用户名: 密码: 验证码:
安妥岭斑岩钼矿的成因及其深部约束
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多个火山口近同时喷发成就了托云火山群,形成塌陷破火山口、火山颈以及锥状岩席等火山机构,出露熔岩流相、岩席相和火山颈相。托云玄武岩具有贫硅富碱的特点,属于碱性玄武岩系列,既有原生岩浆的产物,也存在进化岩浆的产物,岩浆上升过程中没有遭受到地壳物质的混染,部分熔融源区经历了富CO2地幔流体交代、金云母为部分熔融源区残余相、地幔源区的多期分离、深部流体储池间的相互作用以及部分熔融源区顶部(熔融柱顶部)区域内的结晶分异作用等复杂过程。锥状岩席相玄武岩样品的SHRIMP锆石U-Pb协和年龄为48.1±1.6Ma,熔岩相和火山颈相玄武岩单颗粒锆石年龄形成一个复杂的锆石年龄谱。地幔熔融柱模型反演获得,48.1Ma时托云盆地的岩石圈的厚度为84.3km,认为托云玄武岩为托云岩石圈拆沉作用的产物,也就是说由复杂地幔源区过程以及深部流体储池间的相互作用所造就的混合流体体系由岩石圈拆沉作用释放,沿深大断裂快速就位与地表浅部。
     运用地幔熔融柱模型反演获得了华北北部和太行山造山带中、新生代岩石圈厚度的演化历程,发现华北克拉通岩石圈厚度演化存在时间空间的不均一,如太行山造山带的北部、中部和南部具有三种截然不同的岩石圈演化历程。在安妥岭矿区内发现了早白垩世具有原生岩浆性质的玄武岩,运用地幔熔融柱模型反演获得了安妥岭-南大岭-南口岩石圈厚度经历小规模减薄-增厚-拆沉-稳定的演化过程,成为建立安妥岭斑岩钼矿成矿模式的深部动力学背景。
     安妥岭斑岩钼矿矿区内正断层发育,5组断层形成网格式的断裂构造系统,剪节理为主,产状变化大。矿区内具有复杂的火成岩组合,其中斑岩体主要为石英二长斑岩和花岗闪长斑岩,脉岩主要包括玄武质岩墙、辉绿岩、煌斑岩、闪长玢岩、花岗闪长斑岩、二长斑岩、正长斑岩、花岗斑岩和细晶岩。石英二长斑岩和花岗闪长斑岩的SHRIMP锆石U-Pb测年结果为141.3±1.5Ma和139.4±1.7Ma,安妥岭斑岩体形成中存在额外富钾流体的注入,具有比较一致的Rb和K正异常与Th、Nb、Ta、P和Ti负异常,稀土配分模式具有右倾平滑,安妥岭斑岩体具有埃达克岩的特征,斜长石斑晶的韵律性环带表明岩浆混合作用与基性岩浆的反复注入。安妥岭煌斑岩形成于早白垩世,均有一致明显的Nb、Ta槽和Ti负异常,具有右倾、平滑、轻稀土富集的稀土配分模式,安妥岭煌斑岩的岩墙状产出方式,且其内产出碳酸盐矿物和橄榄石捕掳晶,源区组成与部分熔融程度综合控制了安妥岭煌斑岩的成分变异。
     安妥岭斑岩钼矿辉钼矿矿化地段主要就位于高-低电阻率的转换带内,其中规模较大的矿化层的形成于深部高-低电阻率转换带(双层结构的深部组成部分)密切相关。安妥岭斑岩钼矿体空间形态变化大,流体包裹体以富H2O和富CO2气液两相包裹体为主,成矿期流体包裹体进行了均一温度峰值介于220℃~260℃之间,成矿期包裹体均一温度高于成矿前包裹体均一温度表明成矿流体为额外注入的高温流体,成矿流体来源于下地壳-上地幔。
     安妥岭岩石圈拆沉作用为深部流体大量释放的触发机制,多半斑状结构做为隐伏矿体预测的重要岩石学标志在安妥岭斑岩钼矿地质勘探中得到验证,安妥岭斑岩钼矿成为透岩浆流体成矿理论应用的典型实例,并以此建立了安妥岭斑岩钼矿的成矿模式。
Tuoyun volcanic group was formed while several volcanoes erupted nearly same time in Tuoyun basin in southwest Tianshan Mountain. These volcanoes can be divided into two types: central-eruption-type an d flood-basalt-type. A series of volcanic apparatus were formed including calderas,volcanic necks and cone sheets.The volcanic face of lava face, cone sheet face and volcanic neck face were found in Tuoyun basin. Tuyon volcanic rocks are classified as alkali basalts with low in silicon and high in alkali. The products of both primary magma and evolved magma were found in Tuoyun basin. Basaltic magma ascended rapidly because of hosting peridotite xenoliths, which means magma was not contaminated by crustal materials. Partial melting source of Tuoyun basaltic magma, whose one of residual minerals is phlogopite, has underwent complex process, such as metasomatism of mantle fluid enriched CO2, multi-stage separation of mantle partial melting source, interaction of deep fluid pools and fractional crystallization in upper area of partial melting mantle source (melting column). SHRIMP U-Pb age of sample from cone sheet is 48.1±1.6Ma, however, zircon ages of 3 basaltic rocks from lava face and volcanic neck face shape a complex age assemblage. According to depth inversion of partial melting source by using mantle melting column model, the lithosphere thickness under Tuoyun basin at 48.1Ma is 84.3km. Tuoyun basalts is products of Tuoyun lithosphere delamination, which means a mixed fluid system formed in the complex process of mantle partial melting source and interaction of deep fluid pools was triggered to discharge, and ascended rapidly along the lithospheric fault.
     Lithosphere depth evolution of north part of north China Craton and Taihang Mountain orogen area in Mesozoic-Cenozoic was received by employing mantle melting column model. Lithosphere depth evolution in two areas in Mz-Cz is a heterogeneous process, for instance, there are three distinct types lithosphere depth history for north section, middle section and south section of Taihang Mountain orogen in Mz-Cz. Antuoling basalt occurred as basaltic dyke with 1.0~2.5m in depth, and was formed in early Cretaceous (122.31Ma) by K-Ar whole rock dating. Peridotite xenolith, assemblage of carbonate and megacrysts of anorthoclase, corundum and phlogopite were found in basalt. Antuoling basalt with 46.50-50.20% in SiO2 content has suffered slightly alternation of carbonatization, chloritization and serpentinization of olivine, and chloritization and carbonatization of clinopyroxene. The compositional points of Antuoling basalt in Zr/TiO2-Nb/Y diagram fall into alkaline basalt field. According to mantle melting column model, the melting column locates from 82.5km to 75.3km in depth, which means that the lithosphere depth under Antuoling was 75.5km when Antuoling basaltic magma erupted in 122.31Ma. So Antuoling basalt is production of lithosphere delamination of North Taihang Mountain in Mesozoic. Combined with composition and ages of Nandaling basalt and Nankou mafic dykes, the lithosphere depth evolution under Antuoling-Nandaling-Nankou was established, a process of a small size delamination, thickening, delamination and keeping stable. It becomes deep dynamic condition for constructing Antuoling Mo deposit model.
     Normal faults extensively distribute in Antuoling Mo deposit, and they have formed a grid-shape faults system. Shear joint develops comprehensively with diverse occurrence. There is a complex igneous assemblage, and divided into two groups: porphyry body and dykes. Antuoling porphyry body is composed mainly of quartz-monzonite porphyry in central and granodiorite porphyry in outer. Dykes type are basalt, diabase, lamprophyre, diorite porphyrite, granodiorite porphyry, monzonite porphyry, syenite porphyry, granite porphyry and aplite. SHRIMP U-Pb age results for quartz-monzonite porphyry and granodiorite porphyry are 141.3±1.5Ma and 139.4±1.7Ma, respectively. Petrography and major elements features of Antuoling porphyry body has suggested that fluid enriched in potassium has been injected in the process of porphyritic igneous rock. They shows positive anomaly for Rb and K, negative anomaly for Th, Nb,Ta, P and Ti, smoothed REE pattern with enrichment of LREE and the depletion of HREE, and characterized by adakite. Oscillatory zonings of plagioclase phenocryst in diorite porphyrite has become the proof of magma mixing and mafic magma injection during the process of porphyritic rock formation. Lamprophyre occurred in Antuoling Mo deposit was intruded in early Cretaceous, and they shows negative anomaly for Nb, Ta and Ti, smoothed REE pattern with enrichment of LREE and the depletion of HREE. Antuoling lamprophyre occurred as dykes, and olivine xenocrysts and carbonate can be found in lamprophyre, has indicated lamprophyre magma ascended rapidly, and their geochemistry features is controlled by source composition and fraction of partial melting.
     Favorable mineralized areas at Antuoling Mo deposit are mainly located in the transition belt of higher-lower resistivity anomaly, i.e., the alternation belt of outer granodiorite porphyry. Furthermore, the formation of more extensive mineralization is tightly related to transition belt of higher-lower resistivity in deeper. The 3D ore bodies shape built by Micromine in Antuoling Mo deposit is irregular and complex. Re-Os model ages of molybdenite are from 144.91±0.54 Ma to 146.11±0.71Ma. Fluid inclusions in Antuoling Mo deposit are composed mainly of H2O-rich and CO2-rich types, whose homogenization temperature peak is from 220℃to 260℃. In the process of mineralization, the high temperature fluids while mineralization progressed have been injected because the homogenization temperature of fluid inclusions in molybdenum quartz is higher than those located in quartz before mineralization. According to Pb isotope of molybdenite and pyrite, the mineralization fluids come from lower crust-upper mantle.
     Huge deep fluid was discharged, which triggered by the process of Antuoling lithosphere delamination. Polyporphyritic texture is an important petrological indicator for finding concealed ore body, which has been proofed in the exploration process at Antuoling Mo deposit. Antuoling porphyritic molybdenum deposit is a successful example for metallogenic theory on the transmamagtic fluids, and metallogenic model was displaced.
引文
Abdrakhmatov K Y, Aldazhanov, S A, Hager, B H, et al. Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates. Nature, 1996, 384: 450-453.
    Ahern J L, Turcotte D L. Magma migration beneath an ocean ridge. Earth and Planetary Science Letters, 1979, 45: 115-122.
    Allegre C J, Minster J F. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters, 1978, 38: 1-25.
    An M J, Shi Y L. Lithospheric thickness of the Chinese continent. Physics of the Earth and Planetary Interiors, 2006, 159(2006): 257-266.
    Asimow P D, Ghiorso M S. Algorithmic modifications extending MELTS to calculate subsolidus phase relations. American Mineralogist, 1998, 83: 1127-1131.
    Baker M B, Stolper E M. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim. Cosmochim. Acta, 1994, 58: 2811-2817.
    Bazhenov M L, Mikolaichuk A V. Paleomagnetism of Paleogene basalts from the Tien Shan, Kyrgyzstan: Rigid Eurasia and dipole geomagnetic field. Earth and Planetary Science Letters, 2002, 195: 155-166.
    Best M G.. Igneous and Metamorphic Petrology. London: Blackwell Publishing, 2003: 210-240.
    Bird P, Continental delamination and the Colorado Plateau. Journal of Geophysical Research, 1979. 84(B13): p. 7561-7571.
    Bird P, Initiation of intracontinental subduction in the Himalaya. Journal of Geophysical Research, 1978. 83(B10): p. 4975-4987.
    Boynton W V. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P (eds.), Rare earth element geochemistry. . Elservier, 1984: 63-114.
    Brearley M, Scarfe C M. Dissolution rates of upper mantle minerals in an alkali basalt melt at high pressure: An experimental study and implications fro ultramafic xenolith survival. Journal of Petrology, 1986, 27(5): 1157-1182.
    Brodholt J P, Batiza R. Global systematics of unaveraged Mid-Ocean Ridge Basalt composition: Comment on“Global correlations of ocean ridge basalt chemistry axial depth crustal thickness”by Klein EM and Langmuir CH. Journal of Geophysical Research, 1989, 94(B4): 4231-4239.
    Brown M. Crustal melting and melt extraction, ascent and emplacement in orogens: Mechanisms and consequences. Journal of the Geological Society, 2007, 164: 709-730.
    Burnham C. Energy release in subvolcanic environments: Implications for breccia formation. Economic Geology. 1985. 80: 1515-1522.
    Cawthorn R G. Degree of melting in mantle diapers and the origin of ultrabasic liquids. Earth and Planetary Science Letters, 1975, 27: 113-120.
    Chen C Y, Frey F A. Trace element and isotopic geochemistry of lavas from Haleakala Volcano, East Maui, Hawaii: implications for the origin of Hawaiian basalts. J.Geophys. Res., 1985. 90: 8743-8768.
    Chen L, Wang T, Zhao L, et al. Distinct lateral variation of lithospheric thickness in the Northeastern North China Craton. Earth and Planetary Science Letters, 2008, 267(2008): 56-68.
    Chen Y L, Luo Z H, Zhao J X, et al. Petrogenesis and dating of the Kangding complex, Sichuan Province. Science in China (Serials D), 2005, 48(5): 622-634.
    Chung S L, Sun S S, Tu K, et al. Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: Product of lithosphere-asthenosphere interaction during continental extension. Chem. Geol, 1994. 112: 1-20.
    Compston W, Williams I S, Kirschvink J K, et al. Zircon U-Pb ages for the Early Cambrian time scale. J. Geol. Soc. London, 1992, 149: 171-184.
    Compston W, Williams I S, Kirsehvink J K. Zircon U-Pb ages for the Early Cambrian time scale. Journal of the Geological Society, 1992, 149(2): 171-184.
    Compston W, Williams I S, Mayer C. U-Pb geochronology of zircons from Lunar Breccia 73217 using a Sensitive High Resolution Ion Microprobe. Journal of Geophysics Research, 1984. 89(supply): B525-B534.
    Cooper A F, Reid D L. Nepheline S?vites as parental Magmas in carbonatite complexes: Evidence from dicker Willem, southwest Namibia. Journal of Petrology, 1998, 39(11-12): 2123-2136.
    Defant M J,许继峰, Kepezhinskas P, et al. Adakites: some variations on a theme. Acta Petrologica Sinica, 2002. 18(2): 129-142. Deng J F, Mo X X, Zhao H L, et al. A new model for the dynamic evolution of Chinese lithosphere:‘continental roots–plume tectonics’. Earth-Science Reviews, 2004, 65: 223-275.
    Deng J F, Su S G, Niu Y L, et al. A possible model for the lithospheric thinning of North China Craton: Evidence from the Yanshanian (Jura-Cretaceous) magmatism tectonism. Lithos, 2007. 96(1-2): 22-35.
    DePaolo D J. Neodymium isotope geochemistry: An introduction. New York, Springer Verlag, 1988, 1-187.
    Dickerson P.W. Intraplate mountain building in response to continent–continent collision-the Ancestral Rocky Mountains (North America) and inferences drawn from the Tien Shan (Central Asia). Tectonophysics, 2003, 365: 129-142.
    Edward B R, Russell J K. A review and analysis of silicate mineral dissolution experiments in natural silicate melts. Chemical Geology, 1996, 130(3-4): 233-245.
    Edward B R, Russell J K. A review and analysis of silicate mineral dissolution experiments in natural silicate melts. Chemical Geology, 1996, 130(3-4): 233-245.
    Edward R S, Nicolas A. Cretaceous-Paleogene basaltic rocks of the Tuyon basin , NW China and Kyrgyz Tian Shan: the trace of a small plume, Lithos 50(2000) 191-215.
    Falloon T J, Danyushevsky L V, Green DH. Peridotite Melting at 1 GPa: Reversal experiments on partial melt compositions produced by peridotite-basalt sandwich experiments. Journal of Petrology, 2001, 42(12): 2363-2390.
    Falloon T J, Green D H, O’Neill HSC, et al. Experimental tests of low degree peridotite partial melt compositions: Implications for the nature of anhydrous near-solidus peridotite melts at 1 GPa. Earth and Planetary Science Letters, 1997, 152: 149-162.
    Fram M S, Lesher C E. Geochemical constrains on mantle melting during creation of the North Atlantic Basin. Nature, 1993, 363: 712-714.
    Frey F A, Green D H, Roy S D. Integrated Models of Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical Experimental Petrological Data Journal of Petrology, 1978. 19(3): 463-513
    Gast PW. Trace elements fractionation and the origin of tholeiite and alkaline magma type. Geochim. Cosmochim. Acta, 1968, 32(3): 1057-1086.
    George P. L. Walker. Basaltic-volcano systems. In H. M. Prichard, T. Alabaster, N.B.W. Harris, C. R. Neary, Magmatic processes and Plate Tectonics. Geological Society Special Publication, 1993,76: 3-38.
    Ghiorso MS, Sack RO. Chemical mass transfer in magmatic processes IV: A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology, 1995, 119: 197-212.
    Goldsteina S L, O'Nions RK, Hamilton P J. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters, 1984, 70, 221-236.
    Green D H, Ringwood A E. The stability fields of aluminous pyroxene peridotite and garnet peridotite and their relevance in upper mantle structure. Earth Planet. Sci. Lett., 1967, 3: 151-160.
    Guang H, Sun M., Wilde S A, et al. SHRIMP U-Pb zircon geochronology of the Fuping Complex: implications for formation and assembly of the North China Craton. Precambrian Research, 2002, 113(1-2): 1-18.
    Guo Z J, Yin A, Alexander R, et al. Geochronology and geochemistry of deep-drill-core samples from the basement of the central Tarim basin. Journal of Asian Earth Sciences, 2005, 25(1): 45-56.
    Halama R, Vennemann T, Siebel W, et al. The Gr?nnedal-Ika carbonatite-syenite complex, south Greenland: Carbonatite formation by liquid immiscibility. Journal of Petrology, 2005, 46(1): 191-217.
    Hanson G N, Langmuir C H. Modeling of major elements in mantle-melt systems using trace element approaches. Geochim. Cosmochim. Acta, 1978, 42: 725-742.
    Harley S L, Kelly N M, M?ller A. Zircon behaviour and the thermal histories of mountain chains. Elements, 2007, 3(1): 25-30. Harley S L, Kelly N M. Zircon tiny but timely. Elements, 2007, 3(1): 13-18.
    Hart S R, Allegre C J. Trace-element constraints on magma genesis. In Hargraves RB (eds.). Physics of magmatic processes. NewJersey: Princeton University Press, 1980: 121-159.
    Hildreth W. Quaternary magmatism in the Cascades: geological perspectives. USGS Professional Paper, 2007. 1744, 1-125
    Hirose K, Kushiro I. Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters, 1993, 114: 477-489.
    Hirschmann M M. Mantle solidus: Experimental constrains and the effects of peridotite composition. Geochemistry Geophysics Geosystems, 2000, 1: 200GC000070.
    Hofmann, A W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, the oceanic crust. Earth Planet. Sci. Lett. , 1988. 90: 297-314.
    Ingebritsen S E , Manning CE. Implications of crustal permeability for fluid movement between terrestrial fluid reservoirs. Journal of Geochemical Exploration. 2003. 78-79: 1-6.
    IrvineT N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks. Canad. J. Earth Sci., 1971. 8, 523-548.
    Jacobsen S B, Wasserburg G J. Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 1980, 50, 139-155.
    Jaques A L, Green D H. Anhydrous melting of peridotite at 0~15kb pressure and the genesis of tholeiitci basalts. Contributions to Mineralogy and Petrology, 1980, 73: 287-310.
    Jones C H, Wernicke B P, Farmer G L, et al. Variations across and along a major continental rift: An interdisciplinary study of the Basin and Range Province, Western USA. Tectonophysics, 1992, 213: 57- 96.
    Kinzler R J, Grove T L. Primary magmas of Mid-Ocean Ridge Basalt 1: Experiments and methods. Journal of Geophysical Research, 1992a, 97 (B5): 6885-6906.
    Kinzler RJ, Grove TL. Primary magmas of Mid-Ocean Ridge Basalt 2: Applications. Journal of Geophysical Research, 1992b, 97 (B5): 6907-6926.
    Klein EM, Langmuir CH. Global correlations of ocean ridge basalt chemistry with axial depth crustal thickness. Journal of Geophysical Research, 1987, 92(B8): 8089-8115.
    Klein EM, Langmuir CH. Local versus global variations in ocean ridge basalt composition: A reply. Journal of Geophysical Research, 1989, 94(B4): 4241-4252.
    Klemme S, O'Neill H S C. The near-solidus transition from garnet lherzolite to spinel lherzolite. Contrib. Mineral. Petrol., 2000, 138: 237-248.
    Konopelko D, Biske G, Seltmann R, et al. Deciphering Caledonian events: Timing and geochemistry of the Caledonian magmatic arc in the Kyrgyz Tien Shan. Journal of Asian Earth Sciences 2008, 32(2008): 131-141.
    Korobeinikov A N, Mitrofanov F P, Geh?r S, et al. Geology and copper sulphide mineralization of the Salmagorskii Ring Igneous Complex, Kola Peninsula, NW Russia. Journal of Petrology, 1998, 39(11-12): 2033-2041.
    Kr?ner A, Wilde S A, Li J H, et al. Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences, 2005, 24(5): 577-595.
    Langmuir C H, Hanson G N. An evaluation of major element heterogeneity in the mantle sources of basalts. Phil. Trans. R. Soc. Lond., 1980, A297: 383-407.
    Langmuir C H, Hanson G N. Calculating mineral-melt equilbria with stoichiometry mass balance and single-component distribution coefficients. In: Newton RC, Navrotsky A and Wood BJ (eds.). Thermodynamics of minerals and melts advances in physical geochemistry. New York: Springer-Verlag, 1981, 1: 247-271.
    Langmuir C H, Klein E M, Plank T. Petrological systematics of Mid-Ocean Ridge Basalts: Constraints on melt generation beneath ocean ridges. In: Morgan J P, Blackman D K, Sinton J M (Eds.). Mantle flow and melt generation at Mid-Ocean Ridges. AGU Monograph, Washington, D. C., 1992, 71: 183-280.
    Langmuir C H, Klein E M, Plank T. Petrological systematics of Mid-Ocean Ridge Basalts: Constraints on melt generation beneath ocean ridges. In: Morgan JP, Blackman DK and Sinton JM (eds.). Mantle flow and melt generation at Mid-Ocean Ridges. AGU Monograph, Washington, D. C., 1992, 71: 183-280.
    Le Maitre R W. Some problems of the projections of chemiscal data into mineralogic classifaction. Cont. Mineral.Petro., 1976, 56, 181-189.
    Le Maitre R W, Dudek B P, Keller A.et al. A Classification of Igneous Rocks and Glossary of terms: Recommendations of theInternational Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific Publications, Oxford, 1989.
    Li C S, Naldrett A J, Ripley E M. Controls on the Fo and Ni contents of olivine in sulfide-bearing mafic/ultramafic intrusions: Principles, modeling, and examples from Voisey's Bay. Earth Science Frontiers, 2007, 14(5): 177-185.
    Li Z W, Roecker S, Li Z H, et al. Tomographic image of the crust and upper mantle beneath the western Tien Shan from the MANAS broadband deployment: Possible evidence for lithospheric delamination. Tectonophysics, 2009, 477(1-2): 49-57.
    Liang T, Fan B H, Luo Z H, et al. Application of stratagem EH4 system at Antuoling Molybdenum deposit. Northwestern Geology, 2009, 42(Supp): 222-225.
    Liu D Y, Page R W, Compston W, et al. U-Pb zircon geochronology of late Archaean metamorphic rocks in the Taihangshan-Wutaishan area, North China. Precambrian Research, 1985, 27(1-3): 85-109.
    Liu F T, Liu J H, Zhong D L, et al. The subducted slab of Yangtze continental block beneath the Tethyan orogen in western Yunnan. Chinese Science Bulletin, 2000, 45(5): 466-472.
    Liu S W, Pan Y M, Xie Q L, et al. Archean geodynamics in the Central Zone, North China Craton: constraints from geochemistry of two contrasting series of granitoids in the Fuping and Wutai complexes. Precambrian Research, 2004, 130(1-4): 229-249.
    Lowenstern J B. Dissolved volatile concentrations in an ore-forming magma. Geology, 1994. 22: 893-896
    Lugmair G W, Marti K. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 1978, 39, 349-357.
    Luo Z H, Fan B H, Lu S W, et al. Discovery and metallogenesis of the Antuoling Mo deposit and its implications. Northwestern Geology, 2009, 42(Supp): 214-217.
    Lustrino M. How the delamination and detachment of lower crust can influence basaltic magmatism. Earth-Science Reviews, 2005. 72: 21-38.
    Makeyeva L I, Vinnik L P and Roecker S W. Shear-wave splitting and small-scale convection in the continental upper mantle. Letters to Nature, 1992, 258(9): 144-147.
    McCulloch M T, Black L P. Sm-Nd isotopic systematics of Enderby Land granulites and evidence for the redistribution of Sm and Nd during metamorphism. Earth and Planetary Science Letters, 1984, 71, 51-64.
    Mcdonough W F, Sun S S. The composition of the Earth. Chemical Geology, 1995. 120: 223-253.
    McKenzie D, Bickle M J. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 1988, 29: 625-679.
    McKenzie D. The generation and compaction of partially molten rock. Journal of Petrology, 1984, 25: 713-765.
    Mengel K, Green D H. 1989. Stability of amphibole and phlogopite in metasomatised peridotite under water-saturated and ater-undersaturated conditions. In: J. Ross (Editor), Kimberlites and Related Rocks. 1. Geol. Soc. Aust. Spec. Publ., 14:571-581
    Menzies M A, Fan W M, Zhang M. 1993. Palaeozoic and Cenozoic lithoprobe and the loss of >120 km of Archean lithosphere, Sino-Korean Craton, China. [In]. Prichard H M, Alabaster T, Harris N B W, Et Al. Magmatic processes and plate tectonics. Geol Soc Spec Pub, 76: 71-81.
    Menzies M A, Halliday A N, Palacz Z, et al. Evidence from mantle xenoliths for an enriched lithoshperic keel under the Outer Hebrides. Nature, 1987, 325(6099): 44-47.
    Menzies M, Xu Y G, Zhang H F, Fan W M. 2007. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos, 96(1-2): 1-21.
    Middlemost, E A K. Iron oxidation ratios, norms the classification of volcanic rocks Chemical Geology, 1989. 77(1): 19-26
    Miller J S, Matzel J E P, Miller C F, et al. Zircon growth and recycling during the assembly of large, composite arc plutons. Journal of Volcanology and Geothermal Research, 2007, 167(2007): 282-299.
    Mo X X, Zhao Z D, Deng J F, et al. Petrology and geochemistry of postcollisional volcanic rocks from the Tibetan plateau: Implications for lithosphere heterogeneity and collision-induced asthenospheric mantle flow. Geological Society of America, 2006, 409 (Special Paper): 507-530.
    Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effects of a continental collision. Science, 1975, 189: 419-426.
    Myron G. Best, Igneous and Metamorphic Petrology. London: Blacckwell Publishing, 2003: 210-240.
    Neilson R L. The theory and application of a model of open magma system process. In: Nicholls J and Russel JK (eds.), ModernMethod of Petrology: Reviews in Mineralogy. Mineralogical Society of America, 1990, 24: 65-106.
    Nicholis M G., Rutherford M J. Experimental constraints on magma ascent rate for the Crater Flat volcanic zone hawaiite Geology, 2004, 32(6): 489-492.
    Niu Y L, Batiza R. An empirical method for calculating melt composition produced beneath mid-ocean ridges: Application for axis and off-axis (seamounts) melting. Journal of Geophysical Research, 1991a, 96 (B13): 21753-21777.
    Niu Y L, Batiza R. DENSCAL: A program for calculating densities of silicate melts and mantle minerals as a function of pressure, temperature and composition in melting range. Computers and Geosciences, 1991b, 17(5): 679-687.
    Niu Y L, O'Hara M J. Global correlations of ocean ridge basalt chemistry with axial depth: A new perspective. Journal of Petrology, 2008, 49(4): 633-664.
    Niu Y L. Generation and evolution of basaltic magmas: Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China. Geological Journal of China Universities, 2005, 11(1): 9-46 (in English).
    Pearce J A, Norry M. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 1979, 69(1979): 33-47.
    Peslier A H, Luhr J. Hydrogen loss from olivines in mantle xenoliths from Simcoe (USA) and Mexico: Mafic alkalic magma ascent rates and water budget of the sub-continental lithosphere. Earth and Planetary Science Letters, 2006, 242(3-4): 302-319.
    Peslier A H, Luhr J. Hydrogen loss from olivines in mantle xenoliths from Simcoe (USA) and Mexico: Mafic alkalic magma ascent rates and water budget of the sub-continental lithosphere. Earth and Planetary Science Letters, 2006, 242(3-4): 302-319.
    Petford N, Cruden A R, McCaffrey K J W, et al. Granite magma formation, transport and emplacement in the Earth's crust. Nature, 2000, 408: 669-673.
    Plank T, Langmuir C H. An evaluation of the global variations in the major element chemistry of arc basalts. Earth and Planetary Science Letters, 1988, 90: 349-370.
    Plank T, Langmuir C H. Effects of the melting regime on the composition of the oceanic crust. Journal of Geophysical Research, 1992, 97(B13): 19749-19770.
    Plank T, Spiegelman M, Langmuir CH et al. The Meaning of "Mean F": Clarifying the Mean Extent of Melting at Ocean Ridges. Journal of Geophysical Research, 1995, 100(B8): 15045-15052.
    Price R C, Gray C M, Wilson R E, Frey F A, Taylor S R. 1991. The effects of weathering on rare-earth element, Y and Ba abundances in Tertiary basalts from southeastern Australia. Chem. Geol., 93: 245-265.
    Reigber C H, Michel G. W, Galas R, et al. New space geodetic constraints on the distribution of deformation in Central Asia. Earth and Planetary Science Letters, 2001, 191: 157-165.
    Robinson J A C, Wood B J , Blundy JD. The beginning of melting of fertile and depleted peridotite at 1.5 GPa. Earth and Planetary Science Letters, 1998, 155(1-2): 97-111.
    Rock N M S. Lamprophyres. Blackie, London, 1991. 1-275.
    Roecker S W, Sabitova T M, Vinnik L P, et al. Three-Dimensional Elastic Wave Velocity Structure of the Western and Central Tien Shan. Journal of Geophysical Research, 1993, 98, B9: 15779-15795.
    Roecker S W, Sabitova T M, Vinnik L P, et al. Three-dimensional elastic wave velocity structure of the western and central Tien Shan. Journal of Geophysical Research, 1993, 98(B9): 15779-15795.
    Roeder P L, Emslie R F. Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 1970, 29: 257-289.
    Rogers N W, Hawkesworth C J, Palacz ZA. Phlogo-pite in the generation of olivine-melilitites from Namaqualand, South Africa and implications for element fractionation processes in the upper mantle. Lithos, 1992. 28: 347-365.
    Rollison H R. Using geochemical data: Evalution, presentation, interpretation. New York: Longman Scientific & Technical,, 1993: 102-213.
    Rudnick R L, Gao S, Liu Y S, et al. Petrology geochemistry of spinel peridotite xenoliths from Hannuoba Qixia, North China craton. Lithos, 2004. 77(1-4): 609-637.
    Rudnick R L, Gao S. Composition of the continental crust. In: Rudnick R L. (Ed), The Crust. In: Holland, H D, Turekian, K K,(Ed), , 2003. 3: 1-64.
    Scarrow J H, Leat P T, Wareham C D, et al. 1998. Geochemistry of mafic dykes in the Antarctic Peninsula continental-margin batholith: a record of arc evolution. Contributions to Mineralogy and Petrology, 131: 289-305.
    Scherer E E, Whitehouse M J, Münker C. Zircon as a monitor of crustal growth. Elements, 2007, 3(1): 19-24.
    Shapiro N M., Ritzwoller M H, Molnar P, et al. Thinning and Flow of Tibetan Crust Constrained by Seismic Anisotropy. Science. 2004, 305: 233-236.
    Shaw D M. Continuous (dynamic) melting theory revisited. The Canadian Mineralogist, 2000, 38(1): 1041-1063.
    Shaw D M. Trace elements fractionation during anatexis. Geochim. Cosmochim. Acta, 1970, 34: 237-243.
    Shaw D M. Trace elements in magmas: A theoretical treatment. New York: Cambridge University press, 2006: 142-241.
    Song Y, Frey F A. Geochemistry of peridotite xenoliths in basalt from Hannuoba, Eastern China: Implications for subcontinental mantle heterogeneity. Geochimica et Cosmochimica Acta, 1989. 53(1): 97-113.
    Steiger R H, J?ger E. Subcommission on geochronology: convention on the use of decay constants in geochronology and cosmochronology. Earth and planetary science letters, 1977, 36, 359-362.
    Stephen C. Thompson,Ray J. Weldon, Charles M. Rubin, et al. Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia. Journal of Geophysical Research, 2002, 107(B9): 2203.
    Stolper E, Walker D. Melt density and the average composition of basalt. Contributions to Mineralogy and Petrology, 1980, 74(1): 7-12.
    Sun S S, McDonough W F. Chemical isotopic systematic of oceanic basalt: implication for mantle composition processes. In: Saunders A D, Norry M J (Eds.), Magmatism in the Oceanic Basins Spec. Publ. Geol. Soc. London, 1989. 42: 313-346.
    Takahashi E, Shimazaki T, Tsuzaki Y, et al. Melting study of a peridotite KLB-1 and the origin of basaltic magmas. Phil. Trans. R. Soc. Lond., 1993, A342: 105–120.
    Takahashi E. Melting of a dry peridotite KLB-1 up to 14 GPa: Implications on the origin of eridotitic upper mantle. Journal of Geophysical Research, 1986, 91: 9367–9382.
    Tang Y J, Zhang H F, Ying J F. Asthenosphere–lithospheric mantle interaction in an extensional regime: Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chemical Geology, 2006, 233(206): 309-327.
    Tao Liang, Zhaohua Luo, Shan Ke, et.al. The basaltic volcanic rocks in the Tuyon Basin, NW China: Petrogenesis and Tectonic Implications. Himalayan Journal of Sciences, 2005, 2 (4): 194.
    Tapponnier P , Peltzer G, Le-Dain A Y, et al . Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 1982, 10(12): 611-616..
    Tapponnier P , Xu Z Q , Roger F , et al. Oblique stepwise rise and growth of the Tibet plateau. Science, 2001, 294 (23): 1671-1677.
    Thibault Y, Edgar A D, Lloyd F E. Experimental investigation of melts from a carbonated phlogopite lherzolite: implications for metasomatism in the continental lithospberic mantle. Am. Mineral, 1992. 77: 784-794.
    Thompson R N. Magmatism of the British Tertiary Volcanic Province. Scottish Journal of Geology, 1982. 18: 59-107.
    Thouret J C. Volcanic geomorphology—an overview. Earth-Science Reviews, 1999 (47): 95-131.
    Trap P, Faure M, Lin W, et al. Contrasted tectonic styles for the Paleoproterozoic evolution of the North China Craton: Evidence for a 2.1 Ga thermal and tectonic event in the Fuping Massif. Journal of Structural Geology, 2008, 30(9): 1109-1125.
    Trap P, Faure M, Lin W, et al. Late Paleoproterozoic (1900–1800 Ma) nappe stacking and polyphase deformation in the Hengshan–Wutaishan area: Implications for the understanding of the Trans-North-China Belt, North China Craton. Precambrian Research, 2007, 156(1-2): 85-106.
    Trap P, Faure M, Lin W, et al. The Zanhuang Massif the second and eastern suture zone of the Paleoproterozoic Trans-North China Orogen. Precambrian Research, 2009, 172(1-2): 80-98.
    Turner S, Costa F. Measuring timescales of magmatic evolution. Elements, 2007, 3(1): 267-272.
    Turner S, Hawkesworth C. The nature of the sub-continental mantle: Constrains from the major-element composition of continental flood basalts. Chemical Geology, 1995, 120: 295-314.
    Valentin S B, Skobelev S F, et al. Late Cenozoic slip on the Talas-Ferghana fault, the Tien Shan, central Asia. Geological Society of America Bulletin, 1996, 108(8): 1004-1021.
    Vinnik L. P., Reigber C., Aleshin I. M. et al. Receiver function tomography of the central Tien Shan. Earth and Planetary Science Letters. 2004, 225: 131-146.
    Walker D, Shibata T and DeLong S E. Abyssal tholeiites from the Oceanographer Fracture Zone II: Phase equilibria and mixing.Contributions to Mineralogy and Petrology, 1979, 70(2): 111-125.
    Walker G. P L. Basaltic-volcano systems. In H. M. Prichard, T. Alabaster, N.B.W. Harris, et al. Magmatic processes and Plate Tectonics, Geological Society Special Publication 1993, 76: 3-38.
    Wallace M E, Green D H. An experimental determination of primary carbonatite magma composition. Nature, 1988, 335: 343-346.
    Walter MJ. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology, 1998, 39: 29-60.
    Wang K, Plank T, Walker J D, et al. A mantle melting profile across the Basin and Range, SW USA. Journal of Geophysical Research. 2002, 107(B1): doi: 10.1029/2001JB000209.
    Wang Q, Zhang P Z, Freymueller J T. Present-day crustal deformation in China constrained by global positioning system measurements. Science, 2001, 294: 574-577.
    Wang Z H, Zhao Y, Zou H B, et al. Petrogenesis of the early Jurassic Nandaling flood basalts in the Yanshan belt, north China Craton: A correlation between magmatic underplating and lithospheric thinning. Lithos, 2007. 96(2007): 543-566.
    Wasylenki LE, Baker MB, Hirschmann MM et al. The effect of source depletion on equilibrium mantle melting, EOS Transactions. American Geophysical Union, 1996, 77: 847.
    Weaver J S, Langmuir CH. Calculation of phase equilibrium in mineral-melt systems. Computers and Geosciences, 1990, 16: 1-19.
    Westerman D S, Dini A, Innocenti F, Ronchi S. 2004. Rise and fall of a nested Christmas-tree laccolith complex, Elba Island, Italy. In: Breithunz C, Petford N. Eds. Physical geology of high-level magmatic systems. Geological Society, Spec. Pubbl. 234, 195-213.
    Wilde S A, Cawood P A, Wang K Y, et al. Granitoid evolution in the Late Archean Wutai Complex, North China Craton. Journal of Asian Earth Sciences, 2005, 24(5): 597-613.
    Williams I S, Claesson S. Isotopic evidence for the Precambrian provenance and Caledonion metamorphism of high-grade paragneisses from the Deve Nappes, Scandinavian Caledonides II: Ion microprobe zircon U-Th-Pb. Contrib. Minera. Petro, 1987, 97: 205-217.
    Wittlinger G, Tapponnier P, Poupinet G, et al. Tomographic evidence for localized lithospheric shear along the Altyn Tagh Fault. Science, 1998, 282: 74-76.
    Xu Y G, Blusztajn J, Ma J L,et al. Late Archean to Early Proterozoic lithospheric mantle beneath the western North China craton: Sr-Nd-Os isotopes of peridotite xenoliths from Yangyuan Fansi. Lithos, 2008. 102(1-2): 25-42.
    Xu Y G. Evidence for crustal components in the mantle and constraints on crustal recycling mechanisms: Pyroxenite xenoliths from Hannuoba, North China. Chemical Geology, 2002. 182(2-4): 301-322.
    Yang S H, Zhou M F. Geochemistry of the 430Ma Jingbulake mafic-ultramafic intrusion in Western Xinjiang, NW China: Implications for subduction related magmatism in the South Tianshan orogenic belt. Lithos, 2009. 113(1-20): 259-273.
    Yang YQ, Liu M. Cenozoic deformation of the Tarim plate and the implication for mountain building in the Tibet Plateau and the Tian Shan. Tectonis, 2002, 21(6): 1059-1075.
    Yin A, Harrison M. Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Eart h Planet Sci, 2000, 28: 11-280.
    Zartman R E, Haines S M. 1981. The plunbotectonic model for Pb isopic systematics among major terrestrial reservoirs a case for bidirectional transport. Geochim. Cosmochim. Acta, 52, 1327-1339.
    Zhang C L, Li X H, Li Z X, et al. Neoproterozoic ultramafic-mafic-carbonatite complex and granitoids in Quruqtagh of northeastern Tarim Block, western China: Geochronology, geochemistry and tectonic implications. Precambrian Research, 2007, 152(3-4): 149-169.
    Zhang C L, Li Z X, Li X H, et al. Neoproterozoic mafic dyke swarms at the northern margin of the Tarim Block, NW China: Age, geochemistry, petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 2009, 35(2): 167-179.
    Zhang H F, Sun M, Zhou X H, et al. Secular evolution of the lithosphere beneath the eastern North China Craton: Evidence from Mesozoic basalts and high-Mg andesites. Geochimica et Cosmochimica Acta, 2003. 67(22): 4373–4387.
    Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research, 2005, 136(2): 177-202.
    Zhao G C, Wilde S A, Sun M, et al. SHRIMP U–Pb zircon ages of granitoid rocks in the Lüliang Complex: Implications for the accretion and evolution of the Trans-North China Orogen. Precambrian Research, 2008, 160(3-4): 213-226.
    Zheng J P, Griffin W L , O’Reilly S Y, et al. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochimica et CosmochimicaActa, 2007.71: 5203–5225.
    Zheng J P, Griffin W L, O’Reilly S Y, et al. Granulite xenoliths and their zircons, Tuoyun, NW China: Insights into southwestern Tianshan lower crust. Precambrian Research, 2006, 145(3-4): 159-181.
    Zhou H B. Quantitative geochemistry. London: Imperial College Press, 2007: 1-72.
    Zindler A, Hart S. Chemical Geodynamics. Annual Review of Earth Planetary Sciences, 1986. 14: 493-571.
    白志达,徐德斌,张秉良,等.龙岗火山群第四纪爆破式火山作用类型与期次研究.岩石学报, 2006. 22(6): 1473-1480.
    鲍亦冈,白志民,葛世炜,等.北京燕山期火山地质及火山岩.北京:地质出版社, 1995: 1-164.
    蔡剑辉,阎国翰,常兆山,等. 2003.王安镇岩体岩石地球化学特征及成因探讨.岩石学报, 19(1): 81-92.
    蔡剑辉,阎国翰,许保良,等. 2006.太行山-大兴安岭东麓晚中生代碱性侵入岩岩石地球化学特征及其意义. 2006.地球学报, 27(5): 447-459.
    曹代勇,李青元,朱小弟. 2001.地质构造三维可视化模型探讨.地质与勘探, 37(4): 60-62
    曹福根,涂其军,张晓梅,等.哈尔里克山早古生代岩浆弧的初步确定——来自塔水河一带花岗质岩体锆石SHRIMP U-Pb测年的证据.地质通报, 2006, 25(8): 923-927.
    柴立和,马德刚.复杂系统的热力学理论.自然杂志, 2003. 25(5): 261-264.
    常兆山冯钟燕.河北涞源支家庄铁矿的蚀变矿化.北京大学学报(自然科学版), 1996. 32(6): 724-733.
    陈爱兵,秦德先,张学书. 2004.基于MICROMINE矿床三维立体模型的应用.地质与勘探, 40(5): 77-80
    陈斌,刘超群,田伟.太行山中生代岩浆作用过程中的壳幔岩浆混合作用:岩石学和地球化学证据.地学前缘, 2006. 13(2): 140-147.
    陈斌,田伟,翟明国,等.太行山和华北其它地区中生代岩浆作用的锆石U-Pb年代学和地球化学特征及其岩浆成因和地球动力学意义.岩石学报, 2005, 21(1): 13-24.
    陈斌,翟明国,邵济安. 2002.太行山北段中生代岩基的成因和意义:主要和微量元素地球化学证据.中国科学D, 32(11): 896-1007.
    陈桂华,温长顺,胡玲,等.太行山北段中新生代断层岩的显微构造研究.地震地质, 2004. 26(1): 102-110.
    陈文寄,李大明,李齐,等. 1992.下辽河裂谷盆地玄武岩的年代学与地球化学.见刘若新,中国新生代火山岩的年代学和地球化学,地震出版社,北京,44-80.
    陈燕,吴泰然,许绚,等.内蒙古四子王旗东八号中新世含深源捕虏体富钾橄榄玄武岩的发现及其意义.高校地质学报, 2004. 10(4): 586-593.
    陈义兵,胡霭琴,张国新,等.西南天山前寒武纪基底时代和特征:锆石U-Pb和Nd-Sr同位素.岩石学报, 2000, 16(1): 91-98.
    陈毓川,裴荣富,宋天锐,等.中国矿床成矿系列初论.北京:地质出版社, 1998, 104.
    陈毓川,王登红,徐志刚,等.对中国成矿体系的初步探讨.矿床地质, 2006. 25(2): 155-164.
    陈智超,陈斌,田伟.太行山北段中生代岩基及其包体锆石U-Pb年代学和Hf同位素性质及其地质意义.岩石学报, 2007. 23(2): 295-305.
    程裕淇,陈毓川,赵一鸣.初论矿床的成矿系列.中国地质科学院院报.第一号.转引自程裕淇文选(中卷).北京:地质出版社, 1979: 1278-1304.
    池寄尚.中国东部新生代玄武岩及上地幔研究(附金伯利岩).武汉:中国地质大学出版社, 1988: 1-277.
    邓晋福,鄂莫岚,路凤香. 1985.东北地区新生代玄武岩及其与大陆裂谷构造的关系,国际交流地质学术论文集(3)-为二十七届国际大会撰写.北京:地质出版社, 13-22.
    邓晋福,罗照华,苏尚国,等.岩石成因、构造环境与成矿作用.北京:地质出版社2004: 1-149.
    邓晋福,莫宣学,罗照华,等.青藏高原岩石圈不均一性及其动力学意义.中国科学(D辑), 2001, 31(增刊): 55-60.
    邓晋福,莫宣学,赵海玲,等.中国东部岩石圈根/去根作用与大陆“活化”──东亚型大陆动力学模式研究计划.现代地质, 1994, 8(3): 349-356.
    邓晋福,莫宣学,赵海玲,等.中国东部燕山期岩石圈-软流圈系统大灾变与成矿环境.矿床地质, 1999, 18(4): 309-315.
    邓晋福,苏尚国,刘翠,等.华北太行-燕山-辽西地区燕山期(J-K)造山过程与成矿作用.现代地质, 2007. 21(2): 232-241.
    邓晋福,赵海玲,莫宣学,等.大陆根-柱构造--大陆动力学的钥匙.北京:地质出版社, 1996: 1-110.
    邓晋福. 1988.大陆裂谷岩浆作用及深部过程.见池际尚.中国东部新生代玄武岩及上地幔研究.武汉:中国地质大学出版社, 201-218.
    邓兴梁,舒良树,朱文斌,等.新疆兴地断裂带前寒武纪构造-岩浆-变形作用特征及其年龄.岩石学报, 2008, 24(12): 2800-2808.
    杜安道,何红蓼,殷宁万,等.辉钼矿的铼-锇同位素地质年龄测定方法研究.地质学报, 1994. 68(4): 339-347.
    杜安道,孙德忠,王淑贤,等.铼-锇定年法中碱熔分解样品方法的改进.岩矿测试, 2002. 21(2): 100-104.
    杜乐天.地球排气作用的重大意义及研究进展.地质论评, 2005. 51(3): 174-180.
    杜乐天.地球排气作用--建立整体地球科学的一条统纲.地学前缘, 2000. 7(2): 381-390.
    杜乐天.幔汁(HACONS)流体.大地构造与成矿学, 1988. 1(1988): 88-93.
    杜利林,耿元生,杨崇辉,等.扬子地台西缘盐边群玄武质岩石地球化学特征及SHRIMP锆石U-Pb年龄.地质学报, 2005, 79(6): 805-813.
    杜利林,庄育勋,杨崇辉,等.山东新泰孟家屯岩组锆石特征及其年代学意义.地质学报, 2003, 77(3): 359-366.
    杜蔚,韩宝福,张文慧,等.内蒙古集宁新生代玄武岩中橄榄岩包体和巨晶的发现及意义.岩石矿物学杂志, 2006. 25(1): 13-24.
    鄂莫岚,赵大升.中国东部新生代玄武岩及深源岩石包体.北京:科学出版社, 1987: 1-490.
    樊琪诚. 1984.河北平泉骆驼峰碱性玄武岩质角砾岩筒的岩石学特征与岩浆起源.地震地质, 6(4): 55-69.
    樊祺诚,刘若新,魏海泉,等.龙岗金垅顶子近代活动火山的岩石学与地球化学.岩石学报, 1999. 15(4): 584-589.
    樊祺诚,陈文寄, Hurford A J,等.大同玄武岩主要元素和微量元素化学.见刘若新,中国新生代火山岩的年代学和地球化学,北京:地震出版社,1992. 93-100.
    方同辉,马鸿文.辽宁宽甸地区上地幔岩石圈组成及热结构.地质论评, 1999. 45(增刊): 450-457.
    冯钟燕,陈廷礼,赵永超.太行山北段中生代成矿时间演化.地学前缘, 1999. 6(2): 343-349.
    傅朝义.河北省变质核杂岩构造中煌斑岩的地质特征及其与金矿的关系探讨.地质找矿论丛, 1999. 14(4): 35-40.
    高俊,张立飞,刘圣伟.西天山蓝片岩榴辉岩形成和抬升的40Ar/39Ar年龄记录.科学通报, 2000, 45(1): 89-94.
    龚福华,李曰俊,王清华,等.南天山西段古生代火山岩Ar-Ar年龄新资料.高校地质学报, 2003, 9(3): 494-498.
    顾连兴,胡受奚,于春水,等.博格达陆内碰撞造山带挤压-拉张构造转折期的侵入活动.岩石学报, 2001, 17(2): 187-198.
    郭坤一,张传林,赵宇,等.塔里木南缘煌斑岩的时代及其地质意义地质科学, 2003, 38(4): 532-534.
    郭晓东,王治华,陈祥,等.云南马厂箐斑岩型铜钼(金)矿床地质特征与矿床成因.地质学报, 2009. 83(12): 1901-1914.
    郭召杰,张志诚,刘树文,等.塔里木克拉通早前寒武纪基底层序与组合:颗粒锆石U-Pb年龄新证据.岩石学报, 2003, 19(3): 537-542.
    郭召杰,张志诚,刘树文,等.塔里木克拉通早前寒武纪基地层序与组合:颗粒锆石U-Pb年龄新证据.岩石学报, 2003, 19(3): 537-542.
    韩宝福,何国琪,吴泰然,等.天山早古生代花岗岩锆石定年、岩石地球化学特征及其大地构造意义.新疆地质, 2004, 22(1): 4-11.
    韩宝福,王学潮,何国琦,等.西南天山早白垩世火山岩中发现地幔和下地壳捕掳体.科学通报, 1998, 43(23): 2544-2547.
    韩秀丽,李昌存,赵光军.河北省易县栾木厂金矿床地质特征.黄金, 1999. 20(5): 5-7.
    何世平,王洪亮,徐学义,等.北祁连东段红土堡基性火山岩锆石LA-ICP-MS U-Pb年代学及其地质意义.地球科学进展, 2007, 22(2): 143-151.
    河北省地质矿产局.河北省北京市天津市区域地质志.北京,地质出版社: 1989. 322-490
    河南省地质矿产局.河南省区域地质志.北京:地质出版社, 1989: 391-523.
    侯德义,刘鹏鄂,李守义.矿产勘查学.北京,地质出版社: 1997. 171-206
    侯贵廷,刘玉琳,李江海,等.关于基性岩墙群的U-Pb SHRIMP地质年代学的探讨—以鲁西莱芜辉绿岩岩墙为例.岩石矿物学杂志, 2005, 24(3): 179-185.
    侯贵廷,王传成,王延欣,等.鲁西蒙山新太古代末闪长岩体的区域构造意义——SHRIMP锆石U-Pb年代学证据.高校地质学报, 2008, 14(1): 22-28.
    侯景儒,黄竞先.地质统计学在固体矿产资源/储量分类中的应用.地质与勘探, 2001. 37(6):61-66
    侯连海,周忠和,张福成,等.山东山旺发现中新世大型猛禽化石.古脊椎动物学报, 2000, 38(2): 104一110.
    胡霭琴,韦刚健,张积斌,等.天山东段天湖东片麻状花岗岩的锆石SHRIMP U-Pb年龄和构造演化意义.岩石学报, 2007, 23(8): 1795-1802.
    胡霭琴,韦刚健.塔里木盆地北部新太古代辛格尔灰色片麻岩形成时代问题.地质学报, 2006, 80(1): 126-134.
    胡霭琴,张国新,陈义兵,等.新疆大陆基底分区模式和主要地质事件的划分.新疆地质, 2001, 19(1): 12-19.
    胡霭琴,张国新,张前锋,等.天山造山带基底时代和地壳增生的Nd同位素制约.中国科学(D辑), 1999, 29(2): 104-112.
    黄典豪,杜安道,吴澄宇,等.华北地台钼(铜)矿床成矿年代学研究-辉钼矿铼-锇年龄及其地质意义.矿床地质, 1996. 15(4): 365-343.
    黄凡,罗照华,卢欣祥,等.东沟含钼斑岩由太山庙岩基派生?矿床地质, 2009. 28(5): 569-584.
    黄忠敏.山旺国家地质公园地质旅游资源研究及市场定位.北京:中国地质大学(北京)硕士学位论文, 2006: 6-30.
    季建清,韩宝福,朱美妃,等.西天山托云盆地及周边中新生代岩浆活动的岩石学、地球化学与年代学研究.岩石学报, 2006, 22(5): 1324-1340.
    季建清,韩宝福,朱美妃,等.西天山托云盆地及周边中新生代岩浆活动的岩石学、地球化学与年代学研究.岩石学报, 2006, 22(5): 1324-1340.
    简平,程裕淇,刘敦一.变质锆石成因的岩性学研究-高级变质岩U-Pb年龄解释的基本依据.地学前缘, 2001, 8(3): 183-191.
    姜耀辉,蒋少涌,赵葵东,等.辽东半岛煌斑岩SHRIMP锆石U-Pb年龄及其对中国东部岩石圈减薄开始时间的制约.科学通报, 2005. 30(19): 2161-2168.
    鞠紫云.紫荆关断裂在太行山北段的特征及其发生发展过程的推论.中国区域地质, 1982. 1(3): 56-66.
    考克斯. D P,辛格D A. 1986.矿床模式.宋伯庆,李文祥,朱裕生,蒲志伟等译. 1989.北京:地质出版社, 1-3.
    李德东,罗照华,黄金香,等.皮羌盆地新生代基性岩浆活动的年代学及其地质意义.地学前缘, 2009, 16(3): 270-281.
    李风麟.对山东临胸山旺组的再认识.地层学杂志, 1991, 15(2): 17-25.
    李广伟,方爱民,吴福元,等.塔里木西部奥依塔克斜长花岗岩锆石U-Pb年龄和Hf同位素研究.岩石学报, 2009, 25(1): 166-172.
    李锦轶,宋彪,王克卓,等.东天山吐哈盆地南缘二叠纪幔源岩浆杂岩:中亚地区陆壳垂向生长的地质记录.地球学报, 2006, 27(5): 424-426.
    李锦轶,王克卓,李亚萍,等.天山山脉地貌特征、地壳组成与地质演化.地质通报, 2006, 25(8): 805-809.
    李天福,马鸿文,白志民.汉诺坝玄武岩的地球化学特征及成因模式.岩石矿物学杂志, 1999. 18(3): 217-228.
    李文宣,吴新国,冯家麟.大同火山群玄武岩研究.石家庄经济学院学报, 1994. 17(6): 547-555.
    李伍平,李献华,路凤香,周瑶琪,章大港.辽西早白垩世义县组火山岩的地质特征及其构造背景.岩石学报, 2002. 18(2): 193-204.
    李向东,肖文交,周宗良.南天山南缘晚泥盆世构造事件的40Ar/39Ar定年证据及其意义.岩石学报, 2004, 20(3): 691-696.
    李晓勇,范蔚茗,郭锋,等.古亚洲洋对华北陆缘岩石圈的改造作用:来自于西山南大岭组中基性火山岩的地球化学证据.岩石学报, 2004, 20(3): 557-566.
    李毅,吴泰然,罗红玲,赵磊.内蒙古四子王旗早白垩世钾玄岩的地球化学特征及其形成构造环境.岩石学报, 2006. 22(11): 2791-2800.
    李永安,李强,张慧,等.塔里木盆地及其周边古地磁研究与盆地演化形成.新疆地质, 1995, 13(4): 341-344.
    李永峰,毛景文,刘敦一,等.豫西雷门沟斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os测年及其地质意义.地质论评, 2006. 52(1): 123-132.
    李勇,苏文,孔屏,等.塔里木盆地塔中-巴楚地区早二叠世岩浆岩的LA-ICP-MS锆石U-Pb年龄.岩石学报, 2007, 23(5): 1097-1107.
    李佑国,莫宣学,赵崇贺.山西大同采凉山钾镁煌斑岩的地质与岩石学特征.地质科技情报, 1991. 10(增刊): 29-37.
    李曰俊,贾承造,胡世玲,等.塔里木盆地瓦基里塔格辉长岩40Ar-39Ar年龄及其意义.岩石学报, 1999, 15(4): 594-599.
    李曰俊,孙龙德,胡世玲,等.塔里木盆地塔参1井底部花岗闪长岩的40Ar-39Ar年代学研究.岩石学报, 2003, 19(3): 530-536.
    李召鼐,王碧香.中华人民共和国1∶5 ,000,000中国火成岩地质图.北京:地质出版社, 1997.
    梁涛,樊秉鸿,罗照华. EH4测量在安妥岭钼矿勘查中的应用.西北地质, 2009. 42(增刊): 222-225
    梁涛,卢仁, Woodhouse W.应用Micromine软件实现矿山井巷工程的可视化管理.金属矿山, 2009. 393: 107-110
    梁涛,卢仁, Woodhouse W. Micromine数字化矿山巷道地质编录资料在蔡家营锌矿的应用.有色金属(矿山部分), 2009. 61(5): 66-70
    梁涛,罗照华,柯珊,等.新疆托云火山群SHRIMP锆石U-Pb年代学及其动力学意义.岩石学报, 2007, 23(6): 1381-1391.
    梁涛,罗照华,李文韬,等.托云火山群的火山地质特征及其构造意义.新疆地质, 2005, 23(2): 105-110.
    梁涛.托云盆地新生代碱性玄武岩及其构造意义.中国地质大学(北京)硕士学位论文, 2005: 34-35.
    梁学武,张强,李志海,杨学明,石玉春,2009.连续电导率成像技术(EH4)在安妥岭铜钼矿区深部找矿中的应用。地质调查与研究,32(1):58-63
    辽宁地质矿产局.辽宁省区域地质志.北京:地质出版社, 1989: 394-595.
    刘本培,王自强,张传恒,等.西南天山构造格局与演化.武汉:中国地质大学出版社, 1996: 64-88.
    刘丛强,解广轰,增田彰正.中国东部新生代玄武岩的地球化学Ⅰ.主元素和微量元素组成:岩石成因及源区特征.地球化学, 1995. 24(1): 1-19.
    刘国平,艾永富,冼伟胜.辽宁桃源-小佟家堡子金矿带煌斑岩的地球化学特征及地质意义岩石矿物学杂志, 1997. 16(4): 324-330.
    刘嘉麒.中国火山.北京:科学出版社, 1999: 1-219.
    刘建朝,张海东,刘淑文,等,太行山南段平顺地区杂岩体成因研究.地质论评, 2009. 55(3): 318-328.
    刘若新,陈文奇,孙建中,等.中国新生代火山岩的K-Ar年代与构造环境.见刘若新:中国新生代火山岩年代学与地球化学.北京:地震出版社, 1992: 1-43.
    刘若新,杨美娥,青怀济,等. 1981.华北地区新生代碱性玄武岩中超镁铁质捕虏体的初步研究.地震地质, 3(3-4): 1-16.
    刘燊,胡瑞忠,赵军红,等.胶北晚中生代煌斑岩的岩石地球化学特征及其成因研究.岩石学报, 2005. 21(3): 947-958.
    刘训,吴绍祖,傅德荣,等.塔里木板块周缘的沉积-构造演化.乌鲁木齐:新疆科技卫生出版社, 1997: 135-151.
    刘占坡,高祥林,黎益仕.太行山重力梯级带的密度结构及其地质解释地震地质, 2003. 25(2): 266-273.
    龙灵利,高俊,熊贤明,等.南天山库勒湖蛇绿岩地球化学特征及其年龄.岩石学报, 2006, 22(1): 65-73.
    龙灵利,高俊,熊贤明,等.新疆中天山南缘比开(地区)花岗岩地球化学特征及年代学研究.岩石学报, 2007, 23(4): 719-732.
    卢欣祥.河南省秦岭-大别山地区燕山期中酸性小岩体的基本特征与成矿作用.中国区域地质, 1985. 13(1985): 183-196.
    卢造勋,姜德禄,白云,等.东北地区地壳上地幔结构的探测与研究.东北地震研究, 2005. 21(1): 1-8.
    路凤香,邓晋福,鄂莫岚. 1981.辽宁宽甸黄椅山碱性玄武岩岩浆起源问题的讨论.地球科学, (1): 183-196.
    路远发,马丽艳,屈文俊,等.湖南宝山铜-钼多金属矿床成岩成矿的U-Pb和Re-Os同位素定年研究.岩石学报, 2006. 22(10): 2483-2492.
    陆树文,张强,胡瑞刚,等.河北涞水安妥岭钼矿2007年度勘察报告(内部资料).天津华北地质勘查总院, 1-97.
    吕贻峰,秦松贤,邓兆伦.河北涞源木吉村-浮图峪铁铜多金属矿田成矿构造条件分析及成矿模式研究.地球科学, 1989. 14(5): 563-572.
    吕勇军,罗照华,任忠宝,等.西南天山托云盆地新生代玄武岩中巨晶的研究.中国科学(D), 2006, 36(2): 154-166.
    罗金海,车自成,曹远志,等.南天山南缘早二叠世酸性火山岩的地球化学、同位素年代学及其构造意义.岩石学报, 2008, 24(10): 2281-2288.
    罗金海,车自成,周新源,等.塔里木盆地西部中生代早期伸展作用的辉绿岩证据.中国地质, 2006, 33(3): 566-571.
    罗照华,白志达,赵志丹,等.塔里木盆地南北部新生代火山岩成因及其地质意义.地学前缘, 2003, 10(3): 179-189.
    罗照华,邓晋福,李玉文,等.太行山构造岩浆带K-Ar法同位素年龄分析.现代地质, 1996. 10(3): 344-349.
    罗照华,邓晋福,赵国春,等.太行山造山带岩浆活动特征及其造山过程反演.地球科学-中国地质大学学报, 1997, 22(3): 279-284.
    罗照华,樊秉鸿,陆树文.安妥岭钼矿床的发现与成因及其意义.西北地质, 42(增刊), 2009.: 214-217
    罗照华,黄忠敏,柯珊.花岗质岩石的基本问题.地质论评, 2007a, 53(增刊): 180-226.
    罗照华,梁涛,陈必河,等.板内造山作用与成矿.岩石学报, 2007, 23(8): 1945-1956.
    罗照华,卢欣祥,陈必河,等.碰撞造山带斑岩型矿床的深部约束机制.岩石学报, 2008, 24(3): 447-456.
    罗照华,卢欣祥,陈必河,等.透岩浆流体成矿总用导论.北京:地质出版社, 2009: 1-177.
    罗照华,卢欣祥,郭少丰.透岩浆流体成矿体系.岩石学报. 2008. 24(12): 2669-2678
    罗照华,卢欣祥,王秉章.造山后脉岩组合与内生成矿作用.地学前缘. 2008., 15(4): 1-12
    罗照华,莫宣学,侯增谦,等.青藏高原新生代形成演化的整合模型—来自火成岩的约束.地学前缘, 2006a, 13(4): 196-211.
    罗照华,莫宣学,卢欣祥.透岩浆流体成矿作用-理论分析与野外证据.地学前缘, 2007. 14(3): 165-183
    罗照华,莫宣学,万渝生,等.青藏高原最年轻碱性玄武岩SHRIMP年龄的地质意义.岩石学报, 2006, 22(3): 578-584.
    罗照华,莫宣学,王江海,等.板块碰撞过程中壳幔相互作用及其成矿成藏效应.见郑度,姚檀栋.青藏高原隆升与环境效应.北京:科学出版社, 2004: 117-163.
    罗照华,魏阳,辛后田,等.太行山中生代板内造山作用与华北大陆岩石圈巨大减薄.地学前缘, 2006, 13(6): 52-63.
    罗照华,魏阳,辛后田,等.造山后脉岩组合的岩石成因--对岩石圈拆沉作用的约束.岩石学报, 2006, 22(6): 1627-1684.
    罗照华,肖序常,曹永清,等.青藏高原北部新生代幔源岩浆活动及构造运动性质.中国科学(D辑), 2001, 31(增刊): 8-13.
    罗照华,邓晋福,韩秀卿.太行山造山带演讲活动及其造山过程反演.北京:地质出版社, 1999. 1-124
    罗镇宽,关康,苗来成.胶东玲珑金矿田煌斑岩脉与成矿关系的讨论.黄金地质, 2001. 7(4): 15-21.
    马国玺.河北涞源大湾锌钼矿床地质特征.华北地质矿产杂志, 1995. 10(1): 64-76.
    马国玺.河北省涞源县木吉村铜矿地质特征及成矿模式.华北地质矿产杂志, 1997. 12(1): 52-66.
    马金龙,徐义刚.河北阳原和山西大同新生代玄武岩的岩石地球化学特征:华北克拉通西部深部地质过程初探.地球化学, 2004. 33(1): 75-88.
    毛景文,李晓峰,张荣华.深部流体成矿系统.北京:中国大地出版社, 2005: 365.
    毛景文,张作衡,余金杰,等.华北及邻区中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示.中国科学D辑, 2003. 33(4): 289-299.
    毛景文.谢桂青,张作衡,等.中国北方中生代大规模成矿作用的期次及其地球动力学背景.岩石学报, 2005. 21(1): 169-188.
    莫宣学.中国东部新生代玄武岩岩浆的起源.见:池际尚主编,中国东部新生代玄武岩及上地幔研究(附金伯利岩).武汉:中国地质大学出版社, 1988: 108-127.
    牛树银,董国润,许传诗. 1995.论太行山构造岩浆带的岩浆来源及其成因.地质论评, 41(4): 301-310.
    牛树银,李红阳,孙爱群,王宝德,许传诗,谢汝斌,杨志宏,毕伏科.幔枝找矿理论与找矿实践.北京, 2002.地震出版社: 1-243.
    牛树银,孙爱群,王礼胜,李瑞,罗殿文,陈华山.太行山北段深源流体与金矿成矿作用.矿床地质, 1999. 18(1): 83-91.
    牛树银,许传诗,孙爱群,袁万明,罗殿文,李瑞,张维,张永胜.柴厂金矿田的成矿作用特征.河北地质学院院报, 1996. 19(6): 645-649.
    牛耀龄.玄武岩浆起源和演化的一些基本概念以及对中国东部中-新生代基性火山岩成因的新思路.高校地质学报, 2005. 11(1): 9-46.
    彭艳东,张立东,张长捷,郭胜哲,邢德和,贾斌,陈树旺,丁秋红.辽西北票-义县地区义县旋回火山岩的岩石化学特征.中国地质, 2004. 31(4): 356-364.
    秦大军,邓晋福,莫宣学,林培英.大同火山群新生代火山岩成因相平衡实验约束.岩石矿物学杂志, 1994. 13(1): 1-9.
    秦大军,莫宣学,邓晋福,林培英,施火良.山西大同新生代火山岩熔融相平衡的实验研究.岩石学报, 1994. 10(2): 126-138.
    邱家骧,应用岩浆岩岩石学,武汉,中国地质大学出版社,1991,155-158
    邱铸鼎,阎翠玲.山东山旺新发现的中新世松鼠类化石.古脊椎动物学报, 2005, 43(3): 194一207.
    任树祥,张崇山.河北省大河南矿集区地质特征及找矿.前寒武纪研究进展, 2002, 25(3-4): 184-189.
    山东省地质矿产局.山东省区域地质志.北京:地质出版社, 1991: 249-391.
    山西省地质矿产局.山西省区域地质志.北京:地质出版社, 1989: 341-496.
    邵济安路凤香.辽西100Ma火山事件的动力学过程及其构造背景.岩石学报, 2007. 23(6): 1403-1412.
    邵济安张履桥.华北北部中生代岩墙群岩石学报, 2002. 18(3): 312-318.
    邵济安,李献华,张履桥,等.南口-古崖居中生代双峰式岩墙群形成机制的地球化学制约.地球化学, 2001, 30(6): 517-524.
    邵济安,路凤香,张履桥,施光海.华北早白垩世末岩石圈局部被扰动的时空证据.岩石学报, 2006. 22(2): 277-284.
    邵济安,路凤香,张履桥,杨进辉.辽西义县组玄武岩捕虏晶的发现及其意义.岩石学报, 2005. 21(6): 1547-1558.
    邵济安,张履桥,魏春景,等.北京南口中生代双峰式岩墙群的组成及其特征.地质学报, 2001, 75(2): 205-212.
    申萍,沈远超,刘铁兵等. EH4连续电导率成像仪在隐伏矿体定位预测中的应用研究.矿床地质, 2007. 26(1): 70-78
    沈其韩,宋彪,徐惠芬,等.山东沂水太古宙蔡峪和大山岩体SHRIMP锆石年代学.地质论评, 2004, 50(3): 275-284.
    沈远超,申萍,李光明,等.新疆额尔齐斯金矿带构造控矿规律研究.矿床地质, 2007. 26(1): 33-42
    沈远超,申萍,刘铁兵,等.东天山镜儿泉铜镍矿床成矿预测EH4地球物理测量依据.地质与勘探, 2007. 43(2): 62-67
    石玉若,刘敦一,张旗,等.中天山干沟一带花岗质岩类SHRIMP年代学及其构造意义.科学通报, 2006, 51(22): 2665-2672.
    石准立刘凤山.北太行山-燕山区中生代金属矿床成矿系统.地学前缘, 1999. 6(2): 297-304.
    宋彪,李锦轶,李文铅,等.吐哈盆地南缘克孜尔卡拉萨依和大南湖花岗质岩基锆石SHRIMP定年及其地质意义.新疆地质, 2002, 20(4): 342-345.
    宋彪,乔秀夫.辽北辉绿岩墙(床)群及二道沟组玄武岩锆石年龄及其构造意义.地学前缘, 2008, 15(3): 250-262.
    宋彪,张玉海,万渝生,等,锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 2002, 48(增刊): 26-30.
    隋建立,樊祺诚,曹杰.龙岗火山喷发特征与火山岩岩石化学初步.地质论评, 1999. 45(增刊): 319-324.
    孙豁然,徐帅.论数字矿山.金属矿山, 2007. 368: 1-5
    孙林华,王岳军,范蔚茗,等.再论巴楚麻扎山正长岩体岩石成因和构造意义.吉林大学学报(地球科学版), 2008, 38(1): 8-20.
    孙树浩.内蒙古宁城地区煌斑岩与金矿.地质找矿论丛, 1997. 12(1): 59-66.
    覃锋,徐晓霞,罗照华.北京房山岩体形成过程中的岩浆混合作用证据.岩石学报, 2006. 22(12): 2957-2970.
    汤艳杰,张宏福,英基丰.太行山中段新生代玄武岩中高镁橄榄石捕虏晶:残留古老岩石圈地幔样品.岩石学报, 2004. 20(5): 1243-1252.
    汤中立,闫海卿,焦建刚,等.中国岩浆硫化物矿床新分类与小岩体成矿作用.矿床地质, 2006. 25(1): 1-9.
    汤中立.中国的小岩体岩浆矿床.中国工程科学, 2002. 4(6): 9-12.
    陶继雄,王弢,陈郑辉,等.内蒙古苏尼特左旗乌兰德勒钼铜多金属矿床辉钼矿铼-锇同位素定年及其地质特征.岩矿测试, 2009. 28(3): 249-253.
    田毓龙,把多恒,高志武.金川镍铜矿床数学模型对深部矿化变化趋势的指示.地质与勘探, 2008. 44(1): 82-88
    涂勘.河北涞源大湾钼矿床的蚀变矿化研究.矿床地质, 1986. 54: 49-61.
    万天丰.中国东部中、新生代板内变形、构造应力场及其应用.北京:地质出版社, 1993. 1-153.
    万渝生,罗照华,李莉. 3.8Ma:青藏高原年轻碱性玄武岩锆石离子探针U-Pb年龄测定.地球化学, 2004, 33(5): 442-446.
    王博,舒良树, Cluzel D,等.伊犁北部博罗霍努岩体年代学和地球化学研究及其大地构造意义.岩石学报, 2007, 23(8): 1885-1900.
    王博,舒良树, Faure M,等.科克苏-穹库什太古生代构造-岩浆作用及其对西南天山造山时代的约束.岩石学报, 2007, 23(6): 1354-1368.
    王超,刘良,车自成,等.西南天山阔克萨彦岭巴雷公镁铁质岩石的地球化学特征、LA-ICP-MS U-Pb年龄及其大地构造意义.地质论评, 2007, 53(6): 743-754.
    王超,刘良,罗金海,等.西南天山晚古生代后碰撞岩浆作用:以阔克萨彦岭地区巴雷公花岗岩为例.岩石学报, 2007, 23(8): 1930-1940.
    王冬艳,许文良,冯宏,等. 2002.辽西中生代晚期岩石圈地幔的性质:来自玄武岩和地幔捕虏体的证据.吉林大学学报(地球科学版), 32(4): 319-324.
    王恩德,孙立双,蔡洪春.矿体三维数据模型及品位插值方法研究.地质与资源, 2007. 16(3): 222-225
    王方正,金隆裕.山东临朐山旺一带新生代玄武岩的岩石学特征及其地球化学特征.矿物学岩石学论丛, 1986, 2(1986): 43-65.
    王慧芬,朱炳泉,张前锋,等.山东临胸地区新生代玄武岩同位素钾一氢年龄研究.地球化学, 1981, 10(4): 321-328.
    王季亮,李丙泽,周德星,等. 1994.河北省中酸性岩体地质特征及其与成矿关系.北京:地质出版社: 6~172.
    王人镜,马昌前,李志中.周口店岩体热动力构造及定位机制研究.中国区域地质. 1990(1): 1-8.
    王式光,韩宝福,李瑞.太行山北段王安镇岩体地球化学研究及其动力学意义.岩石圈地质科学,北京,地震出版社, 1994. 29-38.
    王廷印,王式光.河北涞源王安镇岩体种的包体及岩浆侵入机制的初步研究. 1983. 201-211.
    王团华,毛景文,谢桂青.河南商城地区岩墙的锆石SHRIMPU-Pb年龄及其地质意义.矿物岩石地球化学通报, 2008, 27(4): 369-377.
    王五力,张立君,郑少林,等.义县-北票地区义县阶标准地层剖面及其生物地层学新研究--义县阶标准地层剖面建立和研究之二.地质学报, 2004. 78(4): 433-447.
    王彦斌,王永,刘训,等.南天山托云盆地晚白垩世-早第三纪玄武岩的地球化学特征及成因初探.岩石矿物学杂志, 2000, 19(2): 131-139, 173.
    王银喜,顾连兴,张遵忠,等.博格达裂谷双峰式火山岩地质年代学与Nd-Sr-Pb同位素地球化学特征.岩石学报, 2006, 22(5): 1215-1224.
    王永成,黄宝春,朱日祥,等.西南天山托云盆地新生代火山岩古地磁结果及构造意义.科学通报, 2004, 49(10): 993-999.
    王勇毅,肖克炎,朱裕生.初论中国铜矿数字矿床模型.地质与勘探, 2003. 39(3): 20-24
    魏文博,谭捍东,金胜,等.华北中部岩石圈电性结构:应县-商河剖面大地电磁测深研究.地球科学-中国地质大学学报, 2002, 27(5): 645-650.
    魏文博,叶高峰,金胜,等.华北地区东部岩石圈导电性结构研究--减薄的华北岩石圈特点.地学前缘, 2008, 15(4): 204-216.
    吴昌志,顾连兴,任作伟,等.板缘向板内环境的过渡-辽河盆地古近纪玄武岩地球化学.中国科学D辑, 2005. 35(2): 115-126.
    吴昌志,张遵忠, Zaw K,等.东天山觉罗塔格红云滩花岗岩年代学、地球化学及其构造意义.岩石学报, 2006, 22(5): 1121-1134.
    吴福元,葛文春,孙德有,等.中国东部岩石圈减薄研究中的几个问题.地学前缘, 2003. 10(3): 51-60.
    吴健生,朱谷昌,曾新平.三维GIS技术在固体矿产勘探和开发中的研究与应用.地质与勘探, 2004. 40(1): 68-72
    吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,2004, 49(6): 1589-1604.
    伍岳,刘汉彬,董秀康. EH4电导率成像系统在砂岩型铀矿床上的应用研究.铀矿地质, 1998. 14(1): 32-37
    肖序常,汤耀庆,冯益民,等.新疆北部及邻区大地构造.北京:地质出版社, 1992: 12-47和108-127.
    校培喜,黄玉华,王育习,等,新疆库鲁克塔格地块东南缘钾长花岗岩的地球化学特征及同位素测年.地质通报, 2006, 25(6): 725-729.
    谢广轰,王俊文.汉诺坝玄武岩及其超镁铁岩捕虏体的地球化学.见刘若新,中国新生代火山岩的年代学和地球化学,地震出版社,北京,1992. 149-170.
    新疆维吾尔自治区地层表编写组.西北地区区域地层表.新疆维吾尔自治区分册.北京:地质出版社, 1981: 252-255.
    新疆维吾尔自治区地质矿产局.新疆维吾尔自治区区域地质志.北京:地质出版社, 1993: 376-380, 697-700.
    新疆维吾尔自治区地质矿产局第二地质大队.新疆南疆西部地质图、矿产图说明书.北京:中国地质大学出版社, 1985: 49-57.
    行英弟,李福顺,顿拥民,等.河北涞水县安妥岭铜矿地质物化探综合普查报告.华北有色金属地质勘探公司五一九物探大队, 1988: 1-61.
    邢集善,刘建华,赵晋泉.华北板内深部构造.山西地震, 2002. 111: 3-12.
    邢集善,杨巍然,邢作云,等.中国东部中生代软流圈上涌与构造-岩浆-矿集区.地学前缘, 2009. 16(4): 225-239.
    邢集善,杨巍然,邢作云,等.中国东部深部构造特征及其与矿集区关系.地学前缘, 2007. 14(3): 114-130.
    邢作云,邢集善,赵斌,等.华北地区两个世代深部构造的识别及其意义-燕山运动与深部过程.地质论评, 2006. 52(4): 433-442.
    邢作云,邢集善,赵斌.华北地区深部构造特征.地质科技情报, 2006. 25(6): 17-24.
    邢作云,赵斌,涂美义,等.汾渭裂谷系与造山带耦合关系及其形成机制研究.地学前缘, 2005. 12(2): 247-262.
    熊小林,赵振华,白正华,等.西天山阿吾拉勒adakite型钠质中酸性岩及地壳垂向增生.科学通报, 2001, 46(4): 281-287.
    胥颐,刘福田,刘建华,等.中国大陆西北造山带及其毗邻盆地的地震层析成像.中国科学(D辑), 2000, 30(2): 113-123.
    徐桂林,杜金利,李鑫,等.太行山北段辉绿岩墙(脉)对银金多金属矿床的控制.华南地质与矿产, 2008. 2008(3): 68-73.
    徐红,徐光平.胶东煌斑岩的地球化学特征及成因探讨.岩石矿物学杂志, 2000. 19(1): 36-44.
    徐杰,高战武,孙建宝,等.区域伸展体制下盆-山构造耦合关系的探讨-以渤海湾盆地和太行山为例.地质学报, 2001. 75(2): 165-174.
    徐学义,李向民,马中平,等.北天山巴音沟蛇绿岩形成于早石炭世:来自辉长岩LA-ICPMS锆石U-Pb年龄的证据.地质学报, 2006, 80(8): 1168-1176.
    徐学义,马中平,夏林圻,等.北天山巴音沟蛇绿岩斜长花岗岩锆石SHRIMP测年及其意义.地质论评, 2005, 51(5): 523-527.
    徐学义,夏林圻,夏祖春,等.西南天山托云地区白垩纪-早第三纪玄武岩地球化学及其成因机制.地球化学, 2003, 32(6): 551-560.
    徐义刚.用玄武岩组成反演中-新生代华北岩石圈的演化.地学前缘, 2006. 13(2): 93-104.
    许洪才,毕伏科,张德生,等.河北省涞源县王安镇杂岩体多金属成矿规律.地质调查与研究, 2006. 29(11-10).
    许文良,王冬艳,王嗣敏.中国东部中新生代火山作用的pTtc模型与岩石圈演化.长春科技大学学报, 2000. 30(4): 329-335.
    许文良,郑常青,王冬艳.辽西中生代粗面玄武岩中地幔和下地壳捕虏体的发现及其地质意义.地质论评, 1999. 45(增刊): 444-449.
    许绚,吴泰然,张双涛,等.内蒙古四子王旗早白垩世深源捕虏体的发现及意义.北京大学学报(自然科学版), 2005. 41(4): 563-569.
    薛云兴,朱永峰.克拉玛依侏罗纪橄榄玄武岩中菱铁矿的成因.岩石学报, 2007, 23(5): 1108-1122.
    薛云兴,朱永峰.西南天山哈拉达拉岩体的锆石SHRIMP年代学及地球化学研究.岩石学报, 2009, 25(6): 1353-1363.
    闫峻,赵建新,刘海泉.华北龙岗第四纪玄武岩:岩石成因和源区性质.岩石学报, 2007. 23(6): 1413-1422.
    杨进辉,吴福元,张艳斌,等.辽东半岛南部三叠纪辉绿岩中发现新元古代年龄锆石.科学通报, 2004, 49(18): 1878-1882.
    杨军.河北省谏源一阜平一带煌斑岩的岩石学研究.岩石矿物学杂志, 1989. 1(8): 12-24.
    杨军.河北省沫源、阜平一带煌斑岩的地球化学特征及其成因初探.现代地质, 1991. 5(3): 330-337.
    杨树锋,陈汉林,董传万,等.塔里木盆地二叠纪正长岩的发现及其地球动力学意义.地球化学, 1996, 25(2): 121-128.
    杨树锋,陈汉林,冀登武,等.塔里木盆地早-中二叠世岩浆作用过程及地球动力学意义.高校地质学报, 2005, 11(4): 504-511.
    杨树锋,厉子龙,陈汉林,等.塔里木二叠纪石英正长斑岩岩墙的发现及其构造意义.岩石学报, 2006, 22(5): 1405-1412.
    杨天南,王小平.新疆库米什早泥盆世侵入岩时代、地球化学及大地构造意义.岩石矿物学杂志, 2006, 25(5): 401-411.
    杨宗锋,程黎鹿,罗照华,梁涛,潘颖,李德东,黄凡.内蒙古天和永玄武岩成因:岩相学与矿物学分析.岩石学报, 2008. 24(11): 2548-2562.
    杨宗锋,罗照华,张华锋,等.内蒙古天和永新生代玄武岩成因及其地质意义.地学前缘, 2009. 16(2): 90-106.
    叶会寿,毛景文,李永峰,等.东秦岭东沟超大型斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os年龄及其地质意义.地质学报, 2006. 80(7): 1078-1088.
    尹作为,路凤香,陈美华,等.锆石变生程度与放射性元素含量间的定量研究.地质科技情报, 2005, 24(4): 45-49.
    於崇文.大型矿床和成矿区(带)在混沌边缘(1).地学前缘, 1999. 6(1): 85-102.
    於崇文.大型矿床和成矿区(带)在混沌边缘(2).地学前缘, 1999. 6(2): 195-230.
    於崇文.地质作用的自组织临界过程动力学--地质系统在混沌边缘分形生长.地学前缘, 2000. 7(1): 13-42.
    翟裕生,邓军,崔彬,等.成矿系统及综合地质异常.现代地质, 1999. 13(1): 99-104.
    翟裕生.关于矿床学研究前景的探讨.矿床地质, 1999. 18(2): 146-152.
    张成立,周鼎武,王居里,等.南天山库米什南黄尖石山岩体的年代学、地球化学和Sr、Nd同位素组成及其成因意义.岩石学报, 2007, 23(8): 1821-1829.
    张传恒,杜维良,刘典波,等.塔里木北部周缘前陆盆地早二叠世快速迁移与沉积相突变:俯冲板片拆沉的响应.地质学报, 2006, 80(6): 785-791.
    张传林,王中刚,沈加林,等.西昆仑山阿卡孜岩体锆石SHRIMP定年及其地球化学特征.岩石学报, 2003, 19(3): 523-529.
    张传林,杨淳,沈加林,等.西昆仑北部新元古代片麻状花岗岩锆石SHRIMP年龄及其意义.地质论评, 2003, 19(3): 239-243.
    张传林,于淳,沈家林,等.西昆仑库地伟晶辉长岩和玄武岩锆石SHRIMP年龄:库地蛇绿岩的解体.地质论评, 2004, 50(6): 639-643.
    张传林,于海锋,王爱国,等.西昆仑西段三叠纪两类花岗岩年龄测定及其构造意义.地质学报, 2005, 79(5): 645-652.
    张传林,于海锋,叶海敏,等.塔里木西部奥依塔克斜长花岗岩:年龄、地球化学特征、成岩作用及其构造意义.中国科学(D辑), 2006, 36(10): 881-893.
    张传林,赵宇,郭坤一,等.青藏高原北部首次获得格林威尔期造山事件同位素年龄值.地质科学, 2003, 38(4): 535-538.
    张宏,柳小明,李之彤,等.辽西阜新-义县盆地及附近地区早白垩世地壳大规模减薄及成因探讨.地质论评, 2005. 51(4): 360-372.
    张宏福,杨岳衡.华北克拉通东部含金刚石金伯利岩的侵位年龄和Sr-Nd-Hf同位素地球化学特征.岩石学报, 2007. 23(2): 285-294.
    张宏福,郑建平.华北中生代玄武岩的地球化学特征与岩石成因:以辽宁阜新为例.科学通报, 2003. 48(6): 603-609.
    张洪安,李曰俊,吴根耀,等.塔里木盆地二叠纪火成岩的同位素年代学.地质科学, 2009, 44(1): 137-158.
    张辉煌,徐义刚,葛文春,等.吉林伊通-大屯地区晚中生代-新生代玄武岩的地球化学特征及其意义.岩石学报, 2006, 22(6): 1579-1596.
    张连昌,卢登蓉,王淑荣,等.山西大同钾镁煌斑岩地质地球化学特征.矿物岩石, 1998. 18(4): 22-30.
    张旗,王焰,熊小林,等.埃达克岩和花岗岩:挑战与机遇.北京:中国大地出版社, 2008: 1-178.
    张强,张晓,朱凤丽,等.河北省涞水县安妥岭钼矿成因类型探讨.地质调查与研究, 2009. 32(1): 34-40
    张双涛,吴泰然,许绚,等.内蒙古中部早白垩世钾玄岩的发现及其意义.北京大学学报(自然科学版), 2005. 41(4): 212-218.
    张文慧,韩宝福,杜蔚,等.内蒙古集宁新生代玄武岩的地幔源区特征:元素及Sr-Nd-Pb同位素地球化学证据.岩石学报, 2005. 21(6): 1569-1582.
    张文慧,韩宝福.内蒙古集宁新生代玄武岩的K-Ar年代学和地球化学及其深部动力学意义.岩石学报, 2006. 22(6): 1597-1607.
    张学民,崔立敏,刁桂苓,等.太行山构造带壳幔结构分段性特征.华北地震科学, 2007. 25(4): 1-10.
    张勇,陈斌,邵济安,等.华北太行晚中生代煌斑岩地球化学特征及成因探讨.岩石矿物学杂志, 2003. 22(1): 29-33.
    张招崇,周美夫, Robinson P T,等.北祁连山西段熬油沟蛇绿岩SHRIMP分析结果及其地质意义.岩石学报, 2001, 17(2): 222-226.
    张作衡,王志良,王彦斌,等.新疆西天山菁布拉克基性杂岩体闪长岩锆石SHRIMP定年及其地质意义.矿床地质, 2007, 26(4): 353-340.
    赵大升,郑学正.华北地区新生代玄武质火山岩及其超镁铁岩包体.见鄂莫岚,赵大升主编,中国东部新生代玄武岩及深源岩石包体.北京:科学出版社, 1987. 133-268.
    赵越,宋彪,张拴宏,等.北京西山侏罗纪南大岭组玄武岩的继承锆石年代学及其含义.地学前缘, 2006, 13(2): 184-190.
    赵振华,白正华,熊小林,等.西天山北部晚古生代火山-浅侵位岩浆岩40Ar/39Ar同位素定年.地球化学, 2003, 32(4): 317-327.
    郑常青,许文良,王冬艳.辽西阜新中生代玄武岩中深源捕虏体的岩石学和矿物化学研究.岩石学报, 1999. 15(4): 616-622.
    郑建平,路凤香, O’Reilly SY,等.华北东部地幔改造作用和置换作用:单斜辉石激光探针研究.中国科学(辑), 2000, 30(4): 373-382.
    郑建平,路凤香, O'Reilly SY,等.新疆托云地幔单斜辉石微量元素与西南天山岩石圈深部过程.科学通报, 2001, 46(6): 497-502.
    郑建平,路凤香,余淳梅,等.地幔置换作用:华北两类橄榄岩及其透辉石微量元素对比证据.地球科学-中国地质大学学报, 2003, 28(3): 235-240.
    郑建平,罗照华,余淳梅,等.新疆托云麻粒岩捕虏体地球化学和锆石年代学:岩石成因及西南天山下地壳性质.科学通报, 2005, 50(8): 793-801.
    郑学正,从柏林,张雯华,等. 1978.我国东部新生代玄武岩岩石化学的一些讨论.地质科学,3,254-264.
    支霞臣,冯家麟. 1992.汉诺坝玄武岩的地球化学.见刘若新.中国新生代火山岩的年代学和地球化学,地震出版社,北京,114-148.
    周鼎武,苏犁,简平,等.南天山榆树沟蛇绿岩地体中高压麻粒岩SHRIMP锆石U-Pb年龄及其构造意义.科学通报, 2004, 49(14): 1411-1415.
    周正国,罗照华,何明跃. 1992.对北京房山岩体填图单位的初步探讨.中国区域地质, 1992(2): 156-160.
    朱亮璞.遥感地质学.北京:地质出版社, 1994: 122-146.
    朱铭.山东省山旺地区新生代火山岩K-Ar法年代学研究.岩石学研究, 1985, 5(5): 47-59.
    朱永峰,冯克武,李福民,等.上明峪金矿地质特征及其与大河南岩体的关系.矿床地质, 1999. 18(1): 22-28.
    朱永峰,郭璇,周晶.新疆中天山巴仑台地区晚石炭世+ε(Nd)辉长岩体的岩石学和同位素地球化学研究.岩石学报, 2006, 22(5): 1178-1192.
    朱永峰,宋彪.新疆天格尔糜棱岩化花岗岩的岩石学及其SHRIMP年代学研究:兼论花岗岩中热液锆石边的定年.岩石学报, 2006, 22(1): 135-144.
    朱永峰,王涛,徐新.新疆及邻区地质与矿产研究进展.岩石学报, 2007, 23(8): 1785-1794.
    朱永峰,张立飞,古立冰,等.西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究.科学通报, 2005, 50(18): 2004-2014.
    朱永峰,周晶,郭璇.新疆中天山巴仑台地区晚石炭世+εNd辉长岩的岩石学和同位素地球化学研究.岩石学报, 2006b, 22(5): 1178-1192.
    朱永峰,周晶,宋彪,等.新疆“大哈拉军山组”火山岩的形成时代问题及其解决方案.中国地质, 2006a, 33(3): 487-497.
    朱永峰.地幔流体与地球的放气作用.地学前缘, 1998. 5(增刊): 71-75.
    朱志澄. 1990.构造地质学.北京:地质出版社, 141-156.
    朱志新,李锦轶,董连慧,等.新疆南天山盲起苏晚石炭世侵入岩的确定及对南天山洋盆闭合时限的限定.岩石学报, 2008, 24(12): 2761-2766.
    朱志新,王克卓,郑玉洁,等.新疆伊犁地块南缘志留纪和泥盆纪花岗质侵入体锆石SHRIMP定年及其形成时构造背景的初步探讨.岩石学报, 2006, 22(5): 1193-1200.
    邹天人,曹亚文,徐钰,等.塔里木盆地北部新生代碱性玄武岩的地质地球化学.地质论评, 1995, 45(增刊): 1072-1077.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700