用户名: 密码: 验证码:
青藏高原东边缘冕宁—宜宾剖面电性结构及高导层的地质意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
约50Ma前印度板块与欧亚板块开始碰撞之后,青藏高原发生了令人瞩目的整体隆升,成为晚第三纪以来亚洲乃至全球最为重要的地质事件,并使青藏高原成为大陆岩石圈变形最为强烈的地区之一,是全球学者研究大陆动力学乃至地球动力学的焦点和热点地区。由于印度板块与欧亚板块的碰撞以及组成青藏高原各地块向东和东南的挤出运动,使位于青藏高原东边缘大凉山地块及其附近地区具有明显的高原和盆地之间的过渡带特征,地壳变形严重,地壳厚度变化剧烈,并且是重力梯度带和航磁异常明显的地区,也是(GPS)资料显示的地壳运动方向由东向东南发生转变的关键地段。本区不仅蕴藏有丰富的金属矿等矿产资源,也是我国强烈地震最为频繁的地区之一。
     国家973科研项目《活动地块边界带动力过程与强震预测》等以本地区为目标区,就青藏高原东边缘带的活动地块的运动性状、地块之间的接触关系及相互作用和边界断裂的深浅耦合关系,以及板内强震发生的原因进行研究。大地电磁测深法作为一种探测地球深部电性结构有效的地球物理方法,在青藏高原东边缘开展了剖面式探测研究,其中冕宁-宜宾剖面是横穿东边缘带大凉山地块的东西向展布最长的剖面,本文将以冕宁—宜宾剖面为重点,开展大地电磁(MT)研究,这也是该地区首次利用大地电磁法进行深部结构研究。
     为了获得该地区可靠的地壳上地幔电性结构,并研究是否存在中下地壳流动层及其地质意义,作者采用最先进的大地电磁数据处理分析技术,对观测资料进行了由定性到定量全面地分析,通过二维反演得到了沿剖面的较为详细的地壳上地幔电性结构。通过把本剖面和位于其北侧的石棉—乐山剖面和南侧的美姑—绥江剖面等的综合分析,再次给出了青藏高原东边缘带地壳流动层(“管流层”,"channel flow layer")的电磁探测证据,并结合其它地质和地球物理资料的分析,就有关地块的结构特征和接触关系、岩石圈运力学、地壳流动层和地震活动性的关系等问题进行了研究分析。
     1大地电磁资料分析解释技术的应用研究
     青藏高原东边缘带以及冕宁-宜宾剖面位于地质构造复杂、地形起伏较大和断裂(断层)非常发育的地区。在当前三维数据反演技术尚不成熟,主要利用二维技术进行数据解释的情况下,分析由于复杂的构造和结构等引起的畸变问题,认识和减少畸变对数据解释效果的影响无疑是非常有意义的。
     1.1阻抗张量分解技术及其应用
     为适应二维大地电磁资料的观测、处理和解释,在上世纪60年代提出了张量阻抗技术,替代原来的仅用于一维分析的标量技术(Hermance,1973)。同时也发现当存在三维构造和结构时,观测资料受到的畸变影响(Berdichevsky,1998),特别是在近地表存在小尺度不均匀体时,观测资料受到的局部畸变影响受到关注,并成为困扰大地电磁资料解释的难题之一直到上世纪80年代末期,阻抗张量分解技术的提出,为识别、克服或减少局部畸变的影响找到了一种新的思路(Swift(1967);Bahr(1988); Groom&Baily(1989);赵国泽(1996);王立凤(2001);晋光文(2003))。
     本文利用Bahr和Groom & Baily提出的阻抗张量分解技术分别对冕宁—宜宾剖面的大地电磁资料进行了分析,并与常规的Swift技术分析结果进行了对比分析,结果表明,沿剖面的大多数测点的资料受到局部畸变的影响很小,使用Swift技术进行分析是合理的。对于受到局部畸变影响的少数测点,通过利用Groom & Baily的阻抗张量分解技术进行分析,获得了反映深部区域电性结构的主轴方向(电性走向)和有关畸变参数,在资料分析和二维反演时,合理地使用区域电性主轴方向和相关畸变参数,则能够得到合理的视电阻率、阻抗相位曲线,进而反演获得真实、可靠的电性结构。
     1.2断裂对观测资料的影响分析
     为了分析不同性质断裂(带)对观测资料的影响,本文利用二维模型技术计算了具有不同宽度、不同深度和不同倾向的断裂(带)模型对视电阻率曲线等的影响,结果表明,断裂(带)两侧地层的电性差异对TM极化模式的视电阻率曲线的影响大于对TE极化模式的影响,并出现了视电阻率曲线的跳变,而断裂带宽度在一定范围内的变化对视电阻率曲线影响不大。但是,随着断裂(带)深度的增大,视电阻率受到的影响范围也增大,断裂(带)倾向的变化也会引起视电阻率曲线的变化。该研究结果,对于在断裂发育区大地电磁的观测有一定的帮助和指导作用。
     1.3地形影响的分析
     为了研究地形起伏对大地电磁资料反演的影响,本文利用二维模型反演技术,计算了地表为山谷和山峰情况下面存在低阻凸起的相对简单的模型。对于TM模式资料的反演,如果模型中不考虑地形的存在,无论对于山谷还是山峰模型,反演结果中,低阻凸起的顶界面都出现了向上的平移,并影响到深部岩层的电性结构,产生冗余的异常构造,且数据拟合差较大。而采用带地形的反演,不论是山谷还是山峰模型,都能较好地确定低阻凸起顶面深度及其下部地层的电性界面。这一研究为冕宁-宜宾剖面反演中,采用带地形的反演技术,获得较可靠的电性结构,提供了一定的理论依据。
     1.4充分利用大地电磁资料的信息和二维反演中采用合理的技术措施
     大地电磁观测可获得视电阻率、相位、二维偏离度、主轴方向和磁感应矢量等多种信息,在进行资料解释时,充分利用和分析这些信息,能够更全面地对地下的电性结构进行约束,获得更真实的地质解释结果,特别是在象冕宁—宜宾剖面所在的复杂构造地区,这种分析就更有必要。通过分析,对沿剖面的电性结构的变化程度、分段性、分层性、曲线畸变特点以及电性走向等有了第一手的定性分析结果,不仅可以为反演中数据和参数的选择提供依据和帮助,而且把它们和二维反演结果相结合,可确保关于地下电性结构解释结果的可靠性。
     在二维反演中,分别使用TE、TM、TE加TM三种模式的资料进行了反演,经反复对比确定使用TE模式加TM模式资料的联合反演。此外,对于反演模型网格的剖分密度、数据背景误差的设定、模型光滑度参数的选择等也进行了多次对比试验,最后选择了合理的反演参数和模型网格的剖分。本文最后得到可接受的电性结构模型,就是利用带地形的NLCG(非线性共轭梯度法)二维反演方法,对TE加TM资料联合反演得到的。
     2冕宁-宜宾剖面2D反演及电性结构
     在对冕宁-宜宾剖面大地电磁资料进行反演时,针对本剖面构造比较复杂的特点,我们采用分步骤逐步实施的措施,既保证反演迭代能够稳定的收敛,又避免陷入局部极值和产生冗余的结构。例如,反演时首先选用较大的光滑度因子,获得分辨率较低的较为光滑的反演模型,即获得真实模型的主要轮廓。然后,以此模型为初始模型,采用较小的光滑度因子重新进行反演,获得进一步的细化模型。按此原则进一步由小至大选择不同光滑度因子,继续反演,直到数据拟合达到满意的要求为止。在这个过程中,反演模型的网格也进行修正,即在构建下一步反演的初始模型时,不仅将各测点下的电阻率信息提取出来,而且对上一步得到的各测点的电阻率值在更细的网格上进行插值,得到新的电阻率模型作为初始模型,于是每一步反演中都包含前一步真实模型信息,不包含可能出现的局部极值或冗余电性构造的信息,经多次修改和反演迭代,从而得到真实的地下电性结构模型。
     反演得到的冕宁-宜宾剖面的电性结构表明,沿剖面可分成三个区段,自西向东分别对应康滇地轴、大凉山地块和四川盆地,它们之间的边界分别对应大凉山断裂和峨边断裂。康滇地轴包括安宁河断裂东西两侧附近的区域,西边界深入到川滇地块内的东部,东边界即大凉山断裂。康滇地轴的上地壳表现为高电阻率,其厚度由西向东逐渐变薄,并在与安宁河断裂带对应的部位出现了近垂向低阻带,上地壳高阻层之下为低阻层。大凉山地块的上地壳也为相对高阻层,但是其电阻率小于康滇地轴上地壳的电阻率,厚度也较小,在相对高阻层之下出现低阻层,并与康滇地轴中下地壳的低阻层连通。四川盆地的地壳整体表现为高阻层,不存在地壳低阻层。低阻层沿剖面的一个明显的特点是,康滇地轴和大凉山地块的的中下地壳的低阻层形态显示为向上凸起的拱形结构,拱形结构的顶点位于大凉山地块的中部。此外,大凉山断裂带也显示为具有一定宽度的近垂直的低阻带。甘洛断裂和西河—美姑断裂也分别对应低阻带,并象安宁河断裂和大凉山断裂一样,其底部尖灭于地壳低阻层的顶部。经分析认为,中下地壳的低阻层是由于部分熔融并可能含有流体引起的。
     3青藏高原东边缘带电性结构、动力学模型及地震活动性分析
     结合该项目中的其它四条剖面(康定,石棉—乐山,美姑—绥江,巧家等剖面)的电性结构进行综合分析,对青藏高原东边缘带有了较完整的认识。康滇地轴上地壳自北向南皆表现为电阻率大于几千Ωm的高阻层,厚度约30~40km,并自西向东逐渐减薄,至大凉山断裂处为20 km左右,反映了该区发育的上地壳古老变质岩和火成岩等。在高阻层之下为厚度20~25 km的低阻层,它自川滇地块向东,穿过安宁河断裂和大凉山断裂,与大凉山地块壳内的低阻层相连。低阻层之下,电阻率有所增大。
     大凉山地块相对高阻的上地壳电阻率小于康滇地轴,可能反映了该区发育较厚的古生代和中生代碳酸岩和蒸发岩。中下地壳的低阻层(高导层)的深度整体较小,其电阻率也是本区最小的层位,并形成上拱的形态,顶面最浅部约5 km深。再向东高导层深度逐渐增大,并显示向四川盆地深部倾俯的现象。高导层以下电阻率有所增大,一般为几十~几百Ωm。
     四川盆地电性结构同冕宁—宜宾剖面(MYp)和美姑—绥江剖面(MGp)一致,总体分为3层。第一层可分为上、下2个亚层,上亚层表现为高、低阻体横向相间排列的形式,下亚层为相对低阻层。第一层底界深度由西部的约8 km增加到东部约15 km左右。第二层表现为较厚的高阻层,其深度和厚度都显示向东逐渐增大的趋势,与中下地壳对应,内部不存在高导层。高阻层之下,电阻率又增加,与上地幔顶部对应。本区段的电性结构反映了四川盆地浅部较厚的沉积岩层之下存在厚度较大、坚硬的地壳。
     安宁河断裂带表现为—垂向低阻带,在中下地壳内该低阻带被高导层横切成上、下两部分,上部宽度约5 km,带内电阻率小于东、西两侧的电阻率,为几百欧姆米,其底界尖灭于中地壳低阻层顶部。低阻层以下为近垂直的相对简单的电性边界,其东侧的电阻率值高于西侧。在石棉—乐山(SLP)剖面,安宁河断裂和大凉山断裂、甘洛断裂交汇于一处,高导层以上断裂的深度比冕宁—宜宾(MYp)剖面的深度小。大凉山断裂带同样为近垂向的低阻带,宽度约几公里,断裂带底界与壳内低阻层相连。峨边断裂对应两侧具有较大电阻率差异的地块边界,深部有向东倾俯的趋势。
     基于青藏高原东边缘带存在管流层("Chanel flow layer")的假说,以及本区中下地壳高导层的几何形态和GPS速度分布,推测高导层的运动特点如下,青藏高原受到南侧印度板块的碰撞作用而向北运动,在北侧塔里木地块等的阻挡下,组成青藏高原的各子地块发生相对于华南地块发生向东的运动。青藏高原东边缘带的向东、向东南流动的地壳高导层由于受到东侧四川盆地的阻挡,运动方向发生向东南的转变,同时出现向四川盆地上方的仰冲和向深部的倾俯。
     该区电性结构和地震资料分析表明:地壳内低阻层导电性出现横向差异的地区往往对应地震较活跃的地区。例如,安宁河断裂带是强地震分部带,且小震密集分布。大凉山断裂带和峨边断裂带也是地震较强活动的地区。而在大凉山地块内部,历史纪录的中强地震少,小震活动也比较弱。
     松潘甘孜地块的高导层自地块中部沿着地块走向向南东东—南东方向运动,受到龙门山断裂带和四川盆地的正面阻挡,形成稳定的“T”字型结构,难以发生运动和变形,但却易于积累地震应力。因此,在汶川地震前,龙门山断裂存在很小的滑动速率以及很弱的地震活动。而当应力积累超过了地壳岩石破裂强度时,导致汶川特大地震的发生。
The India-Eurasia collision about 50Ma ago and the continued northward indentation of India has resulted in a conspicuous uplift of the Tibetan plateau as a whole, where the continental lithosphere is experiencing most intensive deformation. It is one of the most mysterious geological events since late Tertiary time in Asia and the world. Thus this region has become an idealized field laboratory for continental dynamics. The Sichuan-Yunnan region in the eastern margin of the Tibetan plateau is a transitional zone from highland to basin in tectonics because of the India-Eurasia collision and the eastward indentation of blocks in the Tibet plateau, which is characterized by steep gravity gradients from south to north and aeromagnetic anomaly belt, large variations of crustal thickness, strong crutsal movements, active faults and frequent earthquakes as well as metallic mineralization zones. GPS data reveal that the crustal motion turns to east and southeast in this region, which may imply an eastward flow of the lower crust material there.
     It is, however, not clear what is the deep background for the dynamic processes mentioned above. Hence to probe the structure beneath this region by geophysical, including magnetotelluric (MT) sounding, is an urgent task. This thesis focuses on analysis of the MT data collected on the Mianning-Yibing profile across the eastern margin of the Tibetan plateau, which is the longest peofile in the eastern margin of Tibet plateau, and the first study to detect the deep structure in this area.
     The purpose in this project is to infer deep structure beneath the study area and study whether there is a lower-crust flow layer and its implications below this area. In this thesis, the data analysis from qualitative to quantitative with the advance MT data processing technique and 2D inversion are performed to yield fine electric structure.In conjunction with the Shimian-Leshan profile in the north and Meigu-Suijiang profile in the sourth, this thesis suggests the MT sounding evidence for the channel flow layer below the study area. Consideration of the electrical structures of other profiles in this region, a detailed discussion is made on the structural characters and contact relationships among the blocks. In combination with other data (geology, seismology, heat flow, and GPS), a kinematic model is suggested for this region and a further analysis is made on seismicity in this region.
     1 MT data analysis and its application
     The eastern margin of Tibet plateau is the area with complicated structures and strongly deformed strata and development faults especially where the Mianning-Yibin profile crosses. It's important to analysis, distinguish and decrease the affect of the distoration by the complicated structures when the 2D inversion is used today and 3D inversion is not applied.
     1.1 Impedance tensor decomposition and its application
     The impedance tensor was adopted in the sixth decade of last century, and took place of the impedance scalar quantity (Hermance,1973) in order to use the 2D MT data observation, processing and interpration. The local distortion (Berdichevsky,1998) caused by 3D near-surface abnormal bodies has been a difficult issue in MT data interpretation since a long time.In the eighth decade of last decade, methods of impedance decomposition were put forward as an effective tool to tackle this problem (Swift(1967);Bahr(1988); Groom&Baily(1989); Zhao(1996); Wang (2001); Jin (2003))).
     This work uses the impedance decomposition methods suggested by Bahr and Groom&Baily to make a comparative analysis of measurement data along the profile and contrast to the traditional method by Swift. The result shows that the distoration caused by the local anomaly body is little for majority of sites, and the true electrical structure can be acquired through the Swift analysis method. The azimuth of the principal axis on deep electrical structure and the correlative distortion parameters can be gotten by the GB impedance decomposition method to the some distorted sites.The reasonable apparent resistivity and impedance phase can be acquired with the azimuth of the principal axis and other distortion parameters.The 3D local distoration can be avoided to get the true electrical structure and the reason about the distoration is analyzed combined with the observation data.
     1.2 Influence of faults on MT data
     The influence of faults with variational width, depth and tendence on the MT data is calculated in this thesis in order to anyalyze the influence of different faults with the 2D forward modeling. Forward modeling shows that lithology variation between both sides of a fault can produce major influence on apparent resistivity curves and there's a bigger leap transform along the appearent resistivity curves in the TM mode than TE mode, while the width of the fault does not seiriously. But such influence would enhance with increasing depth of the fault and cause the appearent resistivity change with the varying tendence of the fault. It would give a good help and instruction to the MT data observation in the area with development structures.
     1.3 Influence of topography on MT data
     The relatively simple model with a low resistivity horst below the valley and the peak model is calculated with forward methods in order to anyalyze the influence of different topography.The forward modeling on relatively simple models with valley and peak topography indicates that for 2D inversion of apparent resistivity and impedance phase, the low-resistivity body below the relief shifts upward when the inversion does not include topography, which has some effect on the underlying strata, easily to produce redundent structure and big RMS in final data fitting. When the topography is considered in NLCG inversion, the low-resistivity body in the lower part of the model with a valley and peak can exhibit good response, consistent with its real position and its lower boundary can also be well revealed. It demonstrates that the NLCG inversion with consideration of topography can overcome the influence of relief effectively and acquire relatively true electric structure in the subsurface.
     1.4 Information from the MT data and reasonable metoods used in 2D inversion
     The 2D skewness, azimuth of the principal axis, magnetic induction vectors, apparent resistivity and impedance phase are acrquired from the MT data. It's very important to define and get the true electrical structure when these informations are analysed and adopted in the data inversion calculation especially in mountainous areas where the Mianning-Yibin profile cross. With this analysis, some characteristics of subsurface electric structure can be determined, such as segmentation, layering, complexity, electric boundaries, dimension and orientations of principal axis, which not only provide evidence for the reseasonable parameters and data selected in 2D inversion and interpretation but also can be combined in the 2D inversion to proof the true electrical structure and reseanable interprations.
     This work analyses the inversions on different models including TE mode,TM model and the joint inversion of the TE/TM mode, and select the joint inversion of the TE/TM mode as the final result.Further more, the last inversion parameter selected and mesh grid subdivision are determined through lots of tests on the inversion model mesh grid subdivision density,data error selected and the model smooth regularization factor.The accepted model in this thesis is acquired with the joint inversion of TE &TM mode data by the NLCG method with topography.
     2 Two-D inversion of Mianning-Yibing profile and analysis of electric structure
     A stepping maner is adopted in order to get a stable convergent result and avoid falling into a local extreme value or reduce unexpected structure during Mianning-Yibin MT profile inversions. For example, a smooth model of low resolution is firstly established using a big regularization factor, which outlines the realistic model. Then this resulted model is used as the initial one and the value of the regularization factor is lowered for the next inversion. This process is repeated till the data fitting meets the requirement. The inversion mesh grid is changed in this process too.
     It indicates from the electrical structure along the Mianning-Yibin profile that the section can be devided into three parts.The first is Kangdian geo-axis, the next Daliang Shan block and the third Sichuan basin from west to east.Their boundaries are Daliang Shan fault and Ebian fault respectively.The west boundary of Kangdian geo-axis locates inside the Sichuan-yunnan block, and the eastern is Daliang Shan fault. The upper crust of the Kangdian geo-axis is featured by high resistivity, at thickness thinner from west to east. There is a low resistivity layer below the upper crustal high resistivity layer. The upper crust of the Daliang Shan block is featured by high resistivity too. But the resistivity is less than Daliang Shan block's, and the thickness is thinner than Daliang Shan block's.There is a low resistivity layer connectting with the Kangdian geo-axis' below the upper crust. The crust of Sichuan basin as a whole is highly resistant and no low-resistivity layer below the upper crust. An obvious character along the profile is that the low-resistivity layer of the middle-lower crust in the Kangdian geo-axis and Daliang Shan block looks as an upward arch architecture whose top is located in the middle of Daliang Shan block.Furthmore, the Anning He fault, Ganluo fault, Xihe-Meigu fault and Daliang Shan faults exhibit nearly vertical and broad zones of low-resistivity anomalies, whose bottom interfaces disappear in the top of the high-conductive layer of the crust. The high-conductivity layer in the middle-lower crust is presumably attributed to the partial melting or salt-bearing fluids involved.
     3 Electric structure, dynamic model and Seismicity in the eastern margin of the Tibetan plateau
     From the Mianning-Yibing MT profile, in conjunction with other four profiles in this region (Kangding, Shimian-Leshan, Meigu-Suijiang, and Qiaojia profiles), a fairly complete image of electric structure in the eastern margin of the Tibetan plateau has been acquired. It indicates that along the Kangdian geo-axis, from north to south, the upper crust exhibits a high-resistivity layer of over thousandΩm and the thickness of about 30-40km which becomes thinner toward east. In geology this layer represents the old metamorphic rocks and volcanic rocks in upper crust, as well as the crystalline basement consisting of highly metamorphic old strata. Below this high-resistivity layer is a 20~25 km thick layer of low resistivity, which crosses the Anning He fault and Daliang Shan fault and links the high-conductivity layer in the Daliang Shan block. Downward farther, resistivity increases to some degree.
     The electric resistivity of the upper crust in the Daliang Shan block is lower than that in the Kangding bock, probably associated with the thick carbonate and evaporite of Paleozoic and Mesozoic times there. Beneath them is a upward convex HCL, whose top is at depth as shallow as 5km in the middle of the Daliang Shan block. Eastward farther, this HCL tends to be deeper with the largest buried depth about 30km, and seems to underthrust toward the Sichuan basin. The thickness of HCL is general at 25km, with a consistent way especially on the Shimian-Leshan and Mianning-Yibing profiles, while not so obvious on the Meigu-Suijiang profile. Beneath this HCL the resistivity increases again by tens to hundredsΩm in general.
     Along the Mianning-Yibing and Meigu-Suijiang profiles, the electric structure of Sichuan Basin can be divided into three layers. The first layer is further subdivided into upper and lower sublayers.The upper one exhibits an alternating high-and low-resistivity pattern in lateral direction.The lower one is of relatively low resistivity. The bottom of the first layer is 8 km deep in the west, and increases to 15km in the east. The second layer is thick and highly resistive.The depth and thickness tends to increase toward east, corresponding to the middle and lower crust without inner high-conductivity layer. Below this high-resistivity layer, resistivity values rise up again down to the uppermost mantle. The electric structure of this area suggests that there exists thick and hard crust beneath the thick sediments in Sichuan basin.
     The nearly vertical Arming He fault coincides with a vertical zone of low resistivity, which is cut into upper and lower parts by a high-conductivity layer in the middle-lower crust. The upper part is 5km wide. The resistivity is several hundredΩm and smaller than that on the east and west sides.The bottom disappears in the top of a low-resistivity layer in the middle crust. Below this low-resistivity is a nearly vertical boundary of electricity, where the resistivity on the east side is higher than the west side. Along the Shimian-Leshan profile, the Anning He, Daliang Shan and Ganluo faults merge at one place whose depth is shallower then that along the Mianning-Yibing profile above the high-conductivity layer. The Daliang Shan fault also exhibits a nearly vertical zone of low resistivity which is several kilometers wide and the bottom linking with the low-resistivity layer in the crust. The Ebian fault corresponds to the boundary between two blocks with big differences of resistivity on either side, which tends to dip eastward.
     With reference to the hypothesis of the channel flow of lower crust in the eastern margin of the Tibetan plateau, as well as integrated data of the electric structure and GPS measurements, this thesis suggests a model of high-conductivity layer flow in crust in the study region which is described as follows. Due to the effect of the India-Eurasia collision in the south, the Tibetan plateau moves toward north. Because of the impeding of the Tarim block in the north, movements of massifs in the plateau turn to east with respect to South China. In the eastern margin of the plateau, the motion direction of the high-conductivity layer in crust changes from eastward to southeastward because of the obstruction of the Sichuan basin. As well as the HCL plunge down into the beneath of the Sichuan basin.
     Data analysis suggests that the areas with lateral variations of conductivity of low-resistivity layers in crust are usually active in seismicity in this region. For example, Major events as well as dense small quakes are distributed along Anning He fault. Around the Daliang Shan fault, small earthquakes exhibit a concentrating pattern. The Ebain fault is also an electric boundary.While within the Daliang Shan block, a few medium-sized quakes are documented in history and small events are less with respect to the boundary zones on its both sides.
     In the Songpan-Ganzi block, the high-conductivity layer moves in SSE-SE direction, crossing the 300km-long Longmen Shan fault zone in a normal direction and is hampered by the Sichuan basin. Thus a stable "T" shaped structure is formed at the central portion of the Longmen Shan which makes motion and deformation difficult, and stress easy to build up but not easy to release. Consequently, before the Wenchuan M8 event of 2008, the Longmen Shan fault zone was characterized by a low slip rate and weak seismicity. Once the long-term accumulation of stress exceeded the rupture strength of crustal rock beneath the Longmen Shan, sudden fractures and slips occurred to produce the Wenchuan quake in 2008.
引文
A.Л.万扬,2001.孔祥儒、曾治权译校.电磁测深,北京海洋出版社.
    Л.Л瓦尼安A.C.杰巴鲍夫,M.H.尤金,19881.非均匀介质大地电磁测深资料解释,地质出版社
    Archie, GE,1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. Am. In st. Mining Met. Eng.146,54~62.
    Alan G. Jones, Ian J.Ferguson,Alan D.Chave,2001.Electrical lithosphere of the Slave craton.29(5):423~426
    Alan G. Jones. Sfafic.1988. shift of magnetotelluric data and its removal in a sedimentary basin environment. Geophysics.53(7):967~978
    Bahr K.1988. Interpretation of the magnetotelluric impedance tensor,regional induction and local telluric distortion. J Geophysics.62:119~127
    Bahr K,1991.Geological noise in magnetotelluric data:a clarification of distortion types. Phys Earth PLanet Inter.66:24~28.
    Berdichevsky M.N,Dmitriev V,Pozdrrjakova E.E.1998,On two-dimensional interpretation of magnetotelluric soundings. Geophys.J.Int,133:585~606
    Beaumont, C, Jamieson, R A, Nguyen, M. H.& Lee B.2001.Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414,738~742
    Bostick F. X,1987. Electromagnetic array profiling(EMAP). A bstracts the 56 th AnnualIn ternaitonal SEG Meeting. Geophys,52,60~61.
    Byerlec J.1978.Fraction of rock,Pure and Applied Geophysics.116.611~626
    Cagniard L,1953. Basic theory of the Magnetotelluric of geophysical prospecting, Geophysics,92:633~648.
    Chen Z, Burchfiel B C, Liu Y, et al.Global Positioning System measurements from eastern Tibet and their implications for In-dia/Eurasia intercontinental deformation. J Geophys Res,2000,105(B7):16215—16227.
    Clark M.K, Royden L.H,2000. Topographic ooze:Building the Eastern margin of Tibet by lower crustal flow. Geology,28(8):703~706
    C deGroot-Hedlin and S.S Constable.1990. Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics.55(12):1613~1624
    Clark M, Royden L, Burchfiel B C, et al. Late Cenozoic uplift of southeastern Tibet.Implication for lower crustal flow. Geophys Res.Abs,2003,5:12969
    Constable S C, Parker R.L and Constable C.G.1987. Occam'sinversion:A practical algorithm for generating smooth models from dectromagnetic sounding dala.Geophysics,52(3):289~300
    Denghai Bai, Martyn J. Unsworth, Max A. Meju et al.2010.Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Science Letters. DOI:10.1038/NGEO830
    England P. Houseman G A.1986. Finite strain calculations of continental deformation 2. Comparison with the India-Asia collision[J]. Jour Geophys Res,91:3664~3667.
    F.E.M(Ted) Lilley.1998. magnetotelluric tensor decomposition:partl, Theory for a basic procedure Geophysics 63, 63(6):1885~1897
    Forat.B R, Bucher K.K.1994, water responsible of geophysical anomallea in the deep con tinental crust? A petrological perspective.Tectonpys.231.293~309
    Gary R McNeice, Alan G. Jones et al,2001. Multisite,multi-frequence tensor decomposition of magnetotelluric data. Geophysics,66(1):158~173
    G.Zhao, L.Wang, X. Chen,J. Tang,Z. Wan et al.2010.The active fault belts in eastern Tibet margin inferred using magnetotelluric. GEOLOGICA ACTA,8 (1),103~114
    Groom R.W & Bailey, R.C.1989.Decomposition of the magnetotelluric impedance tensor in the presence of local three-dimensional galvanic distortion, J. geophys. Res,94:1913~1925.
    Garcia X.& Jones A.G.2002. Extended decomposition of MT data,in, Three-Dimensional Electromagnetics—Ⅱ, eds Zhdanov,M S & Wannamaker, P E, Second International Gerald W. Hohmann Symposium,Elsevier, Amsterdam,in press.
    Garca X, Ledo J.& Queralt P,1999.2-D Inversion of 3-D magnetotelluric data:the Kayabe dataset, Earth Planets and Space,51,1135~1143.
    Gough D. I.1986.Seismlc reflectors, conductivity, water and stress in the continetal CTLlst. Nature. 323(11):143~144
    Heinson G and Constable S.1992. The electrical conductivity of the oceanic upper mantle. Geophys. J.Int.110, 159~179
    Hirsch L.M.1990. Enhancing mantle conductivity. Nature.347,232.
    Hermance.1973.Processing of magnetotelluric data.Physicas of the crust and Planetary interiors.7(3):349~364.
    Hohmann G.W.1971.Electromagnetic scattering by conductors in the earth near a line source of current. Geophysics.36,101~131.
    Hohmann G.W,1975, Three-dimensional induced polarization and electromagnetic modeling:geophysics,40, 309~324
    Holt W E, Li M, Haines A J.1995. Earthquake strain rates and instantaneous relative motions within central and eastern Asia[J]. Geophys Jour M,122:569~593.
    Hynd man R D,Vanyna L L-Marquiset al. The origin of electrieally conductive lower continental crust-line water or graphite.Phys.Earth.Planet.Inter.1993.81.325~344
    Jin Sheng, Ye Gaofeng, Wei Wenbo.2007. Electrical Structure and Fault Features of Crust and Upper Mantle beneath the Qinghai-Tibet Plateau:Evidence from the Magnetotelluric survey along Zhada-Quanshui Lake profile. Journal of China University of Geosciences.18(4):326~333
    Karsten Bahr.1988.Interpretation of the magnetotelluric impedance of regional induction and local telluric distortion Geophysics.62:119~127
    Karato S.1990. The role of hydrogen in the electrical conductivity of upper mantle. Nature,347,272,73.
    Klemperer, S. L,2006. in Channel Flow Ductile Extrusion and Exhumation inContinental Collision Zones. Vol. 268 (eds Law, R. D, Searle, M. P.& Godin, L.)39~70 (Geological Society, Special Publications,2006)
    King R W, Shen F, Burchfiel B C, et al.1997.Geodetic measurement of crustal motion in Southwest China. Geology,25:179~182
    Ledo, David Kay, BrianCrust Li, et al.2001. Detection of Widespread Fluids in the Tibetan by Magnetotelluric studies, Science,292:716~718
    Leshou Chen, John R. Booker, Alan G.Jones et al.1996, Electricaly Conducitve Crust in Southern Tibet from INDEPTH Magnetotelluric Surveying. Science,27 4(6):1694~1696
    Li X Y and Mao H K,1994. Solid carbon at high perssures:electrical ersistivity and phase tansition.P hys C hem Minerals,12:1~5.
    Li S, M. J Unsworth, J.R Booker, W. Wei et al.2003. Partial melt or aqueous fluids in the Tibetan crust:Constraints from INDEPTH magnetotelluric data, Geophys. J. Int,153, j.1365-246X.2003.01850.x,289~304.
    Lilley F.E.1993 Three-dimensionafityof BC87 magnetolluric data studies using mohr circles J Geomag Geoelectr.45:167~1171
    Maekie R.L, Madden T.R, Wannamaker P.E.1994.Three-dimensional magnetotelluric modeling using diference equations:Theory and eomparisiom to integral equation solution[J].Geophysics.58:215~226.
    Mackie R.L, Smith T.J, Madden T.R.1994.Three-dimensional electromagnetic modeling using difference equations:The magnetotdluric example. Radio Sei,29:923~935.
    Marquis G, Hynd man R D.1992.Geophysical support for aqueous fluids in the deep crust seismic and electrical relationships. Geophys.J.Int.110.91~105
    Martyn Unsworth.2009.Magnetotelluric Studies of Active Continent-Continent Collisions. Surv Geophys. DOI 10.1007/s10712-009-9086-y
    Martyn Unsworth, Wei Wenbo, Alan G.Jones.etal.2004.Crustal and upper mantle structure of northern Tibetimaged with magnetotelluric data, Journal Of Geophysical Research, Vol.109, B02403.
    Madden T.R and Mackie R.L.1989. Three-dimensional magnetotelluric modeling and inversion.Proceedings of the IEEE,77,318~33
    Matauer M, Matte P,Malavieile J,et al.1992. The Songpan-Gaze Triassic belt of Sichuan on the eastern Tibet. Pa ris:C.R.A cad C,619~626.
    Mate P, Mattauer M, Olivet J M, et al.1997. Continental subduction beneath Tibet and the Himalay an Orogen:a review. Terra Nova,9:264~270
    Michel Chouteau and Karl Bouchard.1988.Two-dimensional terrain correction in magnetotelluric surveys Geophysics.53(6):854~862
    Molnar P, Gipson J M.1996.A bound on the rheology of continental lithosphere using very long baseline interferometry:the velocity of south China with respect to Eurasia. J Geophys Res,101:545—553
    Nelson K D, Zhao W J, Brown L D, et al. Partially molten middle crust beneath southern Tibet:synthesis of project INDEPTH re-sults. Science,1996,274:1684~1687
    Nesbitt B.1993. Electrical resistivities of crustal fluids. J. Geophys. Res.98,4301~4310
    P. Zhang, R. G Roberts, and L. B.1987.Pedersen Magnetotelluric strike rules. Geophysics 52(3):267-278
    Pham V.N, Boyer D, Therme P, et al. Partial melting zones in the crust in Southern Tibet from magnetotelluric results. Nature,1986,319:310~314
    Palacky G. J,1987.Resistivity characteristics of geological targets. Chapter 3,Elecrtomagnetic Methods in Applied Geophysics vol.1 Theory, edited by Nabighian.M. N, Societyof Exploration Geophysicists,Tulsa,56~130.
    Philip E. Wannamake.1991. Advances in three-dimensional magnetotelluric modeling using integral Equations. geophysics,56(11):P.1716~1728
    Parkinson W D.1959. Direction of rapid geomagnetic fluctuations[J].Geophys.2:1~14
    Rosenberg C, Handy M R.2005.Experimental deformation of partially melted granite revisited:implications for the continental crust. J.Metamorph.Geol.23:19~28
    Rutter E, Neumann K.1995. Experimental deformation of partially molten Westerly granite under fluid absent conditions with implications for the extraction of granite magmas. J.G.R,100:15697~15715
    Rodi W, Mackie R.L.2001.Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66(1):174~187.
    Royden L.H, Clark B, King R.W, et al.1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313):788~790
    Schoenbohm L.M, Burchfiel B.C, Chen L.2006. Propagation of surface uplift, lower crustal flow, and Cenozoic tectonics of the southeast margin of the Tibetan Plateau. Geology,34(10):813~816.
    Schumucker U.Janknowsky J.1972, Geomagnetic induction studies and the electrical state of the upper mantle Tectonophysics,13:233~256
    Shanklaed T,Ander M E.1983.Electrical conduc tivity, temperatures andflumeinthelower crust.Geopkys.Res, 88.9475~9484
    Sifipunvarapom W and Egbert G.2000.An efficient data—subspace inversion method for 2—D magnetoteluric data[J].Geophysics,65(3):791~803.
    Siripunvaraporn,W.,G. Egbert G. Lenbury et al.2005.Three dimensional magnetotelluric inversion:Data-space method:Physics of the Earth and Planetary Interiors,150,3~14.
    Smith J T, Booker J R.1991,Rapid inversion of two-and three-dimensional magnetotelluric data. J Geophys Res, 96(b3):3905~3922.
    Swift C.M.1967.A magnetotelluric investigation of electrical conductivity anomaly in the southwestern united States. Doctoral thesis. Cambridge, Massachusetts Institute of Technology, Massachusetts USA,
    Selway Graham, Heinson, Stephen Busutti.2006,Two-dimensional magnetotelluric analysis of three-dimensional bodies:a case study from South Australia Kate.Exploration Geophysics 37,231~238
    Tapponnier P.G, Peltzer A.Y, Dain I E, et al.Propagating extrusion tectonics in Asia:new insight from simple experiments with plasticine[J2].Geology,1982.10:611 ~616.
    T.Grant,Galdwell hugh,M.Bibby and Colin Brown.2004.The magnetotelluric phase tensor Geophys.J.Int 158:457~469
    Ten Grotenhuis S.M, Drury, et al.2005.Melt distributionin olivine rocks based on electrical conductivity measurements. J. Geophys. Res.110, B12201
    Unsworth M, Alan G. Jones, Wei W. et al.2005. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature,433,78~81, doi:10:1038
    Unsworth M, Wei W, Jones A G, et al.2004.Crustal and upper mantle structure of northern Tibet imaged with magnetotelluric data. J. Geophys. Res,109(B02403), doi:10.1029/2002JB002305.
    Vozoff K,1991. The magnetotelluric methods. Chapter 8, Electromagnetic Methods in Applied Geophysics— vol.2 Applications, edited by Nabighian, M X,Society of Exploration Geophysicists, Tulsa,641~711
    Wannamaker P.E, Booker J.R, Jones A.G et al,1989, Resistivity cross-section through the Juande Fuca subduction system and its tectonic implications.Journal of Geophysical Research, v.194, p.14,127~14,144.
    Wannamaker P.E, Hohmann G.W,and Ward S.H,1984b. Magnetotelluric responses of three-dimensional bodies in layered earths,geophysics,49,1517~1533
    Wannamaker P.E, J A. Stodt, LRijo,1986. A stable finite element solution for two-dimensional magnetotelluric modeling, Geophys. J. R. Astr. Soc.,88,277~296..
    Wannamaker P.E,1991, Advances in three-dimensional magnetotelluric modeling using integral equations: Geophysics,56,1716~1728.
    Wannamaker P.E, Hohmann G.W, and San Filipo W.A,1984, Electromagnetic modeling of three-dimensional bodies in layered earths using integral equations:Geophysics,49,60~74.
    Watanabe T, Kurita K.1993.The relationship between electrical conductivity and melt fraction in a partially molten system:Arche's law behavior. Phys Earth Planet Iinter,78:9~17.
    Watanabe T, Kurita K.1994.Simultaneous measurements of the compressional2wave velocity and the electrical conductivity in a partially molten material. J Phys Earth,42:69~87.
    Weidelt P,1975, Electromagnetic induction in three-dimensional structures:J. Geophys.,41,85~109.
    Wannamaker P.E, J.A. Stodt, L. Rijo,1987, A stable finite-element solution for two-dimensional magnetotelluric modeling:Geophysical Journal of the RoyalAstronomical Society,88,277~296.
    Wenbo Wei, Martyn Unsworth, Alan Jones, et al,2001. Detection of Widespread Fluids in the Tibetan studies, Science,292:716~718
    Wang C Y, Han W B, Wu J P, et al.2007,Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications. J Geophys Res,112(B07307)
    Weerachai Siripunvaraporn,Gary Egbert and Makoto Uyeshima.2005. Interpretation of two-dimensional magnetotelluric profile data with three-dimensional inversion:synthetic examples. Geophys. J. Int.160, 804-814
    Xu L, Rondenay S, Van der Hilst R D.2007.Structure of the crust beneath the Southeastern Tibetan Plateau from
    teleseismic receiver functions. Phys Earth Planet Int.
    Yuji Mitsuhata and Toshihiro Uchida.2003.3D magnetotelluric modeling using the T-Ω finite-element method Geophysics,69(1):108~119.
    蔡军涛,2009,大地电磁三维畸变特征及校正新技术的应用研究.博士论文.中国地震局地质研究所.
    陈乐寿,王光锷.1990.大地电磁测深法.北京:地质出版社
    陈乐寿,刘任,王天生.1989.大地电磁测深资料处理与解释[M].北京:石油工业出版社
    陈小斌,赵国泽,詹艳.2004,MT资料处理与解释的Windows可视化集成系统.石油地球物理勘探,39(sup):11~16.
    陈小斌,赵国泽,汤吉等.2005,大地电磁自适应正则化反演算法.地球物理学报48(4):937~946.
    陈小斌张 翔,胡文宝,2000.有限元直接迭代算法在M T二维正演计算中的应用石油地球物理勘探35(4):487~496.
    陈小斌,赵国泽,詹艳等2004.磁倾子矢量的图示分析及其应用研究地学前缘11(4):624~634.
    陈小斌.2000.MT二维正演计算中地形影响的研究石油物探39(3):109~120.
    陈小斌,赵国泽,马霄.2006.大地电磁模型的一维二维反演近似问题研究.工程地球物理学报.3(1):9~15.
    陈伯舫,侯作中,范国华.1998.有限差分法计算三维地形影响的电磁感应.地震学报.20(5):541~544.
    陈小斌.大地电磁正反演新算法研究及资料处理与解释的可视化集成系统开发.中国地展局地质研究所博士论文:2003.
    陈高,王书明,王家映等.2006.大地电磁地形校正一以镇巴区块为例.西北地质学报28(1):6~10.
    陈培善,刘福田,李强等.1990.云南地区速度结构的横向不均匀性[J].中国科学.B辑.(4):43~43
    崔作舟,卢德源,陈纪平等.1987.攀西地区的深部地壳结构与构造[J].地球物理学报,30(6):566~580.
    邓起东,张培震,冉勇康等.2003.中国活动构造与地震活动.地学前缘.(10):66~73.
    邓前辉,张木生,詹艳等.1998.邢台7.2级震源区的电磁阵列剖面测量与电性特征研究.地球物理学报,41(2):218~225
    邓前辉,王继军,汤吉等.三河-平谷8级大地震地壳上地幔电性结构研究.地震地质.2001,23(3):178~185
    高平.郭才华.刘若新等,1992。华北地壳岩石物理性质与低速高导层。现今地球动力学研究及其应用,344~357.
    顾芷娟,潘峪生,周勇,吴春明,俞历,宋长青,陶京岭,2000,青藏高原地壳低速层的物理性质。矿物岩石地球化学通报,19(1):30~33.
    顾芷娟,郭才华,李彪,1995.壳内低速高导层成因初步探讨。中国科学(B),25(1):108~112.
    顾芷娟,郭才华,张彦波等,1993.高温高压下花岗岩条纹长石和电导率的变化。地球物理进展,8(4):239~243.
    郭才华.1987.高温高压下碳酸岩电性的实验研究地震地质.9(1):72~76.
    郭才华.译.1993.实验室测量岩石与矿物综述.地震地质译从.15(4):34~39.
    胡祖志,胡祥云,吴文鹂.2005.大地电磁二维反演方法对比研究.煤田地质与勘探.33(10):64~68.
    胡祖志,胡祥云,何展翔.2005.三维大地电磁数据的二维反演解释.石油地球物理勘探.40(3):353~359.
    胡祖志,胡祥云,何展翔.2005.大地电磁三维反演总述.地球物理学进展.20(1):214~220.
    胡玉平,鲍光淑,贾继标,2005.基于畸变3个因子的MT畸变曲线改正方法与应用.地质与勘探.41(6):75~79.
    黄潜生,王友胜,汪卫毛.2004.大地电磁曲线校正技术在六盘山盆地研究中的应用.江汉石油学院学报26(3):76~78.
    黄媛,吴建平,张天中等.2008.汶川8.0级大地震及其余震序列重定位研究.中国科学D辑:地球科学38(10):1242-1249
    何宏林,池田安隆.2007.安宁河断裂带晚第四纪运动特征及模式的讨论.地震学报.29(5):537~548
    韩渭宾,蒋国芳.2004.川滇地区强震活动分布特征及其与地壳块体构造背景关系的研究.地震学报,26(3):211~222.
    韩渭宾,蒋国芳.2005.大凉山断裂带与安宁河—则木河断裂带的地震活动性分析.地震研究,28(3):207~212.
    江钊,刘国栋,孙洁等.1993.Robust估计及其在大地电磁资料处理中的应用.《电磁方法研究与勘探》,地震出版社,北京,60~69.
    晋光文,孔祥儒2006.大地电磁阻抗张量的畸变与分解北京:地震出版社.
    晋光文,赵国泽,徐长芳1998.二维倾斜地形对大地电磁资料的影响及地形校正.地震地质.20(4):454~458.
    晋光文,孙洁,王继军.1997.地形对大地电磁资料的影响.地震地质.19(1):364~369.
    考夫曼AA,凯勒GV著.大地电磁测深法.刘国栋.赵国泽等译.朱佐全校.北京:地震出版社,1990
    孔祥儒,王谦身,熊佰柏等.青藏高原西部综合地球物理剖面和岩石圈结构与动力学.1999.44(12):1257~1265
    孔祥儒,王谦身,熊佰柏等.西藏高原西部综合地球物理与岩石圈结构研究.1996.26(4):308~315
    刘国栋,邓前辉主编.电磁方法研究与劫探.北京:地震出版社,1993
    刘国栋,陈乐寿主编.大地电磁测深研究.北京:地震出版社,1984
    刘志,王光锷.1998.MT阻抗张量的正则分解和参数重建.现代地质.12(2):283~288.
    刘树文,张进江,舒桂明等.2005,藏南定结铁镁质麻粒岩矿物化学、PTt轨迹和折返过程.中国科学D辑:地球科学,35(9):810~820.
    刘建华,刘福田,吴华等.1989.中国南北带地壳和上地幔的三维速度结构[J]地球物理学报.32(2):143~151
    柳江琳,白武明等.2001,高温高压下花岗岩、玄武岩和辉橄岩电导率的变化特征地球物理学报44(4):528~533.
    柳江琳,白武明等.1999,高温高压下岩石电性研究地震学报21(1):89~97.
    楼海,王椿镛.2005,川滇地区重力异常的小波分解与解释.地震学报,27(5):515~523.
    楼海,王椿镛,吕智勇等.2008.2008年汶川Ms8.0级地震的深部构造环境—远震P波接收函数和布格重力异常
    的联合解释.中国科学D辑:地球科学38(10):1207~1220
    李传友,宋方敏,冉勇康,2004.龙门山断裂带北段晚第四纪活动性讨论.地震地质.26(2):248~258
    李松林,张先康,张成科等.2002.玛沁—兰州—靖边地震测深剖面地壳速度结构的初步研究.地球物理学报.45(2):210~217.
    吕庆丰,姜枚,马开义等.1997,由震源机制和地震被各向异性探讨青藏高原岩石圈变形地质评论,43:337~343.
    马晓冰,孔祥儒,刘宏宾,等.2004,青藏高原东北部地区地壳电性结构.地球物理学报,48(3):689~697.
    马晓冰,孔祥儒,刘宏宾,等.2001,青藏高原东部大地电磁探测成果.中国科学,31(增):72~77
    马晓冰,孔祥儒,刘宏宾,等.1997,青藏高原西部大地电磁探测成果.中国科学,42(11):1185~1187
    马为,陈小斌,赵国泽.2008.大地电磁测深二维正演中辅助场的新算法.地震地质.2:179~187.
    马杏垣,1989.中国岩石圈动力学图集.北京:中国地图出版社.
    欧阳联华,王家林,吴健生等.2003.大地电磁场正演计算中几个问题的探讨.同济大学学报.31(7):828~832.
    彭云金,吕加蓉.2004,荥经—马边—盐津断裂带新活动特征分析.四川地震,3(34~36).
    乔学军,王琪,杜瑞林.2004.川滇地区活动地块现今地壳形变特征.地球物理学报.47(5):805~81.
    钱洪.1989.鲜水河断裂带的断错地貌及其地震学意义.地震地质11(4):43~49
    冉勇康,程建武,宫会玲等.2008.安宁河断裂紫马跨一带晚第四纪地貌变形与断层位移速率.30(1):86~98
    冉勇康,程建武,宫会玲等.2008.安宁河断裂冕宁以北晚第四纪地表变形与强震破裂行为[J].中国科学(D辑).38(3):543~554).
    苏有锦,秦嘉政.2001,川滇地区强地震活动与区域新构造运动的关系.中国地震,27(3):24~34.
    申旭辉,陈正位,许任德等.2000.凉山活动构造带晚新生代变形与位移规模.地震地质,22(3):232~238.
    孙圣思,贾东,胡潜伟等.2007,新生代贡嘎山花岗岩中的流体包裹体面测试及其应力场分析.高校地质学报,13(2):344~352.
    孙洁,晋光文,白登海等.2003,青藏高原东缘地壳、上地幔电性结构探测及其构造意义.中国科学D辑:地球科学,33(增刊):173~180.
    孙洁,晋光文,白登海等.2003Mohr圆分析方法在川西一藏东MT剖面资料解释中的应用.地震地质.25(3):385~393
    四川省地质矿产局.四川区域地质志.北京:地质出版社,1991
    石应骏,刘国栋,吴广耀编著.1985.大地电磁测深法教程.北京:地质出版社,
    谭捍东魏文博,Martyn Unsworth,等.2004,西藏高原南部雅鲁藏布江缝合带地区地壳电性结构研究.地球物理学报,47(4):685~690
    谭捍东,余钦范John Booke等.2003.大地电磁法三维交错采样有限差分数值模拟地球物理学报,46(5):406~411
    谭捍东,余钦范John Booke等.2003.大地电磁法三维快速松弛反演.地球物理学报.46(6):850~855.
    谭择东.大地电磁三维快速松弛反演.中国地质大学(北京)博士论文,2000.
    唐荣昌,钱洪,黄祖智等,1992.安宁河断裂北段晚更新世以来的分段活动特征[J].中国地震,8(3):60~67
    汤吉,赵铁胜,江钊等.1997.长白山天池火山区大地电磁测深初步观测.地震地质.19(2):164~170.
    汤吉,詹艳,赵国泽等.2005.青藏高原东北缘玛沁—兰州—靖边剖面地壳上地幔电性结构研究.地球物理学报.48(5):1205~1216.
    汤吉.长白山天池火山区地壳深部电性结构和大地电磁三维数位模拟研究.中国地展局地质研究所.博士论文:2001.
    万战生,赵国泽,汤吉等.2010.青藏高原东边缘冕宁—宜宾剖面电性结构及其构造意义.地球物理学报53(3):585-594
    魏文博,金胜,叶高峰,等.2006,西藏高原中、北部断裂构造特征:INDEPTH(Ⅲ)-MT观测提供的依据,地球科学,31(2).
    魏文博,金胜,叶高峰等.2003.大陆岩石圈导电性的研究方法.地学前缘.10(1):15~23
    魏文博,金胜,叶高峰,等.1997,西藏高原中、南壳内高导层与热结构特点:INDEPTH-MT观测提供的证据,现代地质,11(3):387~392
    魏文博,陈乐寿,谭捍东等.1997.关于印度板块俯冲—INDEPTH—MT研究结果.现代地质,11(3):379~386
    魏文博,金胜,叶高峰等.2009.藏南岩石圈导电性结构与流变性-超宽频带大地电磁探测研究成果.地球科学.39(11):1591~1606.
    魏文博,金胜,叶高峰等.2006.华北地区大地电磁测深与岩石圈厚度讨论.中国地质.33(4):762~772
    王阎昭,王恩宁,沈正康等.2008.基于GPS资料约束反演川滇地区主要断裂现今活动速率,中国科学D辑,38(5):582~597.
    王宗秀,许志琴,杨天南等.1996,川西鲜水河断裂带变形机制研究—一个浅层次的高温韧性平移剪切带.中国区域地质,(3):245~251.
    王椿镛,吴建平,楼海,等.2003.川西藏东地区的地壳P波速度结构.中国科学(D辑)33(4):181-189.
    王椿镛,W D Mooney,王溪莉等,等.2002.川滇地区地壳上地幔三维速度结构研究.地质学报,24(1):1~16.
    王椿镛,韩渭宾,吴建平等.2003.松潘—甘孜造山带地壳速度结构.地震学报.25(3):229~241.
    王椿镛,楼海,吕智勇等.2008.青藏高原东部地壳上地幔S波速度结构—下地壳流的深部环境.中国科学.38(1):22~32
    王家映.1992.关于大地电磁静校正的问题.地质科技情报.11(1):69~76.
    王夫运,段永红,杨卓欣等.2008.川西盐源.马边地震带上地壳速度结构和活动断裂研究—高分辨率地震折射实验结果.中国科学138(5):611-621
    王立凤,晋光文,孙洁等,2001.一种简单的大地电磁阻抗张量畸变分解方法.西北地震学报,21(2):172~179.
    王成善,丁学林.1998.青藏高原隆升研究新进展综述地球科学进展13(6):526~532.
    王绪本,李永年,高永才.1999.大地电磁测深二维地形影响及其校正方法研究.物探化探计算技术.21(4):327~332.
    王绪本,朱迎堂,赵锡奎等.2009.青藏高原东缘龙门山逆冲构造深部电性结构特征.地球物理学报. 52(2):564~571.
    王辉,曹建玲,张怀等.2007川滇地区下地壳流动对上地壳运动变形影响的数值模拟.地震学报.29(6):581~591.
    汪洋,汪集旸,熊亮萍等.2001.中国大陆主要地质构造单元岩石圈地热特征.22(1):17~22
    闻学泽,杜平山,龙德雄.2000.安宁河断裂带小相岭段古地震的新证据及最晚事件的年代[J].地震地质.22(1):1~8.
    徐锡伟,闻学泽,郑荣章等.2003.川滇地区活动块体最新构造变动样式及其动力来源[J].中国科学(D辑),(33):151~162.
    徐锡伟,程国良,于贵华等.2003.川滇菱形块体顺时针转动的构造学与古地磁学证据[J].地震地质.25(1):61~70.
    徐锡伟,于贵华,马文涛等.2003.中国大陆中轴构造带地壳最新构造变动样式及其动力学内涵.地学前缘,10(suppl):160~167.
    徐锡伟,张培震,闻学泽等.2005,川西及其邻近地区活动构造基本特征与强震复发模型.地震地质,27(3):446~461.
    徐世浙,阮百尧,周辉等.1996.用边界元法模拟3维地形对大地电磁的影响.科学通报.41(23):2162~2164.
    徐常芳.深部流体在地震孕育和发生过程中的作用.地震.1998,18(增刊):89~97
    徐常芳.中国大陆地壳上地幔电性结构及其地震分布规律(一).地震学报.1996a,18(2):254~261
    徐常芳.地壳内高导层成因、高温卤水状态及其导电率(二).地震学报.1996a,18(3):352~357
    徐常芳.壳内流体演化及其地震成因(三).地震学报.1997,19(2):139~144
    徐常芳.中国大陆地壳上地幔高导层成因及唐山地震机理研究.地学前缘.2003,10(增):101~111
    徐世浙,李予国,刘斌等.1997.大地电磁Hx型波地形影响及校正.地球物理学报.40(6):842~846.
    肖骑彬,蔡新平,徐兴旺,等.2005,浅层地震与MT联合技术在隐伏金属矿床定位预测中的应用以新疆哈密图拉尔根铜镍矿区为例矿床地质24(6):676~683.
    肖骑彬.大地电磁测深反演方法对比与可视化及应用研究.中国地震局地质研究所.博士论文:2004
    肖骑彬,赵国泽,王继军等,2008.苏鲁造山带及邻区深部电性结构研究.中国科学.(38):1258~1267.
    杨长福,林长佑,徐世浙.2002.大地电磁GB张量分解法的改进.地球物理学报45(suppl):356~364.
    杨生,鲍光淑,李爱勇.2002.MT法中静态效应及阻抗张量静态校正法.中南工业大学学报.33(1):8~13.
    尹兵祥,宋维琪,大地电磁(MT)阻抗张量的正则分解及其应用探讨.石油地球物理勘探.35(1):70~75.
    向宏发,徐锡伟,虢顺民.2002.丽江一小金河断裂第四纪以来的左旋逆推运动及其构造地质意义-陆内活动地块横向构造的屏蔽作用.地震地质.24(2):188—198
    赵国泽,汤吉,刘铁胜等.1996.山西阳高~河北容城剖面大地电磁资料的初步解释—阻抗张量分解技术及其应用,地震地质.18(1),66~74.
    赵国泽,汤吉,詹艳等.2004,青藏高原东北缘地壳电性结构和地块变形关系的研究.中国科学(D辑)34(10):908-918.
    赵国泽,詹艳,陈小斌等.2004,电磁法在地下水探查中的应用[J].程地球物理学报,1(3):220-225.
    赵国泽,陈小斌,王立凤,等.2008,青藏高原东边缘地壳“管流”层的电磁探测证据.科学通报,53(3):345~350.
    赵国泽,汤吉,詹艳,等.2004,青藏高原东北缘地壳电性结构和地块变形关系的研究.中国科学D:地球科学,34(10):908~918.
    赵国泽,陈小斌,肖骑彬等.2009,汶川Ms8.0级地震成因三“层次”分析—基于深部电性结构.地球物理学报,52(2):553-563.
    赵国泽,刘国栋.1986,地壳上地幔的大地电磁模型及参考道方法的研究和应用.<<地震地质文集>>,天津科技出版社.123-145.
    赵文津.2003.岩石圈探测与青藏高原研究中国工程科学,5(2):1-150.
    赵志丹,高山,骆庭川等,1996.秦岭和华北地区地壳低速层的成因讨论一岩石高温高压波速实验证据.
    地球物理学报.39(5):637~752
    钟锴,徐鸣洁,王良书等.2005.川滇地区重力场特征与地壳变形研究.高效地质学报1(11):111~117
    钟锴,徐鸣洁,王良书等.2005.利用航磁、重力资料研究川滇地区大陆变形特征.地球科学进展20(10):1089~1094
    周荣军,黄祖智.2003.四川大凉山断裂带的晚第四纪平均滑动速率.地震研究.26(2):191~196
    詹艳,赵国泽,王继军等.2004鄂尔多斯六盘山盆地的大地电磁探测.石油地球物理勘探.39(sup):80~84
    詹艳.2008.青藏高原东北缘地区深部电性结构及构造涵义.中国地震局地质研究所.博士论文.
    张培震,王琪,马宗晋.2002.青藏高原现今构造变形特征与GPS速度场.地学前缘9(2):442~450.
    张培震,王敏,甘卫军等2003.GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约.地学前缘10(sup):81~92.
    张培震,沈正康,王敏等.2004,青藏高原及周边现今构造变形的运动学.地震地质,26(3):367~377.
    张培震.2008,青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程中国科学D辑:地球科学,38(9):1041~1056.
    张培震,徐锡伟,闻学泽等.2008,汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因.地球物理学报,2008,51(4):1066~1073.
    张岳桥,陈文,杨农.2004,川西鲜水河断裂带新生代剪切变形40Ar/39Ar测年及其构造意义.中国科学D辑:地球科学,34(7):613~621.
    张希,江在森,王琪等.2003川滇地区地壳水平运动特征与强震关系研究.大地测量与地球动力学.23(3):35~41
    张翔.1999.大地电磁测深资料的TE,TM极化视电阻率曲线识别研究.江汉石油学院学报.12(21):72~76.
    张翔.胡文宝严良俊.1999.大地电磁测深中的地形影响与校正.江汉石油学报.21(1):37~41.
    张翔.胡文宝.1999.带地形的大地电磁联合反演.石油地球物理勘探.34(2):190~197.
    张世民,聂高众,刘旭东等.2005.荥经—马边—盐津逆冲构造带断裂运动组合及地震分段特征.地震地质.25(2):221~233
    朱艾斓,徐锡伟,周永胜等.2005.川西地区小震重新定位及其活动构造意义,地球物理学报.48(3)629~636.
    朱茂旭,谢鸿森.1998.地球深部物质电学性质实验研究.地球科学进展.13(5):438~446.
    中国地震台网地震目录,http://www.csndmc.ac.cn/newweb/data

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700