用户名: 密码: 验证码:
人工磁导航定向钻进中靶系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工磁导航定向钻进中靶系统研究的技术依托于笔者参加的一项境外采卤钻井工程,在该工程中,30对U形井组被设计用于抽采地下天然碱卤水。
     天然碱矿层厚度通常仅有1~3m,因而其建槽溶腔发展缓慢,导致靶区尺寸较小,一般为各向1m。理论上,在TVD约为400m、井距约为450m的基本条件下,要实现各向1m的中靶精度,依靠传统的MWD系统导航是不可行的。MWD系统的固有偏差特性,导致井深达800m后可能出现10m以上的水平偏差和2m以上的垂直偏差。因此,在工程初期,井组的连通率极低。
     此后,经过对比研究,最终引进了美国一家公司生产的人工磁测距仪,结果表明,该仪器用于U形井对接连通作业中,具有操作方便、精度高的特点,可克服传统MWD导向易产生累计位移偏差的缺点。
     人工磁中靶系统构思新颖,它巧妙地利用井底钻具的工作特点,将磁信标安装于钻头上,使之与钻头一起作旋转运动,产生动态旋转磁场。在靶点处,三分量磁传感器捕获磁场的波样,并传输到地表。在收到磁测数据后,采用个人电脑和解析软件对磁强波形进行去滤、对比和计算,最终得出钻头相对靶点的方位、项角和距离这三个关键值,为下一步调整钻进方向提供依据,以此引导钻过精确地进入靶区。
     本论文试图以定向钻进技术、磁学和数学分析为基础,建立一套钻进状态模型磁测平台,通过大量的磁测试验,推导并验证磁波传导及衰减规律,最终设计一套人工磁中靶系统总成,用于U形对接井的中靶作业。
     磁测试验是本系统的重要环节,其目的是验证推导磁强计算公式。从分析结果来看,影响磁波波幅的主要因素有钻进状态参数(转速、相对顶角、相对方位角、距离)、钻进介质(磁导率、地温等)、钻进工艺参数(泥浆温度、泥浆排量)、磁干扰(工频电干扰)等。
     受时间和条件限制,本系统尚未完成工业性试验,但地表模拟试验表明,本项目开发的钻进状态计算模型是合理的,其测距及定位误差是可以接受的。
The research on the artificial magnetic target-hitting system is supported by a solution mining drilling project located abroad, where the author of this thesis was a drilling engineer and was responsible for the drilling technology of well pair intersections.
     In the project, 30 U-shape well pairs are designed to be drilled to form brine channels of underground mining. In trona mining, the ledges are not as thick as salt ledges, majorities are only around 1-3 meters, therefore, the cavity develops very slowly and the target area is consequently relatively small, being around 1 meter radically.
     In theory, based on the well TVD of 450m and well distance of 450m, it is not feasible to make the well pairs intersected underground with MWD system, thus the connection rates of well pairs are very low in the primary stage of the trona solution mining project. Later a USA-made magnetic ranging device was used to guide the directional drilling to hit the target, and the construction practice indicates that the operation is handy and the hitting accuracy is very high, accordingly it can overcome the accumulated inaccuracy of the traditional MWD logging.
     In the artificial magnetic target hitting system, the magnetic beacon is installed between the drill bit and mud motor. In this way, the beacon rotates together with the drill string and produces a rotary magnetic filed, while at the target location, a three-axial magnetic sensor is placed to acquire the magnetic field parameters. With the acquired magnetic data, the personal computer analyses and calculates the result of the drill position to target.
     On the base of the directional drilling, magnet science and mathematic analysis, a magnet test platform is erected first and on this platform many magnet tests have been done in order to find the functional formula between the drilling direction and magnetic filed parameters. In this way, finally the artificial magnetic target hitting system can be developed.
     As a key procedure of the research, the magnetic tests are designed to be performed in four different circumstances and aimed to explore the magnetic behaviors rules. From the magnetic results analysis, the magnetic wave amplitude data rely on the following factors: 1 )drilling position data such as inclination, azimuth and distance between beacon and target; 2) drilling formation parameters such as magnetic conductivity and thermal property; 3)drilling technology parameters as mud flow rate and mud temperature; 4)electro-magnetic disturbance such as 50Hz industrial power. These magnetic tests will provide the theoretic basis for the designing of magnetic ranging system.
     Unfortunately, duo to the limitation of time and test condition, the last stage, i.e. industrial trial, has not been performed. Anyway, the ground simulation tests show the good rationality and reliability and an acceptable precision of the test model.
引文
[1]N.Z.Garmash.possibility of using the earth's natural magnetic field to investigate solid rock.Journal of Mining Science,V11(3):1062
    [2]王若.随钻测井技术发展史.石油仪器,2005,15(2):5-8
    [3]邹德江,范宜仁,邓少贵.随钻测井技术最新进展.石油仪器,2005,19(5):1-4
    [4]罗万静,王晓冬,李义娟.钻井的眼睛-地质导向理论及实践.西部探矿工程,2006,(2):149-152
    [5]百度百科“水溶采矿”,http://baike.baidu.com/view/558380.htm,2008.3.20
    [6]向军文.定向对接连通井技术及其新进展.中国井矿盐,2002,33(1):20-22
    [7]彭朝阳.两井两次连通采卤的构想.中国井矿盐,2000,31(6):23-25
    [8]余茂良.对接井在江西岩盐矿床的应用.中国井矿盐,1997,V28(2):25-28
    [9]K.E.Ruddy双水平井经济分析.姜志壮编译,国外水平井技术应用论文集,北京:石油工业出版社,1999.12
    [10]郑茂全,宋强,陈富强.四川四丰盐矿长5水平对接井钻井技术.中国井矿盐,2005,36(1):22-24
    [11]刘志强.采卤对接井在淮安盐矿区开发中的应用.中国井矿盐,2000,v31(6):16-17
    [12]夏筱红,杨伟峰,刘志强.应城盐矿区采卤对接井施工技术.中国井矿盐,2002,33(33):22-24
    [13]ETI SODA A.S.CMEC/YIKE Performance test acceptance protocol.2007.4
    [14]崔贵平,唐孟龙.定向对接井的应用于发展趋势.中国井矿盐,2001,32(3):18-20
    [15]林元雄.盐类水溶采矿技术.自贡盐业出版编辑室编,四川人民出版社,1990.
    [16]张崇信.采用新技术开创采卤新工艺.中国井矿盐,1995(5)
    [17]周铁芳,向军文.采卤对接井钻井技术有在井矿盐中开采中的应用.中国井矿盐,1996(1)
    [18]阳慕尧,张治平.受探定向钻孔技术的应用与前景.中国井矿盐,1994(1)
    [19]邢洪宪.对接井井眼轨迹控制技术的研究[硕士学位论文].中国地质大学,1999
    [20]张明,何满潮,王庆晓.河南桐柏采碱对接井施工技术.探矿工程(岩土钻掘工程),2005,(5):52-54
    [21]向军文,胡汉月,刘志强.士耳其天然碱矿30对对接井钻井工程.中国井矿盐,2007,38(5):25-28
    [22]张明.采用国产钻机和有线导向仪穿越黄浦江施工技术.探矿工程,2004(7):22-24
    [23]严旭生.对旋转磁场探伤性能的分析.无损探伤,2001,(2):8-10
    [24]江天寿,周铁良,等.受控定向钻探技术,北京,地质出版社,1994.4
    [25]佟长海.多控制点水平靶体参数的计算.天然气工业,2007(9):68-70
    [26]鲁巷等.水平井实钻轨迹中靶效果分析的偏差率模型.石油钻探技术,第35卷第1期,2007年2月,P20-22.
    [27]徐涛,罗武胜,吕海宝,等.地下定向钻进姿态测量系统的设计.中国惯性技术学报,2004,12(2):5-8
    [28]夏远明,郭海洲,张运明,等.超深超小靶窗水平井在塔河油田的应用.西部探矿工程,2004,102(11)
    [29]中国石油天然气集团公司钻井工程重点实验室编.井下控制工程技术学术研讨会论文集.北京:石油工业出版社,2002:10-15
    [26]苏义脑,窦修荣.随钻测量随钻测井与录井工具.石油钻采工艺,2005,27(1):74-78
    [30]邹德江,范宜仁,邓少贵.随钻测井技术最新进展.石油仪器,2005,19(5):1-4
    [31]中国石油天然气集团公司钻井工程重点实验室.井下控制工程技术学术研讨会论文集,北京:石油工业出版社,2002,刘广志,钻探、掘进工程从工程技术走向工程科学:1-6。
    [32]张武辇.我国第一口创世界纪录的大位移井西江24-3-A14井总结.石油钻采工艺,1998增刊:1-30
    [32]彭新明.先进的MWD/LWD测量系统.石油钻采工艺,1998增刊:60-65
    [33]胡汉月.对接井中靶利器.中国井矿盐,2007,38(4):27-29
    [34]杨风良.水平对接卤井施工技术.中国煤田地质,2006,18(4):71-73
    [35]郑茂全,陈光彬.绕障水平对接井在巨厚岩盐层开采中的应用.中国井矿盐,2005,36(4):25-28
    [38]徐涛,罗武胜,吕海宝,等.地下定向钻进姿态测量系统的设计.中国惯性技术学报,2004,12(2):5-8
    [39]黄存謨,傅建云.对接井采卤技术在多层薄层盐中的应用.中国井矿盐,2001,32(4):24-27
    [40]杨风良.水平对接卤井施工技术.中国煤田地质,2006,18(4):71-73
    [41]B.B.库里奇茨基.定向斜井与水平钻井的地质导向技术(鄢泰宁,郭湘芬,吴翔等).北京:石油工业出版社,2003
    [42]秦绪英,肖立志,索佰峰.随钻测井技术最新进展及其应用.勘探地球物理进展,2003,26(4):313-322
    [43]斐素安.地质导向技术在冀东油田的应用.天然气勘探与开发,2006,29(4):57-59
    [44]许新强,冯光通,马哲,等.双参数LWD在梁9-平1井中的应用.西部探矿工程,2006,(9):63-65
    [45]李欣,韦孝忠,李登前.地质导向钻井技术在鄂尔多斯气田水平井的应刚.石油钻采工艺,2004,26(5):19-22
    [46]张建军.AT+三臂井径仪与国产伽马仪、磁定位仪组合测井的实现.石油仪器,2006,20(1):75-77
    [47]彭新明.高精度的双轴速率陀螺仪.石油钻采工艺,1998增刊:66-67
    [48]Reflex Maxibor.borehole path locator,http://www.reflex.se.2007-5-8.
    [49]MAL(?) GeoScience.RAMAC/GPR/BH borehole radar.2005.http://www.cws.net.cn//market/particularinfo/001301501.doc
    [50]刘金祯,金键,陈雪华,等.地面信标控向系统在海河穿越中的应用.石油工程建设,2003,29(6):58-60
    [51]Kuckes,Arthur F.(Ithaca,NY),Single solenoid guide system,U.S.patent,7,219,749,2007-05-22.
    [52]Arthur F.Kuckes.Single wire guidance system for drilling boreholes.U.S.patent,5515931,1996-05-14.
    [53]Arthur F.Kuckes.Solenoid guide system for horixontal boreholes.U.S.patent,5513710,1996-05-07.
    [54]Arthur F.Kuckes.Two solenoid guide system for horixontal boreholes.U.S.patent,6626252,2003-11-30.
    [55]Scientific drilling MagTraC,http://www.scientificdrilling.com.2007-6-7
    [56]Kuckes;Arthur F.(Ithaca,NY),Method of determining the location of a deep-well casing by magnetic field sensing,U.S.patent,4,372,398,1983-02-08.
    [57]Mechler;Mark V.(Austin,TX),Pipe proximity warning device for accidental damage prevention mounted on the bucket of a backhoe,U.S.patent,5,592,092,January 7,1997.
    [58]CMEC/YIKE,The introduction on VM ranging device,Beypazari trona solution mining project,2006.6.
    [59]Arthur F.Kuckes.Method for near field electromagnetic proximity determination for guidance of a borehole drill.U.S.patent,5923170,1999-07-13.
    [60]Albert W Chau,device for locating a boring machine,U.S.patent,5,070,462,1991-12-03.
    [61]Baldwin;Willett(Dallas,TX),Locating the relative trajectory of a relief well drilled to kill a blowout well,U.S.patent,4,480,701,1984-11-06.
    [62]张涛,鄢泰宁,卢春华.无线随钻测量系统的工作原理与应用现状.西部探矿工程,2005,(2):126-128
    [63]李田军,等.试论欠平衡钻井中电磁波随钻测量技术的若干问题.地质科技情报,2005,(7):37-39.
    [64]鄢泰宁,等.俄罗斯电磁波随钻测量系统(MWD)及其应用前景分析,探矿工程2007年增刊,P52-56.
    [65]http://www.halliburton.com,Sperry drilling service,Active magnetic ranging system,2007.1.25.
    [66]北京普利门机电高技术公司.DST、EMS.石油钻采工艺,2001,23(3)
    [67]胡汉月.土耳其贝帕扎里天然碱矿钻井工程MWD实地校核.探矿工程,2007(7):1-4
    [68]李治欣.关于如何提高浅井定向中靶精度的探讨.西部探矿工程总第106期2005(3):70-71
    [69]黄根炉.复杂多目标井靶区轨道设计方法研究.天然气工业,2006,V26(10):69-71
    [70]游云武.对接连通水平采卤井钻井工艺技术.江汉石油职工大学学报,2006,V19(4):26-28,
    [71]曾细平.提高定向对接采卤井完全中靶的措施.中国井矿盐,2006,37(5):18-20
    [72]徐德安.盐井水平对接钻井技术.钻采工艺,2003,26(4):3-5
    [73]佟长海.多控制点水平井靶体参数的计算.天然气工业,2007,V27(9):68-70
    [74]Zupanick;Joseph A.(Pineville,WV).Wellbore pattern for uniform access to subterranean deposits.U.S.patent,6,439,320,2002-08-27.
    [75]Waters;Robert L.(Austin,TX),Roberts;George F.(Georgetown,TX),Walters;Philip H.(Austin,TX),Clark;Howard C.(Houston,TX),Fitzgerald;Don D.(Houston,TX),Stelly,Ⅱ;Otis Ⅴ.(Lafayette,LA),Downhole combination tool,U.S.patent,5,230,387,1993-07-27.
    [76]管志宁,郝天珧,姚长利.21世纪重力与磁法勘探的展望.地球物理学进展,2006,17(2):237--244
    [77]毕林锐,毛志强.核磁共振随钻测井技术进展及其应用.国外测井技术,2004,19(2):12-14
    [78]严旭生.对旋转磁场探伤性能的分析.无损探伤,2001,(2):8-10
    [79]李国栋.2003~2004年磁学和磁性材料新进展(Ⅰ)一般磁性、非金属磁性和材料及磁共振.磁性材料及器件,2005,36(2):13-17
    [80]李雪光,贾兴泉,应用信标模式测速的实现方法及论证.飞行器测控学报,2006,V25(2):37-43
    [81]王金根,龚沈光.基于运动标量磁强计的磁性目标定位问题研究.电子学报,2002,30(7):1057-1060
    [82]郭玉,鲁永康,陈波.高性能低频交变磁场传感器的研究与制作.传感技术学报,2005,18(3):493-495
    [83]唐劲飞,龚沈光,王金根.磁偶极子模型下目标定位和参数估计的两种新方法.电子学报,2003,31(1):154---157
    [84]丁鸿佳,隋厚堂.磁通门磁力仪和探头研制的最新进展.地球物理学进展,2004,19(4):743-745
    [85]叶沼宗,陈穗生.探测管线的倾斜压线法和垂直压线法.广东地质,2000,15(2):72-77
    [86]赵书涛,李宝树,郝志芳.磁场的智能数字测量系统原理和设计.电力情报,2001,(2):66-68
    [87]Arthur F.Kuckes.Measurement of vector components of static field perturbations for borehole location.U.S patent,5512830,1996-04-30.
    [88]Arthur F.Kuckes.Guidance system for drilling boreholes,U.S patent,5657826,1997-08-19.
    [89]Arthur F.Kuckes.Electromagnetic borehole surveying method,U.S.patent,6466020B2,2002-10-15.
    [90]Arthur F.Kuckes,Rahn Pitxer,Mulltiple cam directional controller for steerable rotary drill.U.S.patent,6234259B1,2001-05-22.
    [91]Arthur F.Kuckes.Rotary magnet for distance and direction measurement from a first borehole to a second borehole.U.S.patent,1996-12-31.
    [92]Arthur F.Kuckes,Gaenger H.J.Bayer.Method and apparatus for producing parallel boreholes.U.S.patent,5725059,1998-03-10.
    [93]Arthur F.Kuckes.Method and apparatus for measuring distance and direction by movable magnetic field source.U.S.patent,5485089,1996-01-16.
    [94]Arthur F.Kuckes.Ithaca N.Y.Downhole electrode for well guidance system,U.S.patent,5676212,1997-10-14
    [95]Kennedy;Timothy Wayne(Leduc,CA),Schnell;Rodney Alan(Calgary,CA),Vandal;Bryan Armand(Calgary,CA).Integrated magnetic ranging tool,U.S.patent.7,321,293,2008-01-22.
    [96]Kuckes;Arthur F.(Ithaca,NY),Method of determining the location of a deep-well casing by magnetic field sensing,U.S.patent,4,372,398,1983-02-08.
    [97]Kuckes;Arthur F.(Ithaca,NY),Method and apparatus for detecting the direction and distance to a target well casing,U.S.patent,4,443,762,1984-04-17.
    [98]Ouellette;Charles W.(Portsmouth,RI),Portable assembly for supporting magnetic and electrical sensors,U.S.patent,5,327,089,1994-07-05.
    [99]McElhinney;Graham(Aberdeenshire,GB),Surveying a subterranean borehole using accelerometers,U.S.patent,6,480,119,2002-11-12.
    [100]Legrand;Bertrand(Grenoble,FR),Position sensor with compensated magnetic poles,U.S.patent,7,265,685,2007-09-04.
    [101]Belew;Michael Shane(Columbus,OH),Eslambolchi;Hossein(Los Altos Hills,CA),Huffman;John Sinclair(Conyers,GA),Casing/push bore monitor technique Casing/push bore monitor technique,U.S.patent,6,515,480,2003-02-04.
    [102]Kuckes;Arthur F.(Ithaca,NY),Pitzer;Rahn G.(Ithaca,NY),Nekut;Anthony G.(Ithaca,NY),Relative drill bit direction measurement,U.S.patent,6,736,222,2004-05-18.
    [103]Kuckes;Arthur F.(Ithaca,NY),Gaenger;J.(Ettlingen,DE),Bayer;H.J.(Ettlingen,DE),Method and apparatus for producing parallel boreholes,U.S.patent,5,725,059,1998-03-10.
    [104]Roesler;Richard F.(Houston,TX),Surveying of boreholes using shortened non-magnetic collars,U.S.patent,4,510,696,1985-04-16.
    [105]Kuckes;Arthur F.(Ithaca,NY),Plural sensor magnetometer arrangement for extended lateral range electrical conductivity logging,U.S.patent,4,323,848,1982-04-06.
    [106]Zupanick;Joseph A.(Pineville,WV),Rial;Monty H.(Dallas,TX),Method and system for accessing subterranean deposits from a limited surface area,U.S.patent,6,662,870,2003-11-16.
    [107]Kuckes;Arthur F.(Ithaca,NY),Apparatus including a magnetometer having a pair of U-shaped cores for extended lateral range electrical conductivity logging,U.S.patent,4,502,010,26,1985-02-26.
    [108]Kuckes;Arthur F.(Ithaca,NY),Downhole electrode for well guidance system,U.S.patent,5,676,212,1997-10-14.
    [109]Kuckes;Arthur F.(Ithaca,NY),Method and apparatus for measuring distance and direction by movable magnetic field source,U.S.patent,5,485,089,1996-01-16.
    [110]Kuckes;Arthur F.(Ithaca,NY),Electromagnetic homing system using MWD and current having a funamental wave component and an even harmonic wave component being injected at a target well,U.S.patent,5,343,152,1994-08-30.
    [111]周铁良 向军文,采卤对接井钻井技术有在井矿盐中开采中的应用,中国井矿盐,1996(1)
    [112]Turkish army,Geomagnetic parameters of Beypazari trona field,2005.8.16-17.
    [113]蒋学华,计算磁偶极子磁场的一种方法.泉州师范学院学报(自然科学),2002,V20(4):89-91
    [114]任志良,黄玉盈,陈泽茂.磁偶极子源的被动测距与跟踪.数据采集与处理,2001,16(3):380-383.
    [U5]李建青.用毕奥·萨伐尔定律计算磁偶极子的磁场分布.忻州师范学院学报,2006,22(2):24-25.
    [116]http://woniudeke.bokee,com/5112602,html.常见物质的相对磁导和磁化率.2008-3-23
    [117]Schenck;John Frederick(Schenectady,NY),Rohling;Kenneth William(Burnt Hills,NY),Carbon fiber magnetic resonance compatible instruments,U.S.patent,5,705,014,1998-01-06.
    [118]隋吉东,刘振忠,蔡德利.用低频电磁波速测土壤水分的研究.农业机械学报,1998,(1):42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700