用户名: 密码: 验证码:
松辽盆地晚白垩世四方台组沉积地层数据的时基函数识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地层年代的确定与分析是地球科学中的很多问题研究的基础。而确定地层年代需要识别保存在地层中的各种替代指标的深度与时间函数(时基函数)关系。本文针对上述问题,选择了松辽盆地松科1井北孔四方台组岩心(分为上、下段)作为研究对象,选取其上旋回分析常用的与岩相对应较好的自然伽马测井曲线的深度序列为替代指标,使用磁性地层学已有结论做定年基准点,详细描述了如何通过数学方法建立初步模型和改进模型来识别地层深度与时间的时基函数关系。
     首先运用信号处理中的频域法分离扰动,识别主周期,再由反傅立叶变换经过反复调整获得时基失真项,进而建立时基函数的初步模型,并推导沉积速率模型。接着针对初步模型有主观性的不足,设计参数化的改进模型,使用初步模型结果为初始值,多次最小二乘优化待定的参数,再由模型选择原则选取兼顾复杂度与拟合效果的最优的参数,进而获得具体的改进模型。
     通过最优的改进模型取得的主要结论有:1.改进模型确定四方台组上段自然伽马曲线主周期为407.0103kyr,下段主周期为2318.6kyr,可能有助探讨陆相沉积对不同驱动的全球气候变化的响应。2.上段岩心中四方台组与明水组界线年龄为72.1798Ma,与磁性地层学线性插值结果不同。3.下段中选用大、小两段地层分别为中间磁性带界限定年,与已有磁性地层学结果对比,相对误差最好能达到0.13%,0.14%。在所建模型基础上获得的沉积速率可识别地层中不整合位置与速度增减的拐点,这可被已有岩性和沉积环境结果证实。这些结论可说明四方台组自然伽马测井序列所建模型的适应性,也说明选这种测井序列作替代指标的可行性。4.重现自然伽马测井数据的时间序列与周期变化曲线,方便做沉积构造与环境变化分析。5.不同于常见的平均沉积率组成的阶梯状曲线,建立了四方台组连续的沉积速率曲线,与磁性地层学结果对应,虽然大趋势一致,但所得沉积速率普遍偏高。
     本文模型方法从时序分析角度,结合已有的磁性地层学定年结果,定量、客观的模拟晚白垩世一段地层中的时基关系。此识别模型亦可与旋回、层序、磁性、生物等地层学确定性高的端点定年结果结合使用来提高地质年代学分析的准确性、精度和分辨率,拓展了人们有效分析白垩纪地质年代数据的方法。
Dating and analyzing the strata are the groundwork for many problems in the earth science.Identification of the (time base) function between the depth and the age of the proxies reservedin the strata is needed by dating the strata. To solve this problem, our research object is the corefrom the Sifangtai Formation of SK1(a coring program)(North) in Songliao Basin and the proxyis the natural gamma-ray (GR) logging data which is found to closely and consistently track thelithological changes. Every step and matter worth paying attentions to build the initial model andthe modified model were described in detail based on the magnetostratigraphic results as thebase-points. The two kinds of models could identify the time base functions.
     At first, by frequency domain method usually used in signal process, the disturbances wereseparated and the main periods were identified. Then after applying the Inverse Discrete FourierTransform, the time base distortions were estimated by repeatedly tunings. So the initial timebase functions were established. From the time base functions we deduced the sedimentaccumulation rate formula. However the initial model was subjective. So the modified modelneeded to be parameterized in order to cover the shortage of the former model. Take the resultsin the initial model as the starting values of the modified model, optimize all of the modelparameters, at last by using model selection criterion, select the optimal model considering itscomplexity and fitting effect.
     The following results derived from the optimal modified model for the GR data of theSifangtai Formation of SK1(a coring program)(North) in Songliao Basin.
     1. The main periods of the upper and the lower GR series of Sifangtai Formation are estimatedas407.0103kyr and2318.6kyr, respectively, which are probably helpful to study continentaldeposit response to the global paleaoclimatic changes caused by different driving forces.
     2. The boundary age between the Sifangtai and the Mingshui Formatuion is72.1789Ma, whichis different from the magnetostratigraphic result obtained by linear interpolation.
     3. For the lower boundaries of chron R3, N3, the better relative errors compared with knownages are0.13%,0.14%, respectively. According to the time base from the modified model,the sediment accumulation rate formula is deduced. It can identify the unconformablesituation and the inflection points of the increase and decrease sediment accumulation rate,which can be verified by lithostrarigraphic and sedimentary environmental discoveries.These results indicate the adaptability of the modified model and the feasibility of the GRlogging data as the proxy.
     4. The GR time series and its period object functions are recovered in favor of the analysisabout depositional environment and structure during that time.
     5. Different from common stepladder average sediment accumulation rates, we establisheddeposition rate continuous curve, whose tendency could match approximately with themagnetostratigraphic results, but whose numerical value were more than them.Viewed from the time series analysis, the models here are quantitative methods whichobjectively identify the time base relations hiding in the strata. The models could be combinedwith other base-points relative accurately dated by the cyclostratigraphic, magnetostratigraphic,biostratigraphic, sequence stratigraphic methods. It will improve the accuracy, the precision andthe resolution of chronostratigraphic analysis techniques; besides, they can enrich the methodsfor effectively analyzing the geologic chronology data in Cretaceous.
引文
[1] Akaike, H., A new look at the statistical model identification. IEEE Transactions on Automatic ControlAC,1974,19(6),716–723.
    [2] Berger A, Loutre M F. Astronomical forcing through geologic time[C]//de Boer P L, Smith D G. Orbitalforcing and cyclic sequences. International Association of Sedimentologists Special Publication,1994,19:15-24.
    [3] Berger A. Milankovitch theory and climate[J]. Reviews of Geophysics,1988,26:624-657.
    [4] Beroger A L. Pre-Quaternary Milankovitch Frequencies [J]. Nature,1989,342:133.
    [5] Cara M. Time-frequency analysis[J]. Eos. Transactions, American Geophysical Union,1982,63(51):12-20.
    [6] Conn A R, Scheinberg K, Ph.L.Toint. Recent progress in unconstrained nonlinear optimization withoutderivatives. Math. Program.,1997,79:397-414.
    [7] Cronin M., Tauxe L., Constable C., et al., Noise in the quite zone[J]. E arth and Planetary ScienceLetters,2001,190:13-30.
    [8] De Brauwere, A., De Ridder, F., Pintelon R., Schoukens J., Dehairs F.. A comparative study of methods toreconstruct a periodic time series from an environmental proxy record. Earth-ScienceReviews,95(2009),97-118.
    [9] De Brauwere, A., De Ridder, F., Pintelon, R., Elskens, M., Schoukens, J., Baeyens, W., Model selectionthrough a statistical analysis of the minimum of a Weighted Least Squares cost function. Chemometricsand Intelligent Laboratory Systems.2005,76,163–173.
    [10] De Brauwere, A., De Ridder, F., Pintelon, R., Meersmans, J., Schoukens, J., Dehairs, F.,. Identification ofa periodic time series from an environmental proxy record. Comput. Geosci.34,1781–1790.doi:10.1016/j.cageo.2008.01.007.
    [11] De Ridder, F., de Brauwere, A., Pintelon, R., Schoukens, J.,Dehairs, F.,Baeyens,W.,Wilkinson, B.H..Comment on: Paleoclimatic inference from stable isotope profiles of accretionary biogenic hardparts—aquantitative approach to the evaluation ofincomplete data, by Wilkinson, B.H., Ivany, L.C.,2002.Palaeogeogr. Palaeoclimatol. Palaeoecol.185,95–114Palaeogeogr. Palaeocl. Palaeoecol.,2007,248,473–476.
    [12] De Ridder, F., Pintelon, R., Schoukens, J., Gillikin, D.P., Andre′, L., Baeyens, W., De Brauwere, A.,Dehairs, F.,. Decoding nonlinear growth rates in biogenic environmental archives. GeochemistryGeophysics Geosystems,2004,5(12) number Q12015:
    [13] De Ridder, F., Pintelon, R., Schoukens, J., Gillikin, D.P., Modified AIC and MDL model selection criteriafor short data records. IEEE Transactions on Instrumentation and Measurement.2005,54(1),144–150.
    [14] Deng C L, He H Y, Pan Y X, Zhu R X. Chronology of the terrestrial Upper Cretaceous in the SongliaoBasin, northeast Asia. Palaeogeography Palaeoclimatology Palaeoecology,http://dx.doi.org/10.1016/j.palaeo.2012.07.028,2012.
    [15] Dierckx, P. Curve and Surface Fitting With Splines. Clarendon Press, Oxford,1995,285pp.
    [16] Dorothée Husson, Bruno Galbrun, Jacques Laskar, Linda A. Hinnov, Nicolas Thibault, Silvia Gardin,Robert E. Locklair. Astronomical calibration of the Maastrichtian (Late Cretaceous). Earth and PlanetaryScience Letters,305(2011)328–340.
    [17] Dutton, A., Wilkinson, B.H., Welker, J.M., Bowen, G.J., Lohmann, K.C. Spatial distribution and seasonalvariation in18O/16O of modern precipitation and river water across the conterminous USA. Hydrol.Process.2005,19,4121–4146.
    [18] Finch, A. A., P. A. Shaw, G. P. Weedon, and K. Holmgren, Trace element variation in speleothemaragonite:Potential for palaeoenvironmental reconstruction, Earth Planet. Sci. Lett.,2001,186,255–267.
    [19] Fletcher, R., Practical Methods of Optimization. Wiley, Chichester,1991,436pp.
    [20] Gilbert G K. Sedimentary measurement of geological time[J]. Journal of Geology,1985,3:121-125.
    [21] Gradstein, F.M., Ogg J.G., Smith, A.G.. A Geologic Time Scale[M]. Cambridge: Cambridge UniversityPress,2004:1-589.
    [22] Hagelberg, T.K., Pisias, N.G., Shackleton, N.J., Mix, A.C., Harris, S., Refinement of a high-resolution,continuous sedimentary section for studying equatorial Pacific Ocean paleoceanography, Leg138. Proc.Ocean Drill. Program Sci. Results,1995.138,31-46.
    [23] Hays J D. Variations in the Earth’s Orbit: pacemaker of the ice ages[J]. Science,1976,194:1121-1132.
    [24] He, H.Y., Deng, C.L., Wang, P.J., Pan, Y.X., Zhu, R.X.,2012. Toward age determination of thetermination of the Cretaceous Normal Superchron. Geochemistry, Geophysics, Geosystems13, Q02002.http://dx.doi.org/10.1029/2011GC003901.
    [25] Herbert, T. D., Reading orbital signals distorted by sedimentation: Models and examples, in OrbitalForcing and Cyclic Sequences, Spec. Publ. Int. Assoc. Sedimentol.,1994,19,483–507.
    [26] Hilgen F J, Schwarzacher W, Strasser A. Concepts and definitions in cyclostratigraphy (second report ofthe cyclostratigraphy working group)[M]//D. Argenio B, Fischer A G, Premoli Silva, et alCyclostratigraphy: Approaches and Case Histories. Washington: SEPM Special Publication,2004:303-305.
    [27] Hinnov L A, Ogg J G. Cyclostratigraphy and the astronomical time scale [J]. Stratigraphy,2007,4:239-251.
    [28] Hu X. M., Jansa L., W ang C. S., et al. Upper Cretaceous Oceanic Red beds (CORB) in the Tethys:occurrence, lithofacies, age and environment [J]. Cretaceous Research,2005,26:3-20.
    [29] Huybers and Wunsch, A depth-derived Pleistocene age-model: uncertainty estimates, sedimentationvariability, and nonlinear climate change, Paleoceanography,2004.19, PA1028.doi:10.1029/2002PA000857
    [30] Ivany, L.C., Wilkinson, B.H., Jones, D.S., Using stable isotopic data to resolve rate and duration ofgrowth throughout ontogeny: an example from the surf clam, Spisula solidissima. Palaios,2003.18,126–137.
    [31] Jenkyns H. C., Cretaceou s anoxic events: From cont inents to oceans [J]. Journal of Geological Societyof London,1980,137:171-188.
    [32] Jones C. E., Jenkyns H. C., Seawater strontium isotopes, oceanic anoxic events, and seafloorhydrothermal activity in the Jurassic and Cretaceou s [J]. American Journ al of Science,2001,301:112-149.
    [33] Kuhnert, H., J. Patzold, B. S., et al., Sea-surface temperature variability in the16th century at Bermudainferred from coral records, Palaeogeogr. Palaeoclimatol. Palaeoecol.,2002,179,159–171.
    [34] Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of theEarth[J]. Astronomy and Astrophysics,2004,428:261-285.
    [35] Laskar, J., Fienga, A., Gastineau, M., Manche, H. La2010: a new orbital solution forthe long-term motionof the Earth. Astronomy and Astrophysics,2011.532, A89.
    [36] Lazareth, C. E., E. Vander Putten, L. Andre′, and F. Dehairs, High-resolution trace element profiles inshells of the mangrove bivalve Isognomon ephippium: A record of environmental spatio-temporalvariations?. Estuarine Coastal Shelf Sci.,2003,56,1–12.
    [37] Lazareth, C. E., P. Willenz, I. Navez, E. Keppens, F. Dehairs, and L. Andre′, Sclerosponges as a newpotential recorder of environmental changes: Lead in Ceratoporellanicholsoni, Geology,2000,28,515–518.
    [38] Lisiecki, L.E., Lisiecki, P., Application of dynamical programming to the correlation of paleoclimaterecords. Paleoceanography2002.17(D4),1049.
    [39] Marshall, J. F., and M. T. McCulloch, An assessment of the Sr/Caratio in shallow water hermatypic coralsas a proxy for sea surface temperature, Geochim. Cosmochim. Acta,2002,66,3263–3280.
    [40] Martinson, D.G., Menke, W., Stoffa, P., An inverse approach to signal correlation(Reply).[J]. Geophys.Res.1982b.89(B4),2501–2504.
    [41] Martinson, D.G., Menke,W., Stoffa, P., An inverse approach to signal correlation.[J]. Geophys. Res.1982a.87(B6),4807–4818.
    [42] Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., Shackleton, N.J., Age dating and theorbital theory of the ice age: development of a high resolution0to300,000-year chronostratigraphy. Quat.Res.1987.27,1–29.
    [43] Milankovtich M. Kano der Erdbestrahhlung und seine Anwendung auf das Eiszeiten problem [J].Academic Serbe,1941,133:1-633.
    [44] Olsen H. Astronomical Forcing of Meandering River Behaviour: Milankovitch Cycles in Devonian ofEast Greenland[J]. Palaeogeocli., Palaeoeco.,1990,79:99-115.
    [45] Olsen P E. A40-Million-Year Lake Record of Early Mesozoic Orbit Climatic Forcing[J]. Science,1986,234:842-848.
    [46] Paillard, D., Labeyrie, L., Yiou, P., Macintosh program performs time-series analysis. Eos Trans. AGU1996.77(39),379
    [47] Peck, J.A., King, J.W., Colman, S.M., Kravchinsky, V.,1996. An84-kyr paleomagnetic record from thesediments of Lake Baikal, Siberia. J. Geophys. Res.101(B5),11365–11385.
    [48] Peter W. Skeleton, Robert A Spicer, Simon P Kelley, et al. The CretaceousWorld[M]. Cambridge:Cambridge University Press,2003:360.
    [49] Petit, J., et al.,420,000years of climate and atmospheric history revealed by the Vostok deep Antarcticice core, Nature,1999,399,429–436.
    [50] Pintelon, R., Schoukens, J.,1996. An improved sine-wave fitting procedure for characterizing dataacquisition channels. IEEE Transactions on Instrumentation and Measurement45(2),588–593.
    [51] Pisias, N.G., Mix, A.C., Heusser, L.,2001. Millenial scale climate variability of the northeast PacificOcean and northwest North America based on radiolaria and pollen. Quat. Sci. Rev.20,1561–1576.
    [52] Powell M J D. A efficient method for finding the minimum of a function of several variables withoutcalculating derivatives. Comput. J.,1964,7:155-162.
    [53] Raymo, M.E.. The timing of major climate terminations. Paleoceanography,1997,12,577–585.
    [54] Ruddiman W F, Raymo M E, Martinson D G, et al. Pleistocene evolution: Northern hemisphere ice sheetand north Atlantic ocean. Paleoceanography,1989,4(4):345~412.
    [55] Schoukens, J., Rolain, Y., Pintelon, R., Modified AIC rule for model selection in combination with priorestimated noise models. Automatica,2002,38(5),903–906.
    [56] Schwarz, G., Estimating the dimension of a model. Annals ofStatistics,1978,6(2),461–464.
    [57] Shene C. K., CS3621Introduction to Computing with Geometry Notes (under Construction)1/7/1998—/5/2011. http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/
    [58] Steven W. Smith, the Scientist and Engineer's Guide to Digital Signal Processing, California TechnicalPublishing,1997.
    [59] Strasser, A., H ilgen, F. J., Heckel, P. H. Cyclostratigraphy-concepts, definitions, and applications.News letter of Stratigraphy,2006,42(2):75-114. doi:10.1127/0078-0421/2006/0042-00750078-00421
    [60] Vander Putten, E., F. Dehairs, E. Keppens, et al., High resolution distribution of trace elements in thecalcite shell layer of modern Mytilus edulis: Environmental and biological controls, Geochim.Cosmochim. Acta,2000,64(6),997–1011.
    [61] Vander Putten, E., F. Dehairs, L. Andre′, et al., Quantitative in situ microanalysis of minor and traceelements in biogenic calcite using infrared laser ablation–inductively coupled plasma mass spectrometry:A critical evaluation, Anal. Chim. Acta,1999,378,261–272.
    [62] Verheyden, S., E. Keppens, I. J. Fairchild, F., et al., Mg, Sr and Sr isotope geochemistry of a BelgianHolocene speleothem: Implications for palaeoclimatic reconstructions, Chem. Geol.,2000,169,144–161.
    [63] Wan Xiaoqiao, Zhao Jing, Robert W. Scott, Wang Pujun, Feng Zihui, Huang Qinghua, Xi Dangpeng,2012. Late Cretaceous Stratigraphy, Songliao Basin, NE China: SK1Cores. Palaeogeography,Palaeoclimatology, Palaeoecology, http://dx.doi.org/10.1016/j.palaeo.2012.10.024.,2012
    [64] Wang C. S., Hu X. M., Huang Y. J., et al., Cretaceous oceanic red beds as possible consequence ofoceanic anoxic events [J]. Sedimentary Geology,2011,235(1/2):27-37.
    [65] Weedon, G. P., The detection and illustration of regular sedimentary cycles using Walsh power spectraand filtering, with examples from the Lias of Switzerland, J. Geol. Soc.,1989,146,133–144.
    [66] Wei, G., M. Sun, X. Li, and B. Nie, Mg/Ca, Sr/Ca and U/Ca ratios of a porities coral from Sanya Bay,Hainan Island, South China Sea and their relationship to sea surface temperature, Palaeogeogr.Palaeoclimatol. Palaeoecol.,2000,162,59–74.
    [67] Wilkinson, B.H., Ivany, L.C., Paleoclimatic inference from stable isotope profiles of accretionarybiogenic hardparts—a quantitative approach to the evaluation of incomplete data. Palaeogeogr.Palaeoclimatol. Palaeoecol.2002,185,95–114.
    [68] Williams, D.F., Peck, J., Karabanov, E.B., Prokopenko, A.A., Kravchinsky, V., King, J., Kuzmin, M.I.Lake Baikal record of continental climate response to orbital insolation during the past5million years.Science,1997,278,1114–1117.
    [69] Wu H. C., Zhang S. H., Jiang G. Q., et a.l The floating astronomical time scale for the terrestrial LateCretaceous Qingshankou Formation from the Song liao Basin of Northeast Ch ina and its stratigraph icand paleoclimate implications [J]. Earth and Planetary S cience Letters,2009,278:308-323.
    [70] Wu Huaichun, Zhang Shihong, Jiang Ganqing, et al., Astrochronology of the Early Turonian-EarlyCampanian terrestrial succession in the Songliao Basin, northeastern China and its implication forlong-period behavior of the Solar System, Palaeogeography, Palaeoclimatology, Palaeoecology.http://dx.doi.org/10.1016/j.palaeo.2012.09.004.,2012
    [71] Yu, Z.W., Ding, Z.I., An automatic orbital tuning method for paleoclimate records. Geophys. Res. Lett.1998.25,4525–4528.
    [72]陈宝林.最优化理论与算法(第2版).北京:清华大学出版社,2005.1-468.
    [73]陈彦光.地理数学方法:基础和应用.北京:科学出版社,2011.1-484.
    [74]陈玉东.数字信号处理.北京:地质出版社,2005.1-288.
    [75]陈兆斗,褚宝增,等.高等数学(下册).北京:北京大学出版社,2008.1-261.
    [76]程日辉,王国栋,王璞珺,等.松科1井北孔四方台组—明水组沉积微相及其沉积环境演化[J].地学前缘(中国地质大学(北京);北京大学),2009,16(6):85-95.
    [77]高有峰,王成善,王璞珺,等.松科1井北孔选址、岩心剖面特征与特殊岩性层的分布[J].地学前缘,2009,16(6):104-112.
    [78]高有峰.松辽盆地上白垩统事件沉积与高分辨率层序地层——以松科1井岩心资料为基础.长春:吉林大学博士论文,2010.
    [79]龚纯,王正林.精通Matlab最优化计算.北京:电子工业出版社,2012.1-400.
    [80]季虎,夏胜平,郁文贤.快速傅立叶变换算法概述[J].现代电子技术,2001,8:11-14.
    [81]李斌,孟自芳,李相搏,等.靖安油田延长组米兰柯维奇沉积旋回分析[J].地质科技情报,2005.(24):64-70.
    [82]李东.人行桥TMD半主动控制理论研究:[硕士学位论文].湘潭:湖南科技大学,2011.
    [83]李凤杰,王多云,程微.应用自然伽马曲线反演陇东地区延安组沉积旋回[J].成都理工大学学报(自然科学版),2004,31(5):473-477.
    [84]李全利,刘长亮. CCS上FFT运算的实现[J].自动化技术与应用,2009,28(2):59-62.
    [85]刘泽纯,陈晔,袁林旺,等.应用自然伽玛测井反演2.85MaBP来古气候变化[J].中国科学(D),2000,30(6):608-618.
    [86]努斯鲍默H. J.快速傅立叶变换和卷积算法[M].胡光锐,译,上海:科学技术文献出版社,1984:98-130.
    [87]潘爱霞.二次三对角插值模型的直接搜索方法:[硕士学位论文].南京:南京航空航天大学,2005.
    [88]史晓颖.35Ma——地质历史上一个重要的自然周期:自然临界的概念及其成因[J].地球科学———中国地质大学学报,1996,21(3):235~242.
    [89]宋大勇,王跃忠.旋回地层学理论及研究新进展[J].内蒙古石油化工,2010(12):5-6.
    [90]眭素文.松辽盆地旋回地层的地球物理替代性指标及分析方法研究:[博士学位论文].北京:中国地质大学(北京),2009.
    [91]王成善,冯志强,吴河勇,等.中国白垩纪大陆科学钻探工程:松科1井科学钻探工程的实施与初步进展[J].地质学报,2008,82(1):9-10.
    [92]王成善.白垩纪地球表层系统重大地质事件与温室气候变化研究3———从重大地质事件探寻地球表层系统耦合[J].地球科学进展,2006,21(8):838-842.
    [93]王国栋,程日辉,王璞珺,等.松辽盆地松科1井上白垩统四方台组沉积序列厘米级精细刻画:岩性·岩相·旋回[J].地学前缘(中国地质大学(北京);北京大学),2011,18(6):263-284.
    [94]王国栋.松辽盆地上白垩统旋回地层与坳陷盆地的沉积演化.长春:吉林大学博士论文,2010.
    [95]王孝玲.教育统计学.上海:华东师范大学出版社,1986.1—429
    [96]吴怀春,张世红,冯庆来,等.旋回地层学理论基础、研究进展和展望[J].地球科学,2011,36(3):409-428.
    [97]吴怀春,王成善,张世红,等.“地时”(Earthtime)研究计划:“深时”(Deep Time)记录的定年精度与时间分辨率[J].现代地质,2011,25(3):419-428.
    [98]吴志勇,姜衍文.米兰柯维奇韵律及其年代地层意义[J].地层学杂志,1996,20(3):237-240.
    [99]杨锦舟,肖红兵,张海花.随钻自然伽马刻度装置及量值传递研究[J].石油仪器,2004,18(5):24-26.
    [100]张占松、蔡道钢等.用测井曲线能谱分析技术研究沉积速率[J].江汉石油学院学报,1999,Vol.21(4):18-22.
    [101]郑民,彭更新,雷刚林,等.频谱分析法确定乌什凹陷白垩系米氏沉积旋回及沉积速率[J].新疆石油地质,2007,28(2):170-174.
    [102]邹长春,谭茂金,魏中良.地球物理测井教程.北京:地质出版社,2011:1-288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700