):276~279.
    [26]Dauwe C, Sellergren B. Influence of template basicity and hydrophobicity on the molecular recognition properties of molecularly imprinted polymers. J Chromatogr A; 1996,753: 191-200'
    [27]Whitcombe M J, Martin L, Vulfson E N. Predicting the selectivity of imprinted polymers. Chromatographia,1998,47 (7/8):457~464
    [28]Whitcombe M J, Rodriguez M E, Villar P, Vulfson E N.A New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting: Synthesis and Characterization of Polymeric Receptors for Cholesterol. J Am Chem Soc, 1995,117:7105-7111
    [29]Piletsky S A, Piletskaya E V, Yano K, et al. A biomimetic receptor system for sialic acid based on molecular imprinting. Anal Lett,1996,2:157~170
    [30]Fujii Y, Matsutani K, Kikuchi K. Formation of a specific coordination cavity for a chiral amino acid by template synthesis of a polymer Schiff base cobalt (Ⅲ) complex. J Chem Soc, 1985,7:415-417
    [31]Dhal P K, Arnold F H. Template-mediated synthesis of metal-complexing polymers for molecular recognition. J Am Chem Soc,1991,113 (19):7417~7418
    [32]Yoshikawa M, Ooi T, Izumi J I. Alternative molecularly imprinted membranes from a derivative of natural polymer, cellulose acetate. J Appl Polym Sci,1999,72:493~499
    [33]Ramstroem O, Nicholls I A, Mosbach K. Synthetic peptide receptor mimics:highly stereoselective recognition in non-covalent molecularly imprinted polymers. Tetrahedron Asymmetry,1994,5:649~655
    [34]Kempe M, G lad M, Mosbach K. An approach towards surface imprinting using the enzyme ribonuclease A. J Molrecogn,1995,8:35~39
    [35]Liu X C, Olof R, Mosbach K, et al. Sugar acrylate-based polymers as chiral molecularly imprintable hydrogels. J Polym Sci PartA:Polymer Chemistry,1999,37:1665~1671
    [36]Yoshida M, Uezu K, Nakashio F, et al. Polyphosphazene Electrolytes.2. Synthesis and Properties of New Polymer Electrolytes Based on Poly ((amino) [(2-methoxyethoxy) ethoxy]) phosphazenes. Macromolecules,1999,33:1237~1243
    [37]Wulff G, Minarik M. J Liq. emplate imprinted polymers for HPLC separation of racemates. Chromatographia,1990,13 (15):2987~3000
    [38]Haupt K. Molecularly imprinted sorbent assays and the use of non-related probes. Reactive&Functional Polymers,1999,41:125~131
    [39]Matsui J, Miyoshi Y, Doblhoff D, et al. A molecularly imprinted synthetic polymer receptor selective for atrazine. Anal Chem,1995,67:4404
    [40]Sreenivasan K. On the application of molecularly imprinted poly (HEMA) as a template responsive release system. J Appl Polym Sci,1999,71 (11):1819~1821
    [41]Bartels H. On the order in silica gels with specific adsorption power. J Chromatogr,1967,30: 113
    [42]Bartels H. Specifically absorbing silica gels. VI. Zeitschrift fuer Anorganische und Allgemeine Chemie,1967,350:143
    [43]Beckett A H, Anderson P. The determination of the relative configuration of morphine, levorphanol and laevophenazocine by stereoselective adsorbents. J Pharm Pharmacol,1960, 12:228-236
    [44]Beckett A H, Youssef H Z. Active sites in stereoselective adsorbents as models of drug receptors and enzyme active site. J Pharm Pharmacol,1963,15:253~266
    [45]Morihara K, Kurihara S, Suzuki J. Footprint catalysis.I. A new method for designing tailor-made catalysts with substrate specificity:silica (alumina) catalysts for butanolysis of benzoic anhydride. Bull Chem Soc Jpn,1988,61 (11):3991~3998
    [46]Morihara K, Kurokawa M, Kamata Y, et al. Enzyme-like enantioselective catalysis over chiral'molecular footprint' cavities on a silica (alumina) gel surface. J Chem Soc Chem Comm,1992,358
    [47]Morihara K, Kawasaki S. Footprint catalysis. VI. Chiral molecular footprint catalytic cavities imprinted by a chiral template, bis (N-benzyloxycarbonyl-L-alanyl) amine and their stereoselective catalyses. Bull'Chem Soc Jpn,1993,66 (3):906~913
    [48]Kodakari N, Katada N, Niwa M. Molecular sieving silica overlayer on tin oxide prepared using an organic template. J Chem Soc Chem Comm,1995,623
    [49]Kodakari N, Katada N, Niwa M. Molecular sieving property of silica overlayer on tin oxide generated by organic template. Appl Surf Sci,1997,121/122,292
    [50]Kodakari N, Sakamoto T, Shinkawa K, et al. Molecular-sieving gas sensor prepared by chemical vapor deposition of silica on tin oxide using an organic template.Bull Chem Soc Jpn,1998,71 (2):513-519
    [51]Dai S, Shin Y, Barnes C E, et al. Enhancement of uranyl adsorption capacity and selectivity on silica sol-gel glasses via molecular imprinting. Chem Mater,1997,9(11):2521
    [52]Makote R D, Dai S. Matrix-induced modification of imprinting effect for Cu2+ adsorption in hybrid silica matrices. Anal Chim Acta,2001,435(1):169~175
    [53]Glad M, Norrlow O, Sellergren B, et al. Use of silane monomers for molecular imprinting and enzyme entrapment in polysiloxane-coated porous silica. J Chromatogr,1985,347:11~ 23
    [54]Burow M, Minoura N. Molecular Imprinting:Synthesis of polymer particles with antibody-like binding characteristics for glucose oxidase. Bioche Biophys Res Commun, 1996,227(2):419~422
    [55]Ye L, Weiss R, Mosbach K. Synthesis and Characterization of Molecularly Imprinted Microspheres. Macromolecules,2000,33 (22):8239~8245
    [56]Bossi A, Piletsky S A, Piletska E V, et al. Surface-grafted molecularly imprinted polymers for protein recognition. Anal Chem,2001,73:5281~5286
    [57]Glad M, Reinholdsson J, Mosbach K L. Molecularly imprinted composite polymers based on trimethylolpropane trimethacrylate(TRIM) particles for efficient enantiomeric separations. React Poly,1995,25:47
    [58]Aherne A, Alexander C, Payne M J, et al. Bacteria-mediated lithography of polymer surfaces. J Am Chem Soc,1996,118 (36):8771~8772
    [59]Guo M, Zhao Z, Fan Y, Wang C, Shi L, et al. Protein-imprinted polymer with immobilized assistant recognition polymer chains. Biomaterials,2006,27:4381~4387
    [60]Zhao Z, Wang C, Guo M, Shi L, Fan Y, Long Y, Mi H. Molecular imprinted polymer with cloned bacterial protein template enriches authentic target in cell extract.FEBS Letters,2006, 580:2750~2754
    [61]Qin L, He X, Zhang W, et al. Surface-modified poly styrene beads as photografting imprinted polymer matrix for chromatographic separation of proteins. Journal of Chromatography A, 2009,1216:807~814
    [62]Ulbricht M, Belter M, Langenhangen U, et al. Novel molecularly imprinted polymer(MIP) composite membranes via controlled surface and pore functionalizations. Desalination,2002, 149:293-295
    [63]Sergeyeva T A, Piletsky S A, Piletska E V, et al. In Situ Formation of Porous Molecularly Imprinted Polymer Membranes. Macromolecules,2003,36:7352~7357
    [64]Piletsky S A,Matuschewski H, Schedler U, et al. Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water. Macromolecules,2000,33:3092~3098
    [65]Byrne M E, Park K, Peppas N A. Molecular imprinting within hydrogels. Advanced drug delivery reviews,2002,54:149~161
    [66]William J, Wizeman W, Kofinas P. Molecularly imprinted polymer hydrogels displaying isomerically resolved glucose binding. Biomaterials,2001,22 (12):1485~1491
    [67]Kimhi O, Bianco-peled H. Study of the interaction between protein~imprinted hydrogels and their templates. Langmuir,2007,23:6329~6335
    [68]Casey B J, Kofinas P. Selective binding of carcinoembryonic antigen using imprinted polymeric hydrogels. J Biomed Mater Res A,2008,87(2):359~363
    [69]雷建都,谭天伟.壳聚糖血红蛋白分子印迹介质的制备及优化.化学通报,2002,4:265-268
    [70]Guo T, Xia Y, Hao G, et al. Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads. Biomaterials,2004,25:5905~5912
    [71]Guo T, Xia Y, Hao G, et al. Chemically modified chitosam beads as matrices for adsorptive separation of proteins by molecularly imprinted polymer. Carbohydrate Polymers,2005,62: 214-221
    [72]Okutucu B, Zihnioglu F, Telefoncu A. Shell-core imprinted polyacrylamide crosslinked chitosan for albumin removal from plasma. J Biomed Mater Res A,2008,84(3):842~845
    [73]Shi H, Tsai W B, Ferrari S, Ratner B D. Template-imprinted nanostructured surfaces for protein recognition. Nature,1999,398:593~597
    [74]Li Y, Yang H, You Q, et al. Protein Recognition via Surface Molecularly Imprinted Polymer Nanowires. Anal Chem,2006,78:317~320
    [75]Choe J, VanderNoot V A, Linhardt R J, et al. Parameters Affecting the Efficiency of Affinity-Based Reversed Micellar Extraction and Separation (ARMES) in Glycoprotein Purification. Biotechnol progre,1997,13(4):440~445
    [76]Venton D L, Gudipatie. Influence of protein on polysiloxane polymer formation:evidence for induction of complementary protein-polymer interaction. Biochimicaet Biophysica Acta, 1995,1250:126~136
    [77]Hirayama K, Burow M, Morikawa Y, et al. Synthesis of polymer-coated silica particles with specific recognition sites for glucose oxidase by the molecular imprinting technique. Chem Lett,1998,8:731~732
    [78]Liao J L, Wang Y, Hjerten J. A novel support with artificially created recognition for the selective removal of proteins and for affinity chromatography. Chromatography,1996,42: 259-262
    [79]Hjerten J, Liao.J L, Nakazato Ketal. Gels mimicking antibodies in there selective recognition of proteins. Chromatography,1997,44:227~234
    [80]Hirayama K, Kameoka K. Synthesis of polymer particles with specific binding sites for lysozyme by a molecular imprinting technique and its application to a quartz crystal microbalance sensor. Bunseki kagaku,2000,49(1):29~33
    [81]Slade C J. Molecular imprining of bovine serum albumin. Journal of Molecular Catalysis B: Enzymatic,2000,9:97~105
    [82]Kempe M, Mosbach K. Separation of amino acids, peptides and proteins on molecularly imprinted stationary phases. J Chromatography A,1995,691:317~323
    [83]Janiak D S, Kofinas P. Molecular imprinting of peptides and protiens in aqueous media. Anal Bioanal Chem,2007,389 (2):399-404
    [84]Andersson H S, Karlsson J G, et al. Study of the nature of recognition in molecularly imprinted polymers, Ⅱ[1]-Influence of monomer-template ratio and sample load on retention and selectivity. Journal of Chromatography A,1999,848:39~49
    [85]Hirayama K, Burow M, Morikawa Y, et al. Synthesis of polymer-coated silica particles with specific recognition sifes for glucose oxidase by the molecular imprinting technique. Chem Lett,1998,8:731-732
    [86]Tong D, Hetenyi C, Bikadi Z, et al. Some studies of the chromatographic properties of gel ('artificial antibodies/receptors') for selective adsorption of proteins. Chromatographia, 2001,54(1-2):7~14
    [87]Mayes A G, Mosbach K. Molecularly imprinted polymer beads:suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal Chem,1996,68(21):3769~ 3774
    [88]Bradley R, Kenneth J. Molecular Imprinting for the Recognition of N-Terminal Histidine Peptides in Aqueous Solution. Macromolecules,2002,35:6192~6201
    [89]Matsunaga T, Hishiya T, Takeuchi T. Surface plasmon resonance sensor for lysozyme based on molecularly imprinted thin films. Analytica Chimica Acta,2007,591:63~67
    [90]Fu Q, Sanbe H, Kagawa C, et al. Uniformly sized molecularly imprinted polymer for (S)-nilvadipine. Comparison of chiral recognition ability with HPLC chiral stationary phases based on a protein. Analytical Chemistry A,2003,75(2):191~198
    [91]Rachkov A, Minoura N. Recognition of oxytocin and oxytocin-related peptides in aqueous media using a molecularly imprinted polymer synthesized by the epitope approach. J Chromatography A,2000,889:111~118
    [92]Nishino H, Huang C S, Shea K J. Selective protein capture by epitope imprinting.Angew. Chem. Int. Edit,2006,45(15):2392~2396
    [93]王虹,孙彦.分子印迹聚合物研究:从小分子到生物大分子.高分子通报,2005(1):86-93
    [94]Piletsky S A,Piletsky E V,Chen B, et al. Chemical grafting of molecularly imprinted homopolymers to the surface of microplates. Application of artificial adrenergic receptor in enzyme-linked assay for b-agonists determination. Anal Chem,2000,72:4381~4385
    [95]Deore B, Chen Z, Nagaoka T L. Potential-induced enantioselective uptake of amino acid into molecularly imprinted overoxidized polypyrrole. Anal Chem,2000,72:3989~3994
    [96]Dickert F L, Hayden O, Halikias K P. Synthetic receptors as sensor coatings for molecules and living cells. Analyst,2001,126:766~771
    [97]Malitesta C, Losito I, Zambonin P G. Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors. Anal Chem,1999,71:1366~1370
    [98]Peng H, Liang C, Zhou A, et al. Development of a new atropine sulfate bulk acoustic wave sensor based on a molecularly imprinted electrosynthesized copolymer of aniline with o-phenylenediamine. Anal Chim Acta,2000,423 (2):221~228
    [99]Liu J K, Pan T, Woolley A T, et al. Surface-modified poly (methyl methacrylate) capillary electrophoresis microchips for protein and peptide analysis. Anal Chem,2004,76:6948~ 6955
    [100]郭天瑛,夏永青,郝广杰,张邦华.蛋白质分子印迹技术的研究进展.化工进展,2003,22:713-716
    [101]Hoshino Y, Kodama T, Okahata Y, Shea K J. Peptide imprinted polymer nanoparticles:a plastic antibody. J Am Chem Soc,2008,19,130 (46):15242~15243
    [102]Tao Z Y, Tehan E, Bukowski R, et al. Templated xerogels as platforms for biomolecule- less biomolecule sensors. Analytica Chimica Acta,2006,564:59~65
    [103]Wang Y, Zhou Y, Sokolov J, Rigas B, Levon K, Rafailovich M. A potentiometric protein sensor built with surface molecular imprinting method. Biosens Bioelectron, 2008,24 (1):162-166
    [104]Long Y, Sun Y, Wang Y, Xing X C, et al. Molecular imprinted polymer with positively charged assistant recognition polymer chains for adsorption/enrichment of low content target protein. Chinese Science Bulletin,2008,53(17):2617~2623
    [105]Long Y, Xing X C, Han R F, Sun Y, Wang Y, Zhao Z, Mi H F. Two-step purification of low-content cellular protei using protein-imprinted polymers. Analytical Biochemistry, 2008,380:258-275
    [106]Morimoto R 1, Tissieres A, Ceorgopoulos C, The stress response, function of the proteins, and perspectives. In:Stress proteins in biology and medicine. Morimoto R. T., et al., Cold Spring Harbor, NY:CPHL Press,1990
    [107]聂忠清,吴永刚,蒙建州.分子伴侣的功能和应用.生命科学,2006(18):84-89
    [108]Herrmann J M, Stuart R A, Craig E A, Neupert W., Mitochondrial heat shock protein 70, a molecular chaperone for proteins encoded by mitochondrial DNA. J. Cell Biol.1994,127 (4):893-902
    [109]Knittler M R, Dirks S, Haas 1 G, Molecular chaperones involved in protein degradation in the endoplasmic reticulum:quantitative interaction of the heat shock cognate protein BiP with partially folded immunoglobulin light chains that are degraded in the endoplasmic reticulum.Proc.Natl.Acad.Sci. USA 1995,92(5):1764~1768
    [110]Brodsky J L, Bauerle M, Horst M, McClellan A J, Mitochondrial Hsp70 cannot replace BiP in driving protein translocation into the yeast endoplasmic reticulum. FEBS Lett.1998,435 (2~3):183~186
    [111]Hartl F U, Hayer~Hartl M, Molecular chaperones in the cytosol:from nascent chain to folded protein. Science 2002,295 (5561):1852~1858
    [112]Sato S., Abe K., Kawagoe J., Aoki M., Kogure K., Isolation of complementary DNAs for heat shock protein (HSP) 70 and heat shock cognate protein (HSC) 70 genes and the expressions in post~ischaemic gerbil brain. Neurol. Res.1992,14(5):375~380
    [113]Haas I G, Wabl M. Immunoglobulin heavy chain binding protein. Nature,1983,306 (5941):387~389
    [114]Munro S, Pelham H R. An Hsp70-like protein in the ER:identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell, 1986,46(2):291~300
    [115]Zhang X, Wang Y, Li H, Zhang W, Wu D, Mi H. The mouse FKBP23 binds to BiP in ER and the binding of C-terminal domain is interrelated with Ca2+ concentration. FEBS Letters,2004,559 (1-3):57~60
    [116]Chen C, Ma H, Wang Y, Mi H, Binding of FKBP23 to BiP in ER shown by Gel Filtration Chromatography. Z., Naturforch.2007,62c:133~137
    [117]Wang Y, Han R, Wu D, Li J, Chen C, Ma H, Mi H, The Binding of FKBP23 to BiP modulates BiP's ATPase Activity with its PPIase Activity (FKBP23 modulates BiP's ATPase Activity),BBRC.2007,354 (1):315-320
    [118]郭敏杰.用辅助识别聚合物链合成蛋白质印迹聚合物:[博士学位论文].天津:南开大学,2005
    [119]张晓滨EBiP结合及人白介素-4基因转录调控的研究:[博士学位论文].天津:南开大学,2005
    [120]赵琢.以克隆蛋白质为模板制备分子印迹聚合物用于吸附天然蛋白质:[博士学位论文].天津:南开大学,2006
    [121]陈琛.哺乳动物内质网体中FKBP23与BiP结合行为的研究:[硕士学位论文].天津:南开大学,2007
    [122]Borgeson C E, Bowman B J. Isolation and characterization of the Neurospora crassa endoplasmic reticulum. J Bacteriol.1983,156 (1):362~368
    [123]Naphtali A. O'Connor, David A. Paisner, Donna Huryn and Kenneth J. Shea. Screening of 5-HT1A Receptor Antagonists using Molecularly Imprinted Polymers. J. Amer. Chem. Soc. 2007,128:1680-1689
    [124]Jorissen RN, Walker F, Pouliot N, et al. Epidermal growth factor receptor:mechanisms of activation and signaling. Exp Cell Res.2003,284(1):31~53
    [125]Kornblum HI, Yanni DS, Easterday MC, Seroogy KB. Expression of the EGF receptor family members ErbB2, ErbB3, and ErbB4 in germinal zones of the developing brain and in neurosphere cultures containing CNS stem cells. Dev Neurosci.2000,22(1-2):16-24
    [126]Nagy P, Friedlander E, Tanner M, et al. Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res 2005,65:473~482
    [127]Dursun A, Poyraz A, Suer O, Sezer C, Akyol G. Expression of Bcl-2 and c-ErbB-2 in colorectal neoplasia. Pathol Oncol Res.2001,7:24~27
    [128]Tateishi M., Ishida T., Kohdono S., Hamatake M., Fukuyama Y., Sigimachi K. Prognostic influence of the co-expression of epidermal growth factor receptor and c-erbB-2 protein in human lung adenocarcinoma. Surg. Oncol.1994,3:109~113
    [143]Kawesha A,Ghaneh P,Andren-Sandberg A,Ograed D,Skar R,Dawiskiba S,et al. K-ras oncogene subtype mutations are associated with survival but not expression of p53, p16INK4A, p21 WAF-1, cyclin D1, erbB-2 and erbB-3 in resected pancreatic ductal adenocarcinoma. Int J Cancer.2000,89:469~474
    [130]Franklin Matthew C.,Carey Kendall D., Vajdos Felix F., Leahy Daniel J., De Vos Abraham M., Sliwkowski Mark X. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer cell,2004 5 (4):317~328
    [131]Cao S, Li Y, Li J, Li CF, Zhang W, Yang ZQ, Meng SD. Quantitative determination of HER2 expression by confocal microscopy assay in CTCs of breast cancer. Oncol Rep.2010, 23(2):423~428
    [132]林森,周红利,杨琴,李新枝.ErbB2与肿瘤细胞多药耐药性.成都医学院学报,2007,2(3):205-207
    [133]何曼君,董西侠.高分子物理.复旦大学出版社,2000.18-19
    [134]胡振锟,张青.高耐光/耐化学性的核壳型荧光纳米微球的制备.高等学校化学学报,2007,(6):1194-1196
    [135]谢宇,尚晓娴,颜流水.羟丙基壳聚糖纳米微球的制备及其缓释效果.应用化学,2009,2(2):193-197
    [136]杨培慧,刘媚,张建莹,李周明,蔡继业.5-氟尿嘧啶/壳聚糖载药纳米微球的制备及性能.化学研究与应用,2009,21(1):42-46
    [137]鲍世韵,李富荣,郭跃华,韩涛.周汉新卡铂碳包铁纳米壳聚糖微球的制备和特征.中国现代应用药学杂志,2006,23(6):467-469
    [138]秦慧玉.羧甲基壳聚糖缓控释凝胶新辅料的制备、表征及应用研究:[硕士学位论文].武汉:武汉理工大学,2006
    [139]雷建都,谭天伟.壳聚糖血红蛋白分子印迹介质的制备及优化.化学通报,2002,4:265-268
    [140]李华,史国齐,万昌秀.壳聚糖/海藻酸钠自组装微球的制备及释药性能华西药学杂 志.2008,23(3):249-252
    [141]官习鹏,全大萍,廖凯荣,麦堪成.壳聚糖修饰PLGA阳离子型纳米微球的制备与表征.高等学校化学学报,2006,27(10):1965-1968
    [142]Y Ohya,R Cai,H Nishizawa,et al. Preparation of PEG- grafted chitosan nanoparticle for peptide drug carrier. Pro Int Symp Control Rel Bioact Mater,1999,26(1):655~6561

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700