用户名: 密码: 验证码:
若干表面体系反应及动力学行为的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着实验技术的进步,表面科学在最近几十年得到了长足的发展,人们对表面过程有了越来越丰富细致的认识和理解。然而,尽管研究人员在表面科学领域付出了巨大的努力并取得了丰硕的成果,但在原子层次上细致地理解表面过程,目前仍然是一项富于挑战性的工作。一方面,由于样品制备、温度、覆盖度等实验条件的差别,不同研究组对于同一体系的研究时常会得到相互冲突的结论;另一方面,许多表面过程的细节及微观机制无法从实验现象中直接获得。于是,基于第一性原理的理论计算和模拟成为一项不可或缺的工具。
     近十年来,随着计算方法的进步和运算能力的提高,第一性原理计算不仅在精度上能够接近或达到“化学精度”的水平;而且使得处理较大的表面体系成为可能,目前的计算能力已经可以承担含上千原子体系的计算任务。第一性原理计算能够在表面科学的研究中发挥巨大作用。
     本文通过第一性原理的计算,并与表面科学的实验研究成果相结合,解决了若干表面上吸附、反应及动力学行为的一些问题,在原子水平上揭示了表面过程的微观机理。
     第一章简要介绍了第一性原理计算的基本理论框架以及本论文研究中所使用的计算方法。首先介绍了Hartree-Fock方法、后Hartree-Fock方法和密度泛函理论,然后介绍了平面波基组下的计算方法、表面体系模拟的两种方法、研究反应路径及过渡态的方法以及计算使用的VASP程序包,最后简要介绍了扫描隧道显微镜的工作原理和模拟方法。
     第二章首先回顾了扫描隧道显微镜操控表面吸附分子的研究历史和发展进程,然后通过理论计算研究了反式-2-丁烯在Pd(110)表面的吸附和脱氢过程以及氧气分子在Pt(111)表面的转动和解离过程。在对反式-2-丁烯表面过程的研究中,首先确定了反应过程的反应物和产物,然后探讨了脱氢的微观过程,发现反式-2-丁烯分子在脱氢前的无能垒转动过程,并指出脱氢是一个分步进行的过程。在对氧气表面转动过程的探讨中,通过研究转动过程的路径,发现了氧气分子巧妙的转动方式,从而解释了实验上观测到的氧气转动的超低能垒;在对表面解离过程的探讨中,找到了关键的中间态的构型,并提出表面解离的“加农炮”机理,解释了实验观察到的亚稳态的hcp hollow位被氧原子优先占据的奇怪现象。
     第三章主要探讨了表面吸附分子作为功能性分子器件‐分子开关的研究。首先简要回顾了表面单分子开关研究的发展过程,然后研究了萘酞菁分子和三聚氰胺分子作为分子开关的性质。在对萘酞氰的研究中,通过对其异构化过程的分析,指出萘酞氰分子是一个四态开关,而不是双态开关。在对三聚氰胺分子的研究中,首先确定了分子的吸附构型,以及非弹性激发下分子的异构化变化过程,然后解释了异构化分子整流性质的来源,接着研究了非对称分子作为分子开关的机械转动行为,并给出了三聚氰胺分子表面变化的全过程。在本章的最后部分,结合实验上观测到的转变几率与电流之间的非整数指数关系,指出非弹性电子激发过程是一个随机过程,并提出了一种统计模型成功解释了三聚氰胺分子和氧气分子表面过程的非整数幂指数关系。
     第四章研究了金、银、铜原子在Si(111)-7x7表面上的扩散行为。实验上观察到银原子与金、铜原子具有完全不同的表面扩散性质,通过对扩散路径的探讨以及扩散能垒的分析,发现金、铜原子与银原子在表面的吸附能存在较大差别,这使得金、铜原子盆地间扩散造成临近的表面硅顶戴原子移动较少,而银原子盆地间扩散造成表面硅顶戴原子移动较多,从而解释了两类原子在扩散行为上的差别。
     论文的附录加入了一些其它方面的计算工作,包括对C6H4O(OH)-阴离子和苯醌阴离子光电子能谱性质的模拟和解释,以及理论预言Graphdiyne是一种良好的气相分离器件。
With the rapid advances in experimental techniques, the development of surface science is considerable in recent decades. More and more knowledge has been gained on detailed and comprehensive understanding of surface progresses. Interpreting surface progress at the atomic scale, however, could still be regarded as a challenge. On one hand, conclusions on the same issue can be conflicting from different research groups due to the differences of the experimental conditions such as the preparation method, temperature, coverage and so on; on the other hand, some detailed information about surface progress and the corresponding microscopic mechanism cannot be obtained directly from experiments. As a result, theoretical calculations and modeling from first principles are indispensable.
     In the past decade, along with the development of the theoretical methods and programs as well as the improvement of the computational capabilities, first principles calculations can achieve the level of“chemical accuracy”; besides, it is also possible to model large systems with at most thousands of atoms such as surface. Now first principles calculations are greatly important in the studies of surface science. In this dissertation, I will show our studies on the adsorption, reaction and dynamic behavior of surface progress with first principles calculations. Through the comparison of simulation results with the experiments, some information of the detailed surface progress is obtained.
     In the first chapter, I give an introduction on the basic theoretical framework and the calculation methods employed in our studies. Firstly, I briefly introduce the Hartree-Fock method, post Hartree-Fock methods, and density functional theory (DFT); then I show how to perform calculation under plane wave basis set, how to model surface system, and how to explorer reaction pathway and locate the transition state. After some information about the program package VASP, a brief introduction of scanning tunneling microscope (STM) and the corresponding simulation methods are given at last.
     In the second chapter, I first give a review of studies on the excitation and manipulation of adsorbed molecule with STM, and then I show our studies on the dehydrogenation progress of trans-2-butene molecule on Pd(110) surface, as well as the rotation and dissociation of oxygen molecule on the Pt(111) surface. In the studies of the adsorbed trans-2-butene molecule, we assigned the configurations of the reaction and product and explorer the dehydrogenation pathway. We found that the dehydrogenation is a step-wise progress following a barrierless rotation event. In the studies of the adsorbed oxygen molecule, we found an ingenious rotation pathway, which could explain the ultralow rotation barrier. In the studies of the dissociation progress, we locate an intermediate state with particular configurations. Combining the“cannon ball”mechanism, the prior occupation of the metastable hcp-hollow site after O_2 dissociation is explained.
     The third chapter of the dissertation focuses on the properties of adsorbed single molecule as a device: molecular switch. Firstly I give a brief review on the studies of this area, and then I show our results of two molecular switches: naphthalocyanine and melamine molecules. Through the studies of the tautomerization mechanism of the naphthalocyanine, we found that this molecule behaves as a four-state switch rather than a two-state switch. In the studies of the adsorbed melamine molecule, we found that this molecule adsorbs on the Cu(100) surface through a dehydrogenation progress. We provided an explanation on the dual functional properties of melamine molecule, and explored the whole progresses of the configuration changes under the STM stimulus after the adsorption. At last, we put forward a statistical model to explain the non-integral exponential relationship between the generation rate and the tunneling current, and successfully explain the observation from the melamine and oxygen molecule experiments.
     In the fourth chapter, we studies the diffusion dynamics of single Au, Ag and Cu atom on the Si(111)-7x7 surface. In the experiments it is observed that the diffusion properties of Au and Cu are in sharp contrast with the one of Ag. Through the analysis of the diffusion pathway and the adsorption energy changes, we found that the difference of the interaction between the adsorbed atom and the substrate is the main reason. In the case of Au and Cu, large interaction makes the displacement of the nearly Si adatom not too much, while for Ag, the displacement is larger, making the inter-basin diffusion barrier higher than the other atoms.
     In this dissertation, I include some other works which do not relate much on surface science. They include the photoelectron spectroscopy simulation of C_6H_4O(OH)- and C_6H_4O_2- anions, and the theoretical prediction of an ideal porous nano-structure as membrane for gas separation. These contents are put in the appendix.
引文
[1]徐光宪,黎乐民,王德民《量子化学》,科学出版社(2001).
    [2] a) J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003); b) J. P. Perdew, A. Ruzsinszky, J. Tao, V. N. Staroverov, G. E. Scuseria, G. I. Csonka, J. Chem. Phys. 123, 062201 (2005).
    [3] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
    [4] A. D. Becke, Phys. Rev. A 38, 3098 (1988).
    [5] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
    [6] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
    [7] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
    [8] G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).
    [9] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
    [10] J. A. Keith, G. Jerkiewicz, and T. Jacob, ChemPhysChem 11, 2779 (2010).
    [11] G. Henkelman, B. P. Uberuaga, and H. Jonsson, J. Chem. Phys. 113, 9901 (2000).
    [12] G. Binnig and H. Rohrer, Helv. Phys. Acta 55, 726 (1982).
    [13] B. C. Stipe, M. A. Rezaei and W. Ho, Science, 280, 1732 (1998).
    [14] C. J. Chen, Introduction to Scanning Tunneling Microscope. Oxford University Press: Oxford (1993).
    [15] J. Bardeen, Phys. Rev. Lett. 6, 57 (1960).
    [16] J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985).
    [1] G. Binnig and H. Rohrer, Helv. Phys. Acta 55, 726 (1982).
    [2] B. C. Stipe, M. A. Rezaei and W. Ho, Science 279, 1907 (1998).
    [3] B. C. Stipe, M. A. Rezaei and W. Ho, Phys. Rev. Lett. 81, 1263 (1998).
    [4] J. A. Stroscio, F. Tavazza, J. N. Crain, R. J. Celotta and A. M. Chaka, Science 313, 948 (2006).
    [5] V. Simic-Milosevic and K. Morgenstern, J. Am. Chem. Soc. 131, 416 (2009).
    [6] B. C. Stipe, M. A. Rezaei, W. Ho, S. Gao, M. Persson and B. I. Lundqvist, Phys. Rev. Lett. 78, 4410 (1997).
    [7] Y. Kim, T. Komeda and M. Kawai, Phys. Rev. Lett. 89, 126104 (2002).
    [8] P. Maksymovych and J. T. Yates, J. Am. Chem. Soc. 128, 10642 (2006).
    [9] P. A. Sloan and R. E. Palmer, Nature 434, 367 (2005).
    [10] N. L. Yoder, J. S. Fakonas and M. C. Hersam, J. Am. Chem. Soc. 131, 10059 (2009).
    [11] H. J. Lee and W. Ho, Science 286, 1719 (1999).
    [12] J. R. Hahn and W. Ho, Phys. Rev. Lett. 87, 166102 (2001).
    [13] S. W. Hla, L. Bartels, G. Meyer and K. H. Rieder, Phys. Rev. Lett. 85, 2777 (2000).
    [14] S. Katano, Y. Kim, M. Hori, M. Trenary and M. Kawai, Science 316, 1883 (2007).
    [15] J. I. Pascual, N. Lorente, Z. Song, H. Conrad and H. P. Rust, Nature 423, 525 (2003).
    [16] D. Riedel, M. L. Bocquet, H. Lesnard, M. Lastapis, N. Lorente, P. Sonnet and G. Dujardin, J. Am. Chem. Soc. 131, 7344 (2009).
    [17] C. Dri, M. V. Peters, J. Schwarz, S. Hecht and L. Grill, Nat. Nanotechnol. 3, 649 (2008).
    [18] P. Maksymovych, D. C. Sorescu, K. D. Jordan and J. T. Yates, Science 322, 1664 (2008).
    [19] P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
    [20] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
    [21] G. Henkelman, B. P. Uberuaga, and H. Jonsson, J. Chem. Phys. 113, 9901 (2000).
    [22] J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985).
    [23] G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).
    [24] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
    [25] S. Katano, S. Ichihara, H. Ogasawara, H. S. Kato, T. Komeda, M. Kawai, and K. Domen, Surf. Sci. 502–503, 164 (2002).
    [26] J. Wintterlin, R. Schuster, and G. Ertl, Phys. Rev. Lett. 77, 123 (1996).
    [27] P. J. Feibelman, S. Esch, and T. Michely, Phys. Rev. Lett. 77, 2257 (1996).
    [28] A. Bogicevic, J. Str?mquist, and B. I. Lundqvist, Phys. Rev. B 57, R4289 (1998).
    [29] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
    [30] C. Puglia, A. Nilsson, B. Hernn?s, O. Karis, P. Bennich, N. M?rtensson, Surf. Sci. 342, 119 (1995).
    [31] D. H. Parker, M. E. Bartram and B. E. Koel, Surf. Sci. 217, 489 (1989).
    [32] A. Eichler and J. Hafner, Phys. Rev. Lett. 79, 4481 (1997).
    [33] L. Qi, X. Qian, and J. Li, Phys. Rev. Lett. 101, 146101 (2008).
    [34] V. A. Ranea, A. Michaelides, R. Ramírez, P. L. de Andres, J. A. Vergés, and D. A. King, Phys. Rev. Lett. 92, 136104 (2004).
    [35] T. Kumagai, M. Kaizu, S. Hatta, H. Okuyama, T. Aruga, I. Hamada, and Y. Morikawa, Phys. Rev. Lett. 100, 166101 (2008).
    [36] C. Sprodowski, M. Mehlhorn and K. Morgenstern, J. Phys.: Condens. Matter 22, 246005 (2010).
    [37] J. Wintterlin, R. Schuster, and G. Ertl, Phys. Rev. Lett. 77, 123 (1996).
    [1] D. M. Eigler, C. P. Lutz and W. E. Rudge, Nature 352, 600 (1991).
    [2] B. Y. Choi, S. J. Kahng, S. Kim, H. Kim, H. W. Kim, Y. J. Song, J. Ihm and Y. Kuk, Phys. Rev. Lett. 96, 156106 (2006).
    [3] J. Henzl, M. Mehlhorn, H. Gawronski, K. H. Rieder and K. Morgenstern, Angew. Chem.-Int. Edit. 45, 603 (2006).
    [4] M. Alemani, S. Selvanathan, F. Ample, M. V. Peters, K. H. Rieder, F. Moresco, C. Joachim, S. Hecht and L. Grill, J. Phys. Chem. C 112, 10509 (2008).
    [5] M. Alemani, M. V. Peters, S. Hecht, K. H. Rieder, F. Moresco and L. Grill, J. Am. Chem. Soc. 128, 14446 (2006).
    [6] P. Liljeroth, J. Repp and G. Meyer, Science 317, 1203 (2007).
    [7] Y. F. Wang, J. Kr?ger, R. Berndt and W. A. Hofer, J. Am. Chem. Soc. 131, 3639 (2009).
    [8] M. K. Friedel, B. F. Hoskins, R. L. Martin, S. A. Mason, J. Chem. Soc. D 400 (1970).
    [9] P. N. Day, Z. Wang, R. Pachter, THEOCHEM 455, 33 (1998).
    [10] P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
    [11] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
    [12] G. Henkelman, B. P. Uberuaga, and H. Jonsson, J. Chem. Phys. 113, 9901 (2000).
    [13] J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985).
    [14] G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).
    [15] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
    [16] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
    [17] Gaussian 03, Revision B.04, M. J. Frisch et al. Gaussian, Inc., Pittsburgh PA, 2003.
    [18]潘拴,中国科学技术大学博士学位论文,(2009).
    [19] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
    [20] H. Lesnard, M.-L. Bocquet, and N. Lorente, J. Am. Chem. Soc. 129, 4298 (2007).
    [21] S. W. Gao, M. Persson and B. I. Lundqvist, Solid State Commun. 84, 271 (1992).
    [22] S. W. Gao, M. Persson and B. I. Lundqvist, J. Elec. Spec. Relat. Phenom. 64/65, 665 (1993).
    [23] S. W. Gao, M. Persson and B. I. Lundqvist, Phys. Rev. B 55, 4825 (1997).
    [24] R. E. Walkup, D. M. Newns and P. Avouris, Phys. Rev. B 48, 1858 (1993).
    [25] R. E. Walkup, D. M. Newns and P. Avouris, J. Elec. Spec. Relat. Phenom. 64/65, 523 (1993).
    [26] G. P. Salam, M. Persson and R. E. Palmer, Phys. Rev. B 49, 10655 (1994).
    [27] B. C. Stipe, M. A. Rezaei, W. Ho, S. Gao, M. Persson and B. I. Lundqvist, Phys. Rev. Lett. 78,4410 (1997).
    [28] P. A. Sloan and R. E. Palmer, Nature 434, 367 (2005).
    [29] J. I. Pascual, N. Lorente, Z. Song, H. Conrad and H. P. Rust, Nature 423, 525 (2003).
    [30] B. C. Stipe, M. A. Rezaei and W. Ho, Science 279, 1907 (1998).
    [31] J. A. Stroscio, F. Tavazza, J. N. Crain, R. J. Celotta and A. M. Chaka, Science 313, 948 (2006).
    [32] S. Pan, Q. Fu, T. Huang, A. D. Zhao, B. Wang, Y. Luo, J. L. Yang and J. G. Hou, Proc. Natl. Acad. Sci. 106, 15259 (2009).
    [33] B. C. Stipe, M. A. Rezaei, and W. Ho, Phys. Rev. Lett. 81, 1263 (1998).
    [34] Q. Fu, J. L. Yang, and Y. Luo, Appl. Phys. Lett. 95, 182103 (2009).
    [1]王克东,中国科学技术大学博士学位论文,(2005).
    [2] Arie van Houselt and Harold J. W. Zandvliet, Rev. Mod. Phys. 82, 1593 (2010).
    [3] Takayanagi, K., Tanishiro, Y., Takahashi, M., Takahashi, S., J. Vac. Sci. Technol. A 3 1503 (1985); Takayanagi, K., Tanishiro, Y., Takahashi, S., Takahashi, M., Surf. Sci. 164 367 (1985).
    [4] Chen, C. J. Introduction to Scanning Tunneling Microscope. Oxford University Press: Oxford (1993).
    [5]赵爱迪,中国科学技术大学博士学位论文,(2006).
    [6] C. Zhang, G. Chen, K. D. Wang, H. W. Yang, T. Su, C. T. Chan, M. M. T. Loy, and X. D. Xiao, Phys. Rev. Lett. 94, 176104 (2005).
    [7] K. D. Wang, G. Chen, C. Zhang, M. M. T. Loy, and X. D. Xiao, Phys. Rev. Lett. 101, 266107 (2008).
    [8] P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
    [9] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
    [10] G. Henkelman, B. P. Uberuaga, and H. Jonsson, J. Chem. Phys. 113, 9901 (2000).
    [11] G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).
    [12] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
    [13] G. Chen, Xudong Xiao, Y. Kawazoe, X. G. Gong, and C. T. Chan, Phys. Rev. B 79, 115301 (2009).
    [14] M. Mavrikakis, B. Hammer, and J. K. N?rskov, Phys. Rev. Lett. 81, 2819 (1998).
    [15] J. R. Kitchin, J. K. N?rskov, M. A. Barteau, and J. G. Chen, J. Chem. Phys. 120, 10240 (2004).
    [16] P. Pyykk?, and J. P. Desclaux, Acc. Chem. Res. 12, 276 (1979).
    [1]徐光宪,黎乐民,王德民《量子化学》科学出版社(2001).
    [2]代兵,中国科学技术大学博士学位论文,(2004).
    [3] B. Dai, K. M. Deng, and J. L. Yang, Chem. Phys. Lett. 364, 188 (2002).
    [4] S. Bulusu, X. Li, L. S. Wang, and X. C. Zeng, Proc. Natl. Acad. Sci. 103, 8326 (2005).
    [5] M. Ji, X. Gu, X. Li, X. G. Gong, J. Li, and L. S. Wang, Angew. Chem. Int. Ed. 44, 7119 (2005).
    [6] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
    [7] Gaussian 03, Revision B.04, M. J. Frisch et al. Gaussian, Inc., Pittsburgh PA, 2003.
    [8] R. F. Gunion, M. K. Gilles, M. L. Polak, W. C. Lineberger, Int. J. Mass. Spectrom. Ion Processes 117, 601 (1992).
    [9] S. E. Boesch, A. K. Grafton, R. A. Wheeler, J. Phys. Chem. 100, 10083 (1996).
    [10] NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, (Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2001).
    [11] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, Nature 318, 162(1985).
    [12] S.Iijima, Nature 354, 56(1991).
    [13] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306, 666 (2004).
    [14] D. Jiang, V. R. Cooper, and S. Dai, Nano Letters 9, 4019 (2009).
    [15] de Vos, R. M.; Verweij, H. Science 279, 1710 (1998).
    [16] P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
    [17] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
    [18] G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).
    [19] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
    [20] G. X. Li, Y. L. Li, H. B. Liu, Y. B. Guo, Y. J. Li and D. B. Zhu, Chem. Comm. 46, 3256 (2010).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700