用户名: 密码: 验证码:
小秦岭金矿田成矿规律与成矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小秦岭金矿区是我国仅次于胶东金矿田的第二大产金矿集区,查明其成矿作用并探索中深部矿体的分布规律对于评价资源深部潜力和完善该类矿床的成矿理论具有现实和理论意义。在充分总结前人研究成果的基础上,从重点类型典型矿床研究入手,通过野外地质调查,采集有代表性的样品,进行室内镜下鉴定、地球化学测试和综合对比分析,总结成矿作用和成矿规律,在此基础上,提出深部找矿预测和找矿标志。主要认识如下:
     (1)对小秦岭地区采自变质岩区和岩浆岩的样品含矿性进行电子探针分析,变质岩区的含金量大于岩浆岩;对主成矿元素和微量元素进行聚类分析和显微镜下光片鉴定,金主要是以硫化物形式存在,属于易溶金;小秦岭燕山期花岗岩与太华群变质岩δ34S和铅同位素组成一致,且与金矿接近,说明三者有成因联系;所有矿床的稀土特征均与燕山期花岗岩差异较大,可能反映成矿与燕山期花岗岩没有成矿物质联系,成矿物质主要来自斜长角闪岩和片麻岩类;微量元素特征表明,成矿元素Au、Mo均在第一个群组中,可能反映热液改造后元素在地层中的分布状态。由此,小秦岭金矿的成矿物质来源于太华群的斜长角闪岩和片麻岩类。
     (2)根据对小秦岭地区金矿进行区域性的野外观察和室内微观研究,将控矿断裂分为3个阶段:成矿前断裂表现为强烈的线状应变带和线状应变质作用带,成矿期断裂由原来的韧性剪切变形转化为脆性变形,形成以断裂构造形态为主的矿脉;成矿后断裂的构造活动仍然存在。小秦岭矿田的剪切带长度与金矿化强度和规模成正比,矿化富集区大多有密集平行的同期断裂存在,且有一条主结构面赋存资源量大。石英脉厚度与金矿强度正相关,有热液成矿的特征。而金品位的不均匀性表明热液的脉动特征。在此基础上,提出了具有创新意义的“一街五巷三层楼”的控矿模式。
     (3)成矿流体与高盐度、富含子晶质流体截然不同,而与燕山期花岗岩岩浆期后低盐富CO2、H2O的流体十分相似,反映了本金矿的形成与燕山期花岗岩浆的热液活动有关,与变质作用、混合岩化没有直接的关系。通过石英中δ18O与典型矿床的对比,小秦岭金矿主要为岩浆水,但混入了的天水。包裹体测温表明,从文峪花岗岩体到外的方向,测得温度有逐渐降低的趋势,表明文峪岩体控制了成矿温度和成矿分布。
     (4)通过分析,燕山期后期是小秦岭成矿的主要阶段。但是同位素数据多次测得成矿的年龄数据为200 Ma,这与华北板块和扬子板块相对接的时间正好吻合。由此可知,燕山期晚期是小秦岭金矿的主要成矿期,同时在印支期也是经历了成矿作用。
     (5)与国外超大型矿床比以及区内矿脉的深度比较,小秦岭金矿的矿化深度应超过900 m。总结出剪切带规模、产状,矿体规模、长度,围岩蚀变等可作为找矿标志。以此为依据圈定了7个勘查区,钻探结果验证效果较好。
The Xiaoqinling gold mining area is the second largest ore concentrating area exploiting gold ore except the Jiaodong gold ore field. Determining mineralization and the deposit distribution law of the middle-deep ore body in the Xiaoqinling area has theoretical and practical significance for deep resource evaluation and prefect metallogenic theory of this type. On the basis of research results of previous scholars, this paper start with the typical deposit research, field survey and typical samples, identify under microscope, measuring element contents, summarized the mineralization and the deposit distribution law. I also set up the metallogenic model and ore forecast marks. The main achievement is as following:
     (1) The electron microprobe analysis results of the Au content of the sample from the magmatic rock and metamorphic rock in the Xiaoqinling area shows that the Au content of metamorphic rock is larger than that of magmatic rock. The cluster analysis of major elements and trace elements shows that Au occurs in sulfide and is freely soluble. Theδ34S value and content of Pb of the Yanshannian magmatic rock is close to those of Taihua metamorphic rock and Au ore, therefore the above three body have relationships in the genesis. The REE characteristics of all the Au deposits differ with those of granite, which reflect that there are no relationship of mineralization, and the mineralization sources are from amphibolites and gneissic rocks. The trace element characteristics show that the metallogenetic element Au and Mo lain on the first group and it is inferred that they have experienced hydrothermal alteration. To sum up, the metallogenetic sources are from the Taihua group stratum.
     (2)The paper classified the ore control faults into three types: The first is proceeding faults, which shows strong threading strain band; the second is the metalizing phase faults, in which ductility shear zone is changed from the brittle shear zone, and the shape is controlled by the faults; the third is after-metalizing faults, whose activity exists all through. The length is direct ratio to the intensity and scale of Au mineralization in the Xiaoqinling ore field. There are many dense and parallel corresponding faults and there is always a major structure with large resource. The non-homogeneity of Au grade shows the pulsating movement characteristics of there thermal fluid。
     (3)The mineralization fluid differ from fluid with high salinity and the son-crystal, and is same as the Yanshannian after-magmatic thermal fluid with low salinity and rich in CO2, H2O content, which reflect that the Au deposit formation is related to the activity of thermal fluid, and not directly related to the metamorphic process and migmatization. Through the contrast of typical deposits, the mineralization fluid is mainly magmatic fluid interfused by natural water. From the Wenyu body to the outside, the enclosure temperatures reduce gradually and the rock bodies control the mineralization temperatures and distribution.
     (4)Based on the analysis, the late period of Yanshannian is the major mineralization phase. Isotope data is timely measured, achieving an age of 200 Ma, which is accord with the age of joint of North China plate and Yangtze Plate. Therefore, the Xiaoqinling Au field is mineralized not only in the late Yangshannian, but in the indo-Chinese epoch.
     (5)According to the depth of super-large Au deposit in the world, the mineralization depth in the Xiaoqinling should be over 900 m. The scale of shear zone, attitude, size and length of ore body, rock alteration and so on are summarized and seven prospecting districts are determined and proved by drilling.
引文
Ames L, Tilton G R, Zhou G Z. Timing of collision of the Sino-Korean and Yangtze cratons:U-Pb zircon dating of coesite - bearing eclogites[J]. Geology, 1993.
    Fyfe J A,Furman P A, Clair M H St, et al. Phosphorylation of 3'-azido-3'-deoxythymidine and selective interaction of the 5'-triphosphate with human immunodeficiency virus reverse transcriptase[J]. Proc Natl Acad Sci U.S.A, 1986 (83):8333-8337
    Bodnar R J. Revised equation and stable for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta, 1993, 57: 683-684
    Bohlke J K. Orogenic metamorphic-hosted gold-quartz veins[R]. U. S. Geological Survey Open-file report, 1982, 795:70-76.
    Skinner B J. Earth resources[R]. Proc. Natl. Acad. Sci. USA 76, 1979:4212-4217.
    Bowers T S, Helgeson H C. Calculation of the thermdynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: Metamorphic equilibrant at high pressures and temperatures [J]. American Mineralogist, 1983, 68:1059-1075.
    Chen Y J, Chen H Y, Zaw K, et al. Geodynamic settings and tectonic model of skarn gold deposits in China[J]. Ore Geology Reviews, 2007, 31: 139-169.
    Chen Y J, Piajno F, Sui Y H. Geology and D-O-C isotope systematics of the Tieluping silver deposit, Henan, China. Implications for ore genesis[J]. Acta Geologica Sinica, 2005a. 79(1):106-119.
    Chen Y J, Pirajno F, Qi J P. Origin of gold metallogeny and sources of ore-forming fluids in the Jiaodong Province, eastern China[J]. International Geology Review, 2005b, 47:530-549.
    Chen Y J, Zhao Y C. Geochemical characteristics and evolution of REE in the Early Precambrian sediments: Evidences from the southern margin of the North China Craton[J]. Episodes, 1997, 20(2): 109-116.
    Colvine A C. An empirical model for the formation of Archean gold deposits: Products of final cratonization of the Superior Province, Canada [J]. Econ Geol. Mono, 1989, 6: 37-53.
    Cox S F, Knackstedt M A, Braun J. Principles of structural control on penneability and fluid hydrothermal system[J]. SEG Reviews. 2001,14:1-24.
    Doe B R, Zartman. Plumbotectonics, the Phanerozoic, Geochemistry of Hydro[M ]// Barnes H L. Thermal ore deposits. New York: Jone Wiley & SonsInc, 1979.
    Groves D I, Goldfarb R J, Gebre-Mariam M, et al. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Review, 1998, 13: 7-27.
    Hagemann S G, Luders V. P-T-X conditions of hydrothermal fluids and precipitation mechanism of stibnile-gold mineralization at the Wiluna lode-gold deposits, Western Australia; Conventional and infrared microthermometric constraints[J]. Mineralium Deposita, 2003, 38: 936-952.
    Kerrich R, Goldfarb R, Groves D, et al. The characteristics, origins and geodynamic settings of supergiant gold metallogenic provinces[J]. Science in China(Series K), 2000, 43(supp.):1-68.
    Li C, Chen Y J, He S K. East Oingling-Dabieshan lithosphere delamination age, mechamism and direction:petrological evidences and stipulation[J]. Chinese Journal of Geochemistry, 2001, 20: 59-72.
    Li Q Z, Chen Y J, Zhong Z O, et al. Ar-Ar dating on metallogenesis of the Dongchunage gold deposit, Xiaoqinling area, China[J]. Acta Geol Sin, 2002, 76(4):483-493.
    Mao J W, Goldfarb R J, Zhang Z W, et al. Gold deposits in the Xiaoqinling-Xiongershan region, central China[J]. Mineralium Deposita, 2002, 37(3): 306-325.
    McGarry J D, Foster D W. Annu Rev. Biochem[M].1980, 49: 395-420.
    R W博伊尔.金的地球化学及金矿床[M].马万均,王立文,罗永国,等.译.北京:地质出版社,1984:1-200.
    Redlich O, Kwong J N S. On the thermodynamics of solutions V An equation of state[J]. Fugacities of gaseous solutions Chemstry Review, 1949, 44:233-244.
    Roedder E. Fluid inclusions. Reviews in Mineralogy[J]. Mineral Soc American, 1984,12:1-644.
    Sibson R H, Rober F, Poulsen H. High angle reverse faults, fluid pressure cycling and mesothermal gold quartz deposits[J]. Geology, 1998, 16:551-555.
    Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits[J]. Economic Geology, 1972, 67:184-197.
    Taylor S R. Abundances of chemical elements in The continental crust:A new table[J]. Geochim et Cosmochim Acta, 1964, 16(1):3.
    Touret J L R, Bottinga Y. Equation of state for carbon dioxide: Application to carbonic inclusions[J]. Bull Mineral, 1979,102: 577-583.
    Zhou T H, Goldfarb R J, Phillips G N. Tectonics and distribution of gold deposits in China: an overview[J]. Mineralium Deposita, 2002, 37: 249-282.
    白和.小秦岭Q8号金矿床地质特征及深部资源潜力分析[J].陕西地质, 2003, (1): 19-27.
    白万成,卿敏.小秦岭金矿田构造演化与金矿成矿作用[J].黄金地质, 2000, (2): 1-8.
    柴世刚.河南灵宝金渠金矿区矿床成因及成矿机制探讨[J].黄金科学技术, 2004, (2): 22-26.
    常克明,许红艺.小秦岭金矿田控脉(矿)构造地质特征[J].科技资讯, 2009, (22): 102-103.
    晁援,卫旭晨.陕西小秦岭金矿控矿条件及脉体评价标志[A].中国金矿主要类型区域成矿条件文集(3)[C].北京:地质出版社, 1989:87-140.
    陈丽荣,陈陇刚,薛煜洲.小秦岭加里东期侵入岩地质特征及侵位机制[J].陕西地质, 1999, (1): 12-18.
    陈衍景,富士谷.豫西金矿成矿规律[M].北京:地震出版社. 1992:12-46.
    陈毓川,宋裕生.中国矿床成矿模式[M].北京:地质出版社, 1993:19-63.
    崔丰会.河南省灵宝金矿床207矿脉深部成矿浅析[J].黄金, 2002, (5): 8-10.
    邓海军,王锦涛.成县小沟里金矿床地质特征及控矿因素分析[J].甘肃冶金, 2005, (2): 21-23.
    丁渊洪.小秦岭五里村金矿867号脉成因研究[J].黄金地质, 1999, (1): 45-50.
    董礼周,赵享河.南灵宝市金洞岔金矿深部资源预测[R].西安:西安地质学院,1979.
    段焕春,郝国强,周琳,等.华北地台西南缘矿床的亲缘性及其找矿意义[J].现代地质, 2004, (1): 24-31.
    范宏瑞,谢奕汉,翟明国,等.豫陕小秦岭脉状金矿床三期流体运移成矿作用[J].岩石学报, 2003, (2):260-266.
    范宏瑞,谢奕汉,赵瑞,等.小秦岭含金石英脉复式成因的流体包裹体证据[J].科学通报, 2000, (5):537-542.
    方维萱,李亚林,黄转莹.小秦岭地区金矿床成矿构造地球化学动力学研究[J].大地构造与成矿学, 2000, (2).:155-162.
    冯建之.河南小秦岭金矿构造控矿规律及控矿模式[J].矿产与地质, 2009, (4): 302-307.
    付锐等.陕西小秦岭葫芦沟破碎蚀变岩型金矿构造地球化学特征[A].秦岭地区金矿地质科研讨论会论文选编[C].北京:国家黄金管理局、冶金部《地质与勘探》编辑部, 1991.
    付治国,瓮纪昌,卢欣祥.小秦岭—熊耳山地区金矿硫同位素地球化学特征[J].物探与化探, 2009, (5): 507-514.
    付治国,郑红星,卢欣祥.小秦岭—熊耳山地区金矿床矿石矿物标型特征分析[J].地质与勘探, 2009, (2): 53-59.
    高军辉,黄建军.陕西小秦岭含金石英脉的矿化富集规律[J].黄金科学技术, 2008, (5): 7-11.
    高珍权,刘继顺,陈德兴.浅析小秦岭西段驾鹿金矿田构造与金成矿的关系[J].大地构造与成矿学, 2001, (4):435-445.
    高珍权,刘继顺,陈德兴.小秦岭西段驾鹿金矿田成矿流体特征、物理化学条件及演化[J].地球化学, 2001, (3): 257-263.
    郭抗衡.华北板块南缘区域成矿模式及金矿地质基本特征[J].河南地质,1994,12(2):81-89.
    郭威,周鼎武,任军锋,等.陕西小秦岭华阳川韧性剪切带的特征及其区域构造意义[J].地质通报, 2008, (6) :823-828.
    郭文秀,马旭东,尉向东.小秦岭金钼共生矿床地质特征及成矿规律研究[J].中山大学学报(自然科学版), 2008, (S2): 170-172.
    韩西丁.潼关小秦岭地区金的热穹隆成矿地质模型[J].陕西地质, 2000, (2):16-29.
    何春芬.小秦岭金矿田北矿带F5断裂控矿作用[J].黄金, 2003, (9): 3-7.
    河南省地质局豫01队.河南省灵宝金矿枪马峪详查区评价报告[R]. 1970.
    河南省地质矿产厅第一地质调查队.巴楼幅、岳渡幅、太峪口东半幅1∶5万地质矿产图说明书[M]. 1993:417-424.
    河南省地质矿产厅第一地质调查队.河南小秦岭金矿大比例尺成矿预测研究报告[R]. 1994.
    河南省地质矿产厅地质科学研究所.河南省小秦岭地区大比例尺中深部金矿盲矿预测研究报告[R]. 1991.
    胡正国,钱壮志.小秦岭地质构造新认识[J].地质论评, 1993:4.
    胡受奚,胡志宏.中国东部花岗岩类的成岩和成矿及其与构造环境的关系[J].矿床地质, 1991, 10(2):97-106.
    胡志宏,胡受奚,周顺之,等.豫西小秦岭太华群金的地球化学背景及金矿成矿物质来源研究[J].吉林大学学报:地球科学版, 1986(2).
    黄世谋,周敏,唐汪忠.小秦岭金渠金矿区S16矿脉群地质构造与成矿预测[J].西部探矿工程, 2006, (8): 138-139.
    蒋敬业.小秦岭地区太华岩群斜长角闪岩原岩类型的地球化学研究[J].地球科学:中国地质大学学报,
    1985(4).
    康红.金渠金矿842号脉成矿机理及勘测方向探讨[J].洛阳师范学院学报, 2002, (2): 143-145.
    康春华,李民贤.陕西潼关地区太华群变质岩原岩性质的恢复[J].地球科学与环境学报, 1988(3).
    康学勇.小秦岭金洞岔金矿床的形成条件与成矿机制研究[J].黄金, 1999, (7):1-5.
    黎彤.化学元素的地球丰度[J].地球化学, 1976(3).
    黎世美,瞿伦全,苏振邦等.小秦岭金矿地质和成矿预测[M].北京:地质出版社, 1996:250.
    李国忠,周亮,程胜利.小秦岭金矿田地质特征及矿床成因[J].水利电力机械, 2007, (5): 76-79.
    李厚民,陈毓川,王登红,等.小秦岭变质岩及脉体锆石SHRIMP U-Pb年龄及其地质意义[J].岩石学报, 2007, (10): 2504-2512.
    李厚民,叶会寿,毛景文,等.小秦岭金(钼)矿床辉钼矿铼-锇定年及其地质意义[J].矿床地质, 2007, 26(4): 417-424.
    李惠,张国义,高延龙,等.小秦岭金矿集中区深部第二富集带预测的构造叠加晕模型[J].物探与化探, 2008, (5): 525-528.
    李惠,张国义,王支农,等.小秦岭石英脉型金矿床的构造叠加晕模式[J].地质与勘探, 2004, (4): 51-54.
    李俊建,燕长海,谢汝斌,等.华北地台重要成矿区带成矿区划及其特征[J].前寒武纪研究进展, 2002, (Z1): 129-135.
    李俊建等.豫西小秦岭太古代花岗岩绿岩带[R].天津:地质矿产研究所所刊, 1992:26-27.
    李诺,孙亚莉,李晶,等.小秦岭大湖金钼矿床辉钼矿铼锇同位素年龄及印支期成矿事件[J].岩石学报, 2008, (4): 810-825.
    李潘科,付法凯,汪江河,等.河南省栾川县元岭金矿中深部找矿方向探讨[J] .地质与调查,2008,(3).
    李晓波,刘继顺.小秦岭大湖金矿床的矿化分带规律及其指示意义[J].地质找矿论丛, 2003, (4): 243-248.
    李晓波,刘继顺.小秦岭东段金矿化的垂向分带规律探讨—以大湖金矿床为例[J].黄金, 2004, (1): 8-10.
    林宝钦.豫陕小秦岭地区太古代花岗岩[R].沈阳:沈阳地质矿产研究所所刊,1992, (1).
    林宝钦.豫陕小秦岭地区太古代主要含金地层地质特征研究[A].中国金矿主要类型区域成矿条件文集:豫陕小秦岭地区[C].北京:地质出版社, 1989: 8-168.
    刘连登,姚风良.中国金矿与韧性剪切带一兼论小秦岭后韧性剪切带金矿[A].冶金部《地质与勘探》编辑部.秦岭地区金矿地质科研讨论会论文选编[C].1991.
    刘晓峰.小秦岭西段驾鹿金矿田成矿条件及找矿前景浅析[J].岩土工程界, 1999, (1): 35-41.
    刘永春,黄超勇,付治国,等.河南省钼矿床的分布规律及其控矿地质因素探讨[J].矿产与地质, 2006, (6): 594-597.
    刘长命.河南韧性剪切带型金矿初步探讨[J].河南地质情报, 1990, (3).
    卢欣祥,董有,尉向东,等.小秦岭—熊耳山地区金矿成矿的临界超临界流体[J].黄金地质, 2002, (3): 1-6.
    卢欣祥,尉向东.小秦岭—熊耳山地区金矿时代[J].黄金地质, 1999, (1):11-16.
    卢欣祥,尉向东,于在平,等.小秦岭—熊耳山地区金矿的成矿流体特征[J].矿床地质, 2003, (4):376-385
    卢欣祥,尉向东,于在平,等.小秦岭—熊耳山金成矿作用与区域构造的耦合[J].黄金地质, 2004, (1): 1-5.
    栾世伟,陈尚迪,曹殿春,等.小秦岭地区深部金矿化特征及评价[M].成都:成都科技大学出版社,1991:172.
    栾世伟.小秦岭金矿糜梭岩成因机理及其与金矿化的关系[J].成都地质学院学报, 1986, 13(3).
    栾世伟.小秦岭石英脉型金矿找矿模式及深部矿化评价[A].国家黄金管理局冶金部,《地质与勘探》编辑部.秦岭地区金矿地质科研讨论会论文选编[C]. 1991.
    倪智勇,李诺,管申进,等.河南小秦岭金矿田大湖金-钼矿床流体包裹体特征及矿床成因[J].岩石学报,2008, (9): 2058-2068.
    聂凤军,江思宏,赵月明.小秦岭地区文峪和东闯石英脉型金矿床铅及硫同位素研究[J].矿床地质, 2001, (2): 163-173.
    庞振山,赵春和,付法凯,等.河南红土岭矿区中深部金矿矿床地质特征[J].黄金, 2005, (3): 7-10.
    裴荣富,吴良士.金属成矿省演化与成矿[J].地学前缘, 1994, 1(1):295-299.
    祁进平,赖勇,任康绪,等.小秦岭金矿田成因的锶同位素约束[J].岩石学报, 2006, (10): 2543-2550.
    邱庆伦,燕长海,陈瑞保,等.小秦岭—熊耳山地区燕山期大规模成矿的地球动力学背景[J].地质找矿论丛, 2008, (4): 281-286.
    秦国群.河南省金矿集中区中酸性岩体稀土地球化学特征及岩体成因讨论[J].河南国土资源, 1987(2).
    沈福农.河南鲁山太华群不整合的发现和地层层序厘定[J].中国区域地质,1994(2):135-138.
    郭福琪,胡正国.小秦岭潼峪金矿床成矿模式分析[J].黄金科技动态, 1989(4):1-2
    唐汪忠,黄世谋.小秦岭金渠矿区地质构造综合分析及成矿预测[J].三门峡职业技术学院学报, 2005, (3): 54-55.
    王斌.小秦岭金矿地球化学特征及矿床成因探讨[D].北京:中国地质大学地球科学与资源学院,2009:1-65.
    王定国,张宏儒,华西霞,等.河南小秦岭金矿主要控矿条件及盲矿预测[A].中国金矿主要类型区域成矿条件文集(3)[C].北京:地质出版社, 1989:47-83.
    王亨治,念国安.河南省金矿概论[M].北京:地震出版社,1973.
    王奖臻,李泽琴,李朝阳.小秦岭石英脉型金矿床原生分带及其形成机制[J].矿物岩石地球化学通报, 2000, (4): 239-240.
    王可勇,冯本智,孙丰月.小秦岭地区脉金矿床找矿评价的石英矿物学标志及模型[J].矿物学报, 2001, (1): 43-48.
    王可勇,卢作祥,范永香.河南小秦岭石英脉型金矿床工业矿体构造定位规律及其机制[J].地质找矿论丛, 1999, (1) : 30-37.
    王力群,陈昌明.陕西小秦岭金矿成矿地质条件刍议[J].陕西地质, 2002, (2): 66-74.
    王铁军,樊秉鸿,关康,等.文峪金矿矿床成因讨论[J].地质找矿论丛, 2002, (2): 85-91.
    王团华,毛景文,王彦斌.小秦岭-熊耳山地区岩墙锆石SHRIMP年代学研究:秦岭造山带岩石圈拆沉的证据[J].岩石学报, 2008a, (6): 1273-1359.
    王团华,毛景文,谢桂青,等.小秦岭、熊耳山金矿区中基性岩墙的岩石化学研究[J].地学前缘, 2008b, (1): 250-266.
    王义天,毛景文,卢欣祥,等.河南小秦岭金矿区Q875脉中深部矿化蚀变岩的-(40)Ar--(39)Ar年龄及其意义[J].科学通报, 2002, (18): 1427-1431.
    王义天,毛景文,叶安旺,等.小秦岭地区中深部含金石英脉的同位素地球化学特征及其意义[J].矿床地质, 2005, (3): 270-279.
    王义天,毛景文.碰撞造山作用期后伸展体制下的成矿作用:以小秦岭金矿集中区为例[J].地质通报, 2002, (Z2): 562-566.
    吴美德.含金剪切带型金矿床[J].黑龙江地质情报, 1991.
    王志华.文峪金矿找矿中金银比值的指示作用[J].矿物岩石地球化学通报, 1999, (1): 19-22.
    谢奕汉.小秦岭含金石英脉中包裹体的热爆裂曲线特征及其找矿意义[J].岩石学报,1989.(4).
    徐九华,谢玉玲,刘建明,等.小秦岭文峪—东闯金矿床流体包裹体的微量元素及成因意义[J].地质与勘探, 2004, (4): 1-6.
    徐宪立,姜玉平,刘晓峰,等.小秦岭地区金矿物质来源及成矿模式探讨[J].华北国土资源, 2007, (3): 1.
    徐叶兵,范永香.河南省文峪金矿床构造控矿规律研究[J].地质与勘探, 2003, (5):30-34.
    薛良伟,柴世刚,朱嘉伟,等.小秦岭金矿伴生碲资源研究[J].矿产保护与利用, 2004, (2): 42-45.
    薛良伟,庞继群,王祥国,等.小秦岭303号石英脉流体包裹体Rb-Sr、40Ar-39Ar成矿年龄测定[J].地球化学, 1999, (5): 473-478.
    颜正信,孙卫志,薛成.小秦岭金矿田中深部构造控矿规律及盲矿预测:以文峪矿区S505矿脉为例[J].黄金, 2007, (12): 17-21.
    阎竹斌.小秦岭地区早前寒武纪地层划分与对比[J].地质论评, 1985, 31(2).
    杨继红,张进春,苗翠梅.小秦岭大湖金矿区F_5控矿规律及其应用研究[J].河南理工大学学报(自然科学版), 2007, (6): 659-663.
    杨群周,彭省临.河南金矿床的多因复成特征及分布规律[J].岩土工程界, 1999, (2): 74-80.
    姚宗仁.河南省小秦岭层控金矿定位机制的讨论[J].河南地质, 1986(1).
    叶会寿,何春芬,杨生强,等.小秦岭红土岭矿区中深部金矿地质特征及找矿方向[J].地质调查与研究, 2003, (4): 228-232.
    翟裕生,苗来成,向运川,等.华北克拉通绿岩带型金成矿系统初析[J].地球科学:中国地质大学学报, 2002, (5):522-531 .
    翟裕生,彭润民,向运川,等.区域成矿研究法[M].北京:中国大地出版社, 2004.
    张传林,朱立华,章扬松,等.小秦岭高压榴闪岩的发现及其构造意义[J].高校地质学报, 1999, (3): 356-359.
    张二法.小秦岭东闯金矿Au/Ag值特征及深部找矿预测[J].黄金地质, 2002, (3):43-46.
    张国伟,孟庆任,刘少峰,等.华北地块南部巨型陆内俯冲带与秦岭造山带岩石圈现今三维结构[J].高校地质学报, 1997, (3):129-143.
    张国伟,孟庆任,于在平,等.秦岭造山带的造山过程及其动力学特征[J].中国科学:D辑, 1996, 26(3):193-200.
    张进江,郑亚东,刘树文.小秦岭金矿田中生代构造演化与矿床形成[J].地质科学, 2003, (1): 74-84.
    张良钜.小秦岭金矿含金石英脉中黄铁矿晶体的表面微形貌研究[J].岩石矿物学杂志, 2004, (2): 167-172.
    张庆超.杨砦峪金矿床地质特征及深部成矿远景评价[J].黄金, 2004, (10): 19-21.
    张荫树,强立志,张中奇,等.河南省北中部太古代绿岩含金丰度值探讨[J].河南地质, 1983, 1(1):18-24.
    张元厚,李宗彦,张孝民,等.小秦岭金(钼)矿田北矿带推覆构造演化与成矿作用[J].吉林大学学报(地球科学版), 2009, (2):244-254.
    张赞生,赵尚忠.灵宝小秦岭地区黄金资源整合成效明显[J].河南国土资源, 2006, (7): 39.
    赵战胜.大湖金矿地质特征及找矿方向[J].有色金属(矿山部分), 2009, (2): 38-42.
    郑大中,郑若锋.小秦岭金矿床金的迁移富集机理新探[J].黄金, 1999, (8) : 1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700