用户名: 密码: 验证码:
阜新煤田CO_2置换煤层气实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在对阜新煤田的地质、储层条件研究的基础上,选取阜新盆地刘家煤层气勘探区和东梁矿的两组中煤级样品,采用IS-100等温吸附仪开展了注CO_2等混合气体置换CH_4的实验研究。针对两组样品,分别开展了单组分气体(CO_2,CH_4和N_2)吸附实验,二元混合气体(80%CO_2+20%CH_4,20%CO_2+80%CH_4,50%CO_2+50%N_2)的吸附和解吸实验,以及纯CO_2和混合气(80%CO_2+20%N_2,20%CO_2+80%N_2)置换甲烷三个系列的实验。在实验各个阶段均采用气相色谱分析法测试了各系列实验中游离相浓度的变化,并利用扩展兰氏方程和相分离原理,计算了吸附、解吸和置换过程中混合气体中吸附相的变化规律,进一步分析了混合气体的吸附、解吸和混合气体(包括纯CO_2)置换CH_4的机理。论文对我国的中煤级样品开展了注气置换的实验室模拟研究,该项研究不仅丰富了我国注CO_2等混合气体置换CH_4从而提高煤层气采收率的理论,同时也为二氧化碳深埋技术提供了一定的理论基础。
     单组分气体的吸附实验结果表明,三种气体对煤的吸附性能从强到弱依次为CO_2,CH_4和N_2。二氧化碳具有比甲烷更高的吸附能力,这也是用二氧化碳来置换甲烷气体的主要原理之一。刘家样较东梁样的吸附能力强主要是因为刘家样的镜质组和壳质组含量较高而灰分和矿物质含量较低造成的。
     二元混合气体的吸附解吸实验结果表明,煤总是先吸附吸附能力强的气体,同时总是先解吸吸附能力弱的气体,二元混合气体的吸附和解吸过程中均出现了明显的CO_2气体置换CH_4气体现象。
     比较两组样品发现,CH_4和CO_2二元气体中CH_4的解吸速率、解吸率和单位压降下的解吸率均取决于样品对不同气体组分的气体分离因子和组分中CO_2的相对比例。CO_2相对于CH_4的分离因子越高,组分中CO_2的比例越高,则CH_4的解吸速率和单位压降下的解吸率就越高。
     总结三个系列实验的结果,影响注CO_2气体置换CH_4的四个主要因素包括:(1)混合气体组分中CO_2含量越高,越有利于置换。纯组分CO_2的置换效果最好,CO_2含量大于80%后就会取得明显的置换效果。(2)置换时,注入CO_2或混合气体的压力点不能高于该混合气体中CO_2组分的临界压力,否则将起不到置换的效果,本实验中最高注入压力为5.6MPa。(3)间断式注气的置换效果明显要优于连续性注气的方式。(4)用于置换的CO_2对CH_4气体分离因子越高,煤储层的置换效果越好。
Based on the reservoir geological characteristics of coals in Fuxin Coalfield, a preliminary laboratory experimental study on coalbed methane (CBM) displacement with carbon dioxide injection is carried out in Liujia CBM pilot-test area and Dongliang mine using an IS-100 isothermal adsorption apparatus. A series of measurements including monocomponent gases (CO_2, CH_4 and N_2) adsorption, binary component gases (80%CO_2+20%CH_4, 20%CO_2+80%CH_4, 50%CO_2+50%N_2) adsorption/desorption, and also with CH_4 displacement by pure and mixed CO_2 gases (100%CO_2, 80%CO_2+20%N_2, 20%CO_2+80%N_2) are performed. During the experiments, all gas saturations (e.g., CO_2, CH_4) at a separate phase are tested using a gas chromatography (GC), at the same time all the gas satrations at an adsorbed phase are calculated based on the Langmuir equation and phase disengagement method. As a result the mechanisms of adsorption, desorption and displacement of these gases are concluded, which can contribute greatly to the theory of enhanced coalbed methane recovery (ECBM) and CO_2 sequestration by CO_2 injection.
     Results from the monocomponent gases adsorption measurements show that the adsorption capacity of coals for gases is as follows: CO_2>CH_4> N_2. The higher adsorption capability of CO_2 comparing to CH_4 is the basical principle for displacement experiments. The Liujia coal has a higher adsorption capacity for all gases than the Dongliang coal, because it has a higher vitrinite and exinite compositions and also with a lower ash and minerals contents.
     Results from the binary component gases adsorption/desorption measurements show that, (1) the gas with higher adsorption capacity is generally first adsorbed from the coal matrix surface during the processes of gas adsorption, but lastly desorbed from the coal surface during the processes of gas desorption, (2) the evident CH_4 displacement with CO_2 is messured during the processes of adsorption and desorption.
     Comparing with the Liujia and Dongliang coals, it is found that the desorption rate and the desorption ratio of gases in the binary component (CH_4 and CO_2) are relatively higher in the coals with higher separation factor of CO_2 VS CH_4, and also relatively higher with higher proportion of CO_2 in the gas components.
     In conclusion, there are four main influence factors of coalbed methane displacement with carbon dioxide. Firstly, the higher proportion of CO_2 in the multicomponens is, the more favorable to the displacement is. The displacement should take the best efficiency for pure CO_2 gas, and should take the distinctly good efficiency when the proportion of CO_2 > 80% in the multicomponents. Secondly, the injection pressure of CO_2 or multicomponents should be lower than the critical pressure for liquefaction. It is about 5.6MPa for the experiment in this study. Thirdly, an intermittent CO_2-injection mode is obviously better than a continuous CO_2-injection mode. Finally, the higher separation factor of CO_2 VS CH_4 is, the more favorable for displacement implements of coal is.
引文
[1] Arri L.E., Yee D., Morgan W.D., et al. Modeling coalbed methane production with binary gas sorption. SPE paper 24363, SPE rocky Mountain Regional Meeting, Casper, Wyoming, 1992.
    [2] Ayer Jr. W.B. Coalbed gas system, resources, and production and a review of contrasting cases from the San Juan and Powder River basins. AAPG Bulletin, 2002, 86 (11): 1853–1890.
    [3] Beamish B.B., Gamson P.D. Sorption behavior and microstructure of Bowen Basin coals. Coalseam Gas Research Institute, James Cook University, Technical Report CGRI TR 92/4, February 1993.
    [4] Busch A., Gensterblum Y., Krooss B.M., et al. Investigation of high-pressure selective adsorption/desorption behavior of CO_2 and CH4 on coals: An experimental study. International Journal of Coal Geology, 2006, 66: 53~68.
    [5] Busch A., Gensterblum Y., Krooss B.M.. Methane and CO_2 sorption and desorption measurements on dry Argonne premium coals: pure components and mixtures. International Journal of Coal Geology, 2003, 55: 205~224.
    [6] Busch A., Krooss A. B.M., Gensterblum A.G. et al. High-pressure adsorption of methane, carbon dioxide and their mixtures on coals with a special focus on the preferential sorption behaviour. Journal of Geochemical Exploration, 2003, 78-79: 671~674.
    [7] Busch A.,Gensterblum Y., Krooss B.M.,Littke R. Methane and carbon dioxide dsorption-diffusion experiments on coal: upscaling and modeling. International Journal of Coal Geology,2004, 151~168.
    [8] Bustin, R.M., Clarkson, C.R. Geological controls on coalbed methane reservoir capacity and gas content. International Journal of Coal Geology, 1998,38: 3~26.
    [9] Bustin, R.M., Clarkson, C.R., Levy, J. Coalbed methane adsorption of coals of the Bulli and Wongawill seams, southern Sydney Basin: effects of maceral composition. 29th Newcastle Symposium on Advances in the Study of the Sydney Basin, Newcastle NSW, Australia, Department of Geology. The University of Newcastle, NSW, p.22~28, 1995.
    [10] Byrer, C.W., Guthrie, H.D. Unminable coals in eastern U.S. basins: potential reservoirs for sequestering carbon dioxide. Proceedings, 25th International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, FL,, 2000,141~151.
    [11] Chalmers G.R.L., Bustin R.M.. On the effects of petrographic composition on coalbed methane sorption. International Journal of Coal Geology, 2007, 69, 288–304.
    [12] Clarkson C R and Bustin R M. Binary gas adsorption/desorption isotherms: effect of moisture and coal conposition upon carbon dioxide selectivity over methane. International Journal of Coal Geology, 2000, 41(4): 241~272.
    [13] Clarkson C.R., Bustin R.M. The effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study. 1. Isotherms and pore volume distributions. Fuel, 1999, 78: 1333–1344.
    [14] Clarkson C.R., Bustin R.M. The effect of pore structure and gas pressure upon the transport properties ofcoal: a laboratory and modeling study. 2. Adsorption rate modeling. Fuel, 1999, 78: 1345–1362.
    [15] Close J C. Natural fracture in coal. In: Hydrocarbons from coal. Law B E and Rice D D eds. AAPG, 1993, 38: 119~132.
    [16] Crosdale P.J, Beamish B.B., Valix M. Coalbed methane sorption related to coal composition. International Journal of Coal Geology, 1998, 35, 147–158.
    [17] Drake J.M., Yacullo L.N., Levita P., et al. Nitrogen adsorption on porous silica: model-dependent analysis. The Journal of Physical Chemistry, 1994, 98: 380–382.
    [18] Faiz M., Saghaf A., Sherwood N., et al. The influence of petrological properties and burial history on coal seam methane reservoir characterization, Sydney Basin, Australia. International Journal of Coal Geology 2007, 70: 193–208.
    [19] Flores R M. Coalbed methane: from coal mine outbursts to a gas resource (Special Issue on Coalbed Methane). International Journal of Coal Geology, 1998, 35: 1~4.
    [20] Hall F E, Zhou Chunhe, et al. Adsorption of pure methane, nerogen, and carbon dioxide and their binary mixtures on wet Fruiland coal. The 1994 Eastern Regional Conferences and Exhbition Held in Charieston. WV, USA: SPE29194, 1994.
    [21] Hamelinck C.N., Faaij A.P.C. CO_2 enhanced coalbed methane production in the Netherlands. Energy, 2002, 27: 647~674.
    [22] Hollub V A, Schafer P S. A guide to coalbed methane operation. Chicago: US Gas Research Institute, 1992.
    [23] Julio Manik. Compositonal modeling of enhanced coalbed methane recovery [Thesis for degree of doctor of philosophy]. The Pennsylvania State University, 1999.
    [24] LAXMINARAYANA C, CROSDALE P J. Controls on methane sorption capacity of Indian coals. AAPG Bulletin, 2002, 86: 201-212.
    [25] LAXMINARAYANA C, CROSDALE P J. Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals. International Journal of Coal Geology, 1999, 40: 309-325.
    [26] Levine J.R., 1993. Coalification: the evolution of coal as source rock and reservoir: Law, B.E., Rice, D.D. (Eds.), Hydrocarbons from Coal. American Association of Petroleum Geologists, AAPG Studies in Geology, 38, pp. 39–77.
    [27] Liu D., Yao Y., Tang D., et al. Regional variation of coal reservoir heterogeneity and distribution of favorable reservoir in Qinshui Basin. 23rd annual meeting of TSOP, Beijing, China, Sept. 15-22, 2006, Vol.23, 157-160.
    [28] Mahamud, Manuel; López, óscar; Pis, José Juan; Pajares, Jesús Alberto. Textural characterization of coals using fractal analysis. Fuel Processing Technology Volume: 81, Issue: 2, May 15, 2003, p. 127~142.
    [29] Manuel Mahamud, óscar López, et al. Textural characterization of chars using fractal analysis. Fuel processing technology,2004, 86: 135~149.
    [30] Mastalerz M, Glikson M, Golding S D. Coalbed Methane: Scientific, Environmental and EconomicEvaluaion. Boston: Kluwer Academic Publishers, 1999.
    [31] Mastalerza M, Gluskoter H, Rupp J. Carbon dioxide and methane sorption in high volatile bituminous coals from Indiana, USA. International Journal of Coal Geology, 2004, 60: 43-55.
    [32] Mazumder S, Hemert P V, Bruining J et al. In-situ CO_2-coal reaction in view of carbon dioxide storage in deep unminable coal seams. Fuel, 2006, 85: 1904-1912.
    [33] Puri R and Yee D. Enhanced coalbed methane recovery: Project of the Society of Petroleum Engineers, New Oleans, LA, September 23~26, SPE 20732, 1990.
    [34] Rightmire C T et al. CoalbedMethane Resources of the United States. AAPG Studies in Geology #17, 1989.
    [35] Saulsberry J.L, Schafer P S, Schraufnagel R A. A guide to coalbed methane reservoir engineering. Chicaago: US Gas Research Institute, 1996.
    [36] Shi J.Q., Durucan S. A bidisperse pore diffusion model for methane displacement desorption in coal by Co2 injection. Fuel,2003, 82: 1219~1229.
    [37] Stevens Scott H., Schoeling Lanny, Pekot Larry. CO_2 Injection for Enhancing Coalbed Methane Recoverry: Project Screening and Design. Proceeding of the 1993 International Coalbed Methane Symposium. Tuscaloosa: University of Alabama, 1999.
    [38] Walker P.L., Verma S.K., Utrilla J.R., et al. Densities, porosities and surface areas of coal macerals as measured by their interaction with gases, vapours and liquids. Fuel, 1988, 67: 1615– 1623.
    [39] Wong S, Law D, Deng X, et al. Enhanced coalbed methane and CO_2 storage in anthracitic coals—Micro-pilot test at South Qinshui, Shanxi, China. International Journal of Greenhouse Gas Control Ⅰ ,2007, 215~222.
    [40] Yao Y., Liu D., Tang D., et al. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals. International Journal of Coal Geology, 2008, 73: 27–42.
    [41] Yao Y., Liu D., Tang D., et al. Fractal characterization of seepage-pores of coals from China: an investigation to permeability of coals. In: 12th Conference of Int. Association for Mathematical Geology, Beijing, China, August, 26-31, 2007, pp. 415-420.
    [42] Yu H, Yuan J, Guo W, et al. A preliminary laboratory experiment on coalbed methane displacement with carbon dioxide injection. International Journal of Coal Geology, 2008, 73:156-166.
    [43] Yukuo Katayama. Study of Coalbed Methane in Japan. Proceeding of United Nations International Conference on Coalbed Methane Development and Utilization, 1995.
    [44] 陈春琳, 林大杨. 等温吸附曲线方法在煤层气可采资源量估算中的应用. 中国矿业大学学报, 2005, 34(5): 679-682.
    [45] 程林峰. 煤层气注入增产法的探讨.中国煤层气, 2006,3(3): 40~43.
    [46] 傅雪海, 秦勇. 多相介质煤层气储层渗透率预测理论与方法. 徐州:中国矿业大学出版社, 2003, pp. 19~31.
    [47] 胡宝林, 杨 起, 刘大锰, 等. 新疆地区侏罗系中低变质煤储层吸附特征及煤层气资源前景. 现代地质, 2002, 16(1): 77-82
    [48] 胡宝林.鄂尔多斯盆地煤层气储层特性及综合评价:[博士学位论文]. 北京:中国地质大学,2003,58~70.
    [49] 李前贵, 康毅力, 罗平亚. 超破裂压力注气开发煤层甲烷探讨. 天然气工业, 2005, 25(6): 87~89.
    [50] 蔺金太, 郭勇义, 吴世跃. 煤层气注气开采中煤对不同气体的吸附作用. 太原理工大学学报, 2001, 32(1): 18~20.
    [51] 刘延锋,李小春,白冰. 中国CO_2煤层储存容量初步评价. 岩石力学与工程学报, 2005, 24(16): 2947~2952.
    [52] 马志宏, 郭勇义, 吴世跃. 注入二氧化碳及氮气驱替煤层气机理的实验研究. 太原理工大学学报, 2001, 32 (4): 335~338.
    [53] 佘小广, 贾占军. 高温、高压注气提高煤层气产率的研究. 能源技术与管理, 2004(2): 17~18.
    [54] 宋岩,张新民. 煤层气成藏机制及经济开采理论基础. 科学出版社, 2005.
    [55] 苏现波, 张丽萍, 林晓英. 煤阶对煤的吸附能力的影响. 天然气工业, 2005, 25(1): 19~23.
    [56] 孙可明. 低渗透煤层气开采与注气增产流固耦合理论及其应用:[博士学位论文]. 辽宁工程技术大学, 2004.
    [57] 唐书恒,马彩霞,叶建平,吴建光.注二氧化碳提高煤层甲烷采收率的实验模拟.中国矿业大学学报,2006,35(5): 607~616.
    [58] 唐书恒, 汤达祯, 杨起. 二元气体等温吸附-解吸中气分的变化规律. 中国矿业大学学报, 2004, 33(4): 448~452.
    [59] 唐书恒, 杨起, 汤达祯, 等. 注气提高煤层甲烷采收率机理及实验研究. 石油实验地质,2002, 24(6): 545~549.
    [60] 王红岩, 李景明, 等. 煤层气基础理论、聚集规律和开采技术方法进展. 石油勘探与开发, 2004, 31(6): 14~16.
    [61] 王生维,陈钟惠,等. 我国中新生代聚煤盆地煤层气地质特征与勘探前景. 天然气地球科学. 2004,15(4):337-340
    [62] 王秀茹.刘家区煤层气产能主控地质因素分析.中国煤层气,2007,4(2):26-29
    [63] 吴建光, 叶建平, 唐书恒. 注入 CO_2 提高煤层气产能的可行性研究. 高校地质学报, 2004, 10(3): 463~467.
    [64] 吴世跃, 郭勇义. 关于注气开发煤层气机理的探讨. 太原理工大学学报, 2000, 31 (4): 361~363.
    [65] 吴世跃, 郭勇义. 注气开采煤层气增产机制的研究. 煤炭学报, 2001, 26(2): 199~203.
    [66] 吴世跃, 赵文. 自然降压开采和注气开采煤层气的效果评价. 中国矿业, 2004, 13(10): 76~79.
    [67] 徐龙君, 刘成伦, 鲜学福. 注入增产法提高煤层气采收率的理论探讨. 重庆大学学报(自然科学版),2000,23(6):42~44.
    [68] 徐龙君, 鲜学福. 煤层气赋存状态及提高煤层气采收率的研究. 中国煤层气, 2005, 2(3):19~23.
    [69] 杨陆武, 孙茂远, 胡爱梅, 等. 适合中国煤层气藏特点的开发技术. 石油学报, 2002, 23(4):46~50.
    [70] 杨起, 刘大锰, 黄文辉, 等. 中国西北煤层气地质与资源综合评价. 北京:地质出版社, 2005: 223-232.
    [71] 杨起, 潘治贵, 翁成敏, 等. 华北石炭二叠纪煤变质特征与地质因素探讨. 北京: 地质出版社, 1988: 1-9.
    [72] 杨起, 吴冲龙, 汤达祯, 等. 中国煤变质作用. 北京:煤炭工业出版社, 1996: 1-26.
    [73] 姚艳斌,刘大锰,汤达祯,等. 两淮煤田煤储层孔-裂隙系统与煤层气产出性能研究. 煤炭学报,2006,31(2):163~168.
    [74] 姚艳斌,刘大锰,汤达祯,等.华北地区煤层气储集性能与产出性能研究. 石油勘探与开发,2007,34(6):664-668.
    [75] 姚艳斌,刘大锰,汤达祯,等.平顶山煤田煤储层物性特征与煤层气有利区预测. 地球科学—中国地质大学学报,2007,32(2):285-290.
    [76] 姚艳斌, 刘大锰. 煤储层孔隙系统发育特征与煤层气可采性研究. 煤炭科学技术,2006,34(3):64~68.
    [77] 姚艳斌,刘大锰.华北重点矿区煤储层吸附特征及其影响因素. 中国矿业大学学报, 2007,(3):308~314.
    [78] 叶建平, 秦勇, 林大扬. 中国煤层气资源. 徐州: 中国矿业大学出版社, 1999.
    [79] 于洪观, 范维唐, 孙茂远, 等. 高压下煤对 CH4/CO_2 二元气体吸附等温线的研究. 煤炭转化, 2005, 28(1):43~47.
    [80] 张 群, 杨锡禄. 平衡水分条件下煤对甲烷的等温吸附特性研究. 煤炭学报, 1999, 24(6): 566-570.
    [81] 张建博, 王红岩等. 中国煤层气地质. 北京: 地质出版社, 2000, P.15~30
    [82] 张丽萍,苏现波,曾荣树.煤体性质对煤吸附容量的控制作用探讨.地质学报,2006,80(6):910-915
    [83] 张庆玲, 崔永君, 曹利戈. 煤的等温吸附实验中各因素影响分析. 煤田地质与勘探, 2004, 30(2): 16-20.
    [84] 张庆玲, 张群, 崔永君, 等. 煤对多组分气体吸附特征研究. 天然气工业, 2005, 25(1):57~62.
    [85] 张遂安.煤层气资源特点及开发模式.煤田地质与勘探,2007,35(4),27-30
    [86] 张晓东, 秦勇, 桑树勋. 煤储层吸附特征研究现状及展望. 中国煤田地质, 2005, 17(1):17~23.
    [87] 张晓东, 桑树勋, 秦 勇, 等. 不同粒度的煤样等温吸附研究. 中国矿业大学学报, 2005, 34(4): 427-432.
    [88] 张新民, 庄 军, 张遂安. 中国煤层气地质与资源评价. 北京: 科学出版社, 2002: 74-77.
    [89] 张新民,解光新.我国煤层气开发面临的主要科学技术问题及对策.煤田地质与勘探,2002,30(2):19-22
    [90] 赵庆波. 煤层气地质与勘探技术. 北京:石油工业出版社, 1999.
    [91] 钟玲文. 煤的吸附性能及影响因素. 地球科学——中国地质大学学报, 2004, 29(3): 327-332.
    [92] 朱志敏,沈冰,路爱平, 等.阜新盆地白垩系阜新组煤层气系统. 石油勘探与开发,2007,34(2):181-186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700