用户名: 密码: 验证码:
西藏特提斯白垩纪中期页岩—微生物岩组合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
越来越多的证据显示,白垩纪多期大洋缺氧事件(OAEs)都与海底甲烷泄漏有关,因此研究当时极端环境下的沉积记录——黑色页岩-微生物岩组合对于解释OAEs时期一系列环境事件成因、相互作用机制和生物-环境协同演化等具有重要意义。研究区页岩-微生物岩沉积组合可划分为3种泥质岩岩相和6种碳酸盐岩微相,并进一步分出9种沉积组合。根据浮游有孔虫化石,认为强东剖面古错村组和岗巴东山组的界线大致与Aptian/Albian界线相当,察且拉组时代限定在Albian期R. appenninica带,冷青热组为Cenomanian–Coniacian,岗巴村口组不早于Santonian,横向上可能有穿时。据地层序列旋回性和海平面变化特征,可划分出两个亚二级层序K1SS1和K_2SS1,总体表现为两个退积-进积旋回,又分别可分为7个三级层序(K1S1-K1S7)和4个三级层序(K_2S1-K_2S4)。
     岗巴地区在白垩纪中期总体处于内陆棚-陆架边缘斜坡环境(50~250m),生境型为Ⅲ_2~Ⅳ_2,生产力整体较高。按演化阶段和组合特征可划分出3个有孔虫动物群,并利用水深局限分子和(P/(P+E))%等指标恢复了古水深(海平面)变化,显示研究区海平面变化长周期与Haq et al.(1987)完全一致,短周期也基本协同,但是Cen.期海平面变化比全球频繁得多,说明当时海平面变化主要受构造控制;OAE2之后表现出气候驱动为主的特征。依据溶解氧浓度的替代指标,如底栖有孔虫丰度、Shannon-Weiner分异度以及底栖有孔虫氧指数(BFOI)等,识别出8次不同程度的贫氧或缺氧期,其中有4次的时代和特征与OAE1d, MCE,OAE2以及可能的OAE3相对应。
     在岗巴东山组上部(约Alb.上部R. ticiensis带)和和冷青热组下部(R.cushmani带中部)暗色页岩中发现两套较大规模的冷泉碳酸盐岩,为甲烷泄漏的证据。时空分布、沉积特征、生物群落和地球化学标志等方面都显示了典型的冷泉碳酸盐岩特征,认为甲烷泄漏为温室效应、海平面变化、缺氧环境和区域构造不稳定性等共同导致。而这些环境事件之间具有明显的相互作用关系,并共同控制了缺氧环境下白垩纪海洋生物的演替和生产力的发展,形成了极端环境下特殊的生物圈-地圈正负反馈机制。
Increasing evidence shows that episodes of mid-Cretaceous oceanic anoxicevents (OAEs) are associated with the eruption of methane hydrates. Therefore, itis important to study the sedimentary record in the extreme environment: blackshale-calcimicrobialite assemblages for re-interpretation of the causes of OAEs,the interaction mechanism and biological-environmental co-evolution. Shale-calcimicrobialite assemblages in Gamba area can be divided into three kinds ofargillaceous lithofacies and six carbonate microfacies, and then divided into ninekinds of sedimentary formation. Based on planktonic foraminifera, TheGucuocun Formation/Gamba Dongshan Formation boundary are close toAptian/Albian boundary in age, and The Chaqiela Formation’s age is limited in R.appenninica Zone, Lengqingre Formation is Cenomanian-Coniacian, and theGamba Cunkou Formation is later than Santonian. The Zongshan section andTingri region seems to be different, so there may be shuttle laterally. Accordingto the lithostratigraphic sequence cycles and sea level variations, it can bedivided into two sub-second-order sequence: K1SS1and K_2SS1, the overallperformance of the two transgression-regression cycles. K1SS1and K_2SS1,respectively, can be divided into seven third-order sequences (K1S1-K1S7) andfour third-order sequences (K_2S1-K_2S4).
     Gamba overall located in the inner shelf-shelf edge slope environment, witha water depth of50to250m, habitat type of Ⅲ~Ⅳ and higher productivity inthe mid-Cretaceous. Three planktonic and benthic fauna were divided accordingto the stage of evolution and combination of characteristics. Water depth limitedspecies,(P/P+E))%and other indicators of recovery paleao-water depth (sealevel) change show that sea-level change coincides with long period of GambaHaq et al (1987), and short-period basic collaborative, but the study areaCenomanian of sea-level change much more frequently than the global changes, suggesting that sea-level change was mainly controlled by the structure. Theafter-OAE2sea-level change and Haq et al (1987)’s short cycle tends to becollaborative, demonstrating climate-driven characteristics. The benthicforaminiferal alternative indicator of dissolved oxygen concentration includingabundance, Shannon-Weiner diversity and benthic foraminiferal oxygen index(BFOI) identified eight different oxygen-depleted or anoxic periods, which offour were corresponding to OAE1d, MCE, OAE2and OAE3.
     Two sets of large-scale cold-seep carbonates were found in the upper part ofthe Gamba Dongshan Formantion and Lengqingre Formation for evidence ofmethane leakage. The spatial and temporal distribution, biological communitiesand geochemical characteristics show typical seep carbonates characteristics.
     Methane leakages were commonly caused by greenhouse effect, sea-levelchange, anoxic environment and regional tectonic instability. It has obviousinteraction between these environmental events, and jointly controlled successionof the anoxic environment, Cretaceous marine life and the development ofproductivity, and then formed the Biosphere-Geosphere feedback mechanisms.
引文
Alegret, L., and Thomas, E. Upper Cretaceous and lower Paleogene benthic foraminifera fromnortheastern Mexico. Micropaleontology,2001,47:269–316.
    Alegret, L., Molina, E., and Thomas, E. Benthic foraminiferal turnover across theCretaceous/Paleogene boundary at Agost (southeastern Spain): paleoenvironmentalinferences. Marine Micropaleontology,2003,48:251–279.
    Ando A, Kaiho K, Kawahata H, et al. Timing and magnitude of early Aptian extreme warming:Unraveling primary δ18O variation in indurated pelagic carbonates at Deep Sea DrillingProject Site463, central Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology,2008,260:463–476.
    Arthur M A, Dean W E, Laarkamp K. Organic carbon accumulation and preservation in surfacesediments on the Peru margin. Chemical Geology,1998,152:273–286.
    Arthur, M. A., and I. Premoli Silva, Development of widespread organic carbon-rich strata in theMediterranean Tethys, in: Nature of Cretaceous Carbon-Rich Facies, edited by S. O.Schlanger and M. B. Cita, pp.7–54, Academic, San Diego, Calif.,1982.
    Babu C P, Brumsack H J, Schnetger B, et al. Barium as a productivity proxy in continental marginsediments: a study from the eastern Arabian Sea. Marine Geology,2002,184:189-206.
    Barron E J, Moore G T. Climate Model Application in Paleoenvironmental Analysis. SEPM(Society for Sedimentary Geology) Short Course33,1994,339.
    Baudin F, Fiet N, Coccioni R, Galeotti S. Organic matter characterization of the Selli Level(Umbria-Marche Basin, central Italy). Cretaceous Research,1998,19:701-714.
    Beard B L, Johnson C M. Fe isotope variations in the modern and ancient Earth and OtherPlanetary bodies. Reviews in Mineralogy and Geochemistry2004,55:319-357.
    Beerling D J, Lomas M R, Grocke D R. Onthe nature of methane gas-hydrate dissociationduringthe Toarcian and Aptian oceanic anoxic events. American Journal of Sciences,2002,302:28-49.
    Berger, W.H., and Diester-Haass, L. Paleoproductivity: the benthic/planktonic ratios inforaminifera as a productivity index. Marine Geology,1988,81:15–25.
    Berggren, W.A., and Miller, K.G. Cenozoic bathyal and abyssal calcareous benthic foraminiferalzonation. Micropaleontology,1989,35:308–320.
    Bohrmann G.E., and Torres M.E. Gas Hydrates in Marine Sediments,2006,481-512.
    Bois C, Bouche P, Pelet P. Global geologic history and distribution of hydrocarbon reserves. TheAmerican Association of Petroleum Geologists Bulletin,1982,66(9):1248-1270.
    Bolli, H.M., Beckmann, J.P., and Saunders, J.B. Benthic Foraminiferal Biostratigraphy of theSouth Caribbean Region. Cambridge: Cambridge University Press,1994,408.
    Boltovskoy, E., and Wright, R. Recent Foraminifera. The Hague: Junk,1976,515.
    Bornemann A., Norris R.D., Friedrich O., Beckmann B., Schouten S., Damsté J.S.S, Vogel J.,Hofmann P., Wagner T. Isotopic Evidence for Glaciation During the CretaceousSupergreenhouse. Science,2008,319,189-192(DOI:10.1126/science.1148777).
    Bralower T J, Thierstein H R. Low productivity and slow deep-water circulation inmid-Cretaceous oceans. Geology,1987,12:614-618.
    Bralower T J. Volcanic cause of catastrophe. Nature,2008,454(17):285-287.
    Bralower, T. J., W. V. Sliter, M. A. Arthur, R. M., Leckie, D. Allard, and S. O. Schlanger,Dysoxic/anoxic episodes in the Aptian-Albian (Early Cretaceous), in: The Mesozoic Pacific:Geology, Tectonics and Volcanism, Geophys. Monogr. Ser.,1993, vol.77, edited by M. S.Pringle et al., pp.5–37, AGU, Washington, D. C.
    Buzas, M.A., and Gibson, T.G.,1969. Species diversity: benthonic foraminifera in the westernNorth Atlantic. Sciences,163:72–75.
    Calvert S E, Pedersen T F, Naidu P D, Von Stackelberg. On the organic carbon maximum on thecontinental slope of the eastern Arabian Sea. Jounral of Marine Research,1995,53:269-296.
    Campbell K A, Farmer J D, Marais D D. Ancient hydrocarbon seep s from the Mesozoicconvergent margin of California: Carbonate ge o-chemistry, fluids and palaeoenvi ronments.Geofluids,2002,2:63–94.
    Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvir onments and paleontology:Past de velopments and future research di-rections. Palaeogeogr Palaeoclimatol Palaeoecol,2006,232:362–407.
    Caron, M.,1985. Cretaceous planktonic foraminifera. In: Bolli H.M., et al.(eds.), PlanktonStratigraphy. New York: Cambridge University Press,17–86.
    Clavert S E. Oceangraphic controls on the accumulation of organic matter in marine sediments. In:Brook J, Fleet A J, eds. Marine Petroleum Source Rocks. Blackwell Scientific, London,1987,137-151.
    Coccioni, R., and S. Galeotti, Orbitally induced cycles in benthonic foraminiferal morphogroupsand trophic structure distribution patterns from the late Albian ‘‘Amadeus Segment’’(centra lItaly), J. Micropaleontol.,1993,12,227–239.
    Corliss B H, Chen C. Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera andecological implications. Geology,1988,16:716-719.
    Corliss, B.H.,1985. Microhabitats of benthic foraminifera within deep-sea sediments. Nature314,435–438.
    Corliss, B.H.,1991. Morphology and microhabitat preferences of benthic foraminifera from thenorthwest Atlantic Ocean. Marine Micropaleontology,17:195–236.
    Corliss, B.H., and Chen, C.,1988. Morphotype patterns of Norwegian Sea deep-sea benthicforaminifera and ecological implications. Geology,16:716–719.
    Demaison G J, Moore G T. Environment and oil source bed genesis. Organic Geochemistry,1980,2:9-31.
    Den Dulk M, Reichart G J, VAN HEYST S. Benthic foraminifera as proxies of organic matter fluxand bottom water oxygenation? A case history from the northern Arabian Sea.Palaeogeography, Palaeoclimatology, Palaeoecology,2000,161:337–359.
    Dickens, G.R.. Modeling the global carbon cycle with a gas hydrate capaci-tor: significance for theLatest Paleocene Thermal Maximum. In:Natural Gas Hydrates: Occurrence, Distribution, andDetection(C.K. Paull and W.P. Dillon, eds). Geophys. Monogr.,2001,124,19–38.
    Ding, L., Kapp, P., and Wan, X.,2005. Paleocene-Eocene record of ophiolite obduction and initialIndia-Asia collision, southern central Tibet. Tectonics,24, TC3001, doi:10.1029/2004TC001729.
    Douglas R G. Woodruff F. Deep sea benthic foraminifera. In: Emiliani C (eds.). The Sea, vol.7:The oceanic lithosphere. New York: Wiley Interscience Publication,1981.1233–1327.
    Dymond J, Suess E, Lyle M. Barium in deep-sea sediment: a geochemical proxy forpaleoproductivity. Paleoceanography,1992,7,163-181.
    Erba E. Calcareous nannofossils and Mesozoic oceanic anoxic events. Marine Micropaleontology,2004,52,85–106.
    Erba E., Bottini C., Weissert H.J., Keller C.E. Calcareous Nannoplankton Response toSurface-Water Acidification Around Oceanic Anoxic Event1a. Science,2010,329,428-432(DOI:10.1126/science.1188886).
    Erbacher, J., Thurow J., and Littke R. Evolution patterns of radiolaria and organic mattervariations: A new approach to identify sea level changes in mid-Cretaceous pelagicenvironments. Geology,1996,24,499–502.
    Erbacher, J., Thurow, J. Influence of oceanic anoxic events on the evolution of mid-Cretaceousradiolaria in the North Atlantic and western Tethys. Mar. Micropaleontol.,1997,30:139-158.
    Eshet Y, Almogi-Labin A. Calcareous nannofossils as paleoproductivity indicators in UpperCretaceous organic-rich sequences in Israel. Marine Micropaleontology,1996,29:37-61.
    Firth J V, Clark D L. An early Maastrichtian organic-walled phytoplankton cyst assemblage froman organic-rich black mud in Core Fl-533, Alpha Ridge: evidence for upwelling conditions inthe Cretaceous Arctic Ocean. Marine Micropaleontology,1998,34:1–27.
    F llmi K B.160m.y. record of marine sedimentary phosphorus burial: Coupling of climate andcontinental weathering under greenhouse and icehouse conditions. Geology,1995,23(6):859-862.
    F llmi K B. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. EarthScience Reviews,1996,40:55-124.
    Forster, A., Schouten, S., Baas, M., Sinninghe Damsté, J.S. Mid-Cretaceous (Albian–Santonian)sea surface temperature record of the tropical Atlantic Ocean. Geology,2007b,35,919–922.
    Forster, A., Schouten, S., Moriya, K., Wilson, P.A., Sinninghe Damsté, J.S. Tropical warming andintermittent cooling during the Cenomani an/Turonian oceanic anoxic event2: sea surfacetemperature records from the equatorial Atlantic. Paleoceanography,2007a22. doi:10.1029/2006PA001349.
    Friedrich, O. Benthic foraminifera and their role to decipher paleoenvironment duringmid-Cretaceous Oceanic Anoxic Events–the “anoxic benthic foraminifera” paradox. Revuede micropaleontology,2010,53,175–192.
    Friedrich, O., Erbacher, J., Moriya, K., Wilson, P.A., Kuhnert, H. Warm saline intermediate watersin the Cretaceous tropical Atlantic Ocean. Nature Geoscience,2008,1,453–457.
    Garzanti E. Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin.
    Gebhardt, H., Kuhnt, W., and Holbourn, A.,2004. Foraminiferal response to sea level change,organic flux and oxygen deficiency in the Cenomanian of the Tarfaya Basin, southernMorocco, Marine Micropaleontology,53:133–157.
    Gibson, T.G. Planktic benthic foraminiferal ratios: modern patterns and Tertiary applicability.Marine Micropaleontology,1989,15:29–52.
    Gooday A J, Rathburn A E. Temporal variability in living deep-sea benthic foraminifera: A review.Earth Science Review,1999,46:187-212.
    Gooday, A.J. A response by benthic foraminifera to the deposition of phytodetritus in the deep sea.Nature,1988,332:70–73.
    Grimsdale, T.F., and Van Morkhoven, F.P.C.M.,1955. The ratio between pelagic and benthinicforaminifers as means of estimating depth of deposition of sedimentary rocks. In:Proceedings of the4th World petroleum Congress (Rome), Sect.1/D4:473–491.
    Hallock P, Schlager W. Nutrient excess and the demise of coral reefs and carbonate platforms.Palaios,1986,1:389-398.
    Handoh I C, Bigg G R, Jones E J W. Evolution of upwelling in the Atlantic Ocean basin.Palaeogeography, Palaeoclimatology, Palaeoecology,2003,202:31-58.
    Hart, M.B., and Ball, K.C. Late Cretaceous anoxic events, sea-level changes, and the evolution ofthe planktonic foraminifera. In: North Atlantic Paleoceanography, edited by Summerhayes,C.P. and Shackleton, N. J.(eds.), Geological Society, Special Publication,1986,21:67–78.
    Hay W W. Evolving ideas about the Cretaceous climate and ocean circulation. CretaceousResearch,2008,29(5-6):725-753.
    Hayden H.H. The Geology of provinces Tsang and U in central Tibet, Survey India Mem.,1907,36:122-201.
    Heath G. R., T. C. Moore, and J. P. Dauphin. Organic carbon in deep-sea sediments.in The fate offossil fuel CO2in the oceans, Plenum Press, New York, N.Y., United States,1977,605-625.
    Hohenegger, J. Estimation of environmental paleogradient values based on presence/absence data:a case study using benthic foraminifera for paleodepth estimation. Palaeogeography,Palaeoclimatology, Palaeoecology,2005,217:115–130.
    Hohenegger, J. Morphocoenoclines, character combination, and environmental gradients: a casestudy using symbiont-bearing benthic foraminifera. Paleobiology,2006,32(1):70–99.
    Holbourn, A., Kuhnt, W., and Erbacher, J. Benthic foraminifers from lower Albian black shales(Site1049, ODP leg171): evidence for a non ‘uniformitarian’ record. Journal of ForaminiferalResearch,2001a,31:60–74.
    Holbourn, A., Kuhnt, W., and Soeding, E Atlantic paleobathymetry, paleoprodoctivity andpaleocirculation in the late Albian: The benthic foraminiferal record. Paleogeography,Paleoclimate, Paleoecology,2001b.,170,171–196.
    Hu Xiumian, Wang Chengshan, Li Xianghui. The Cenomanian-Turonian Anoxic Event inSouthern Tibet: A Study of Organic Geochemistry. Chinese Journal of Geochemistry,2001,20(4):289-295.
    Huang Sijing, Shi He, Shen Licheng, Zhang Meng and Wu Wenhui,2005. Global correlation forstrontium isotope curve in the Late Cretaceous of Tibet and dating marine sediments. Sciencein China, Series D Earth Sciences,48(2):199–209.
    Huang Yongjian, Wang Chenshan and Chenxi,2007. Response of reactive phosphorus burial tothe sedimentary transition from Cretaceous black shales to oceanic red beds in southern Tibet.Acta Geologlca Sinica (English edition),81(6):1012–1018.
    Huang Yongjian, Wang Chenshan, Hu Xiumian and Chenxi,2007. Burial records of reactive ironin Cretaceous black shales and oceanic red beds from southern Tibet. Acta Geologlca Sinica(English edition),81(3):463–469.
    Ibach L E. J. Relationship between sedimentation rate and total organic carbon content in ancientmarine sediments. AAPG Bulletin,1982,66:170-188.
    Jahren A.H., Arens N.C., Sarmiento G. Terrestrial record of methane hydrate dissociation in theEarly Cretaceous. Geology,2001,29:159-162.
    Jahren A.H., Conrad C.P., Arens N.C., Mora G, Lithgow-Bertelloni C. A plate tectonic mechanismfor methane hydrate release along subduction zones. Earth and Planetary Science Letters,2005,236:691–704.
    Jain, S., Collins, L.S., and Hayek, L-A.C. Relationship of benthic foraminiferal diversity topaleoproductivity in the Neogene Caribbean. Palaeogeography, Palaeoclimatology,Palaeoecology,2007,255:223–245.
    Jenkyns H C, Gale A S, Corfield R M. Carbon and oxygen-isotope stratigraphy of the EnglishChalk and Italian Scaglia and its paleoclimatic significance. Geol. Mag,1994.,131,1-34.
    Jenkyns, H.C. Cretaceous anoxic events: from continents to oceans. Journal of Geological Societyof London,1980,137:171–188.
    Jenkyns, H.C. Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world.Philosophical Transactions of the Royal Society London A,2003,361, doi:10.1098/rsta.2003.1240.
    Jia J.Z., Wan X.Q., Chen H. S., Li G.B., Jiang T. Cenomanian-Coniacian Sea-level Change andDissolved Oxygen Fluctuations in Tethys-Himalaya: Evidences from Benthic Foraminifera ofGamba, Tibet. Acta Geologica Sinica(English Edition),2013,87(2):810-816.
    Jones, R.W., and Charnock, M.A.“Morphogroups” of agglutinating foraminifera, their lifepositions and feeding habits and potential applicability and (paleo) ecological studies. Revuede Paleobiologie,1985,4(2):311–320.
    Jorgensen B B. Mineralization of organic matter in the sea bed: the role of sulphate reduction.Nature,1982,296:643-645.
    Jorissen, F.J., Wittling, I., Peypouquet, J., Rabouille, C., and Relexans, J.C. Live benthicforaminifera faunas off Cape Blanc, NW-Africa: community structure and microhabitats.Deep-Sea research I,1998,45:2157-2188.
    Jorissen, F.J., Buzas, M.A., Culver, S.J., and Kuehl, S.A. Vertical distribution of living benthicforaminifera in submarine canyons off New-Jersey. Journal of Foraminiferal Research,1994,24:28–36.
    Kaiho K, Takeda T, Petrizzo M R, et al. Anomalous shifts in tropical Pacific planktonic andbenthic foraminiferal test size during the Paleocene–Eocene thermal maximum.Palaeogeography, Palaeoclimatology, Palaeoecology,2006,237,456–464.
    Kaiho K. Benthic foraminifera dissolved-oxygen levels in the modern ocean. Geology,1994a,22:719-722.
    Kaiho K. Planktonic and benthic foraminifera extinction events during the last100M.y.Palaeogeography, Palaeoclimatology, Palaeoecology,1994b,111,45-71.
    Kaiho, K. Global changes of Paleogene aerobic/anaerobic benthic foraminifera and deep-seacirculation, Palaeography, Palaeoclimatology, Palaeoecology,1991,83:65–85.
    Kaiho, K. A low extinction rate of intermediate-water benthic foraminifera at theCretaceous/Tertiary boundary. Marine Micropaleontology,1992,18:229–259.
    Kaiho, K. Effect of organic carbon flux and dissolved oxygen on the benthic foraminiferal oxygenindex (BFOI). Marine Micropaleontology,1999,37(1):67–76.
    Kaminski, M.A. Cenozoic deep-water agglutinated foraminifera in the North Atlantic.Massachusetts: Massachusetts Institute of Technology and the Woods Hole OceanographicInstitution (Ph. D thesis),1987:1–254.
    Kashiyama Y, Ogawa N O, Kuroda J et al.. Diazotrophic cyanobacteria as the majorphotoautotrophs during mid-Cretaceous oceanic anoxic events: Nitrogen and carbon isotopicevidence from sedimentary porphyrin. Organic Geochemistry,2008,39:532–549.
    Keller G. Cretaceous climate, volcanism, impacts, and biotic effects. Cretaceous Research2008,29:754–771.
    Kerr A C. Oceanic plateau formation: a cause of mass extinction and blank shale depositionaround the C-T boundary? Journal of Geological Society,1998,155:619-626.
    Klemme H D, Ulmishek G F. Effective petroleum source rocks of the world: stratigraphicdistribution and controlling depositional factors. The American Association of PetroleumGeologists Bulletin,1991,75(12):1809-1851.
    Kroon D, NorrisRD, WilsonP. Exceptional global warmth and climatic transients recorded inoceanic sediments. JOIDES Journal,2002,28(1):11-15.
    Kuypers M M M, Blokker P, Erbacher J, et al., Massive expansion of marine Archea during amid-Cretaceous oceanic anoxic event. Science,2000,293:92-94.
    Kuypers M M M, et al. Orbital forcing of organic carbon burial in the proto-North Atlantic duringoceanic anoxic event2. Earth and Planetary Science Letters,2004,228:465–482
    Kuypers M M M, Pancost R D, Nijenhuis I A, et al. Enhanced productivity led to increasedorganic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanicanoxic event. Paleoceanography,2002,17(4):3(1)-3(13).
    Kuypers, M.M.M., Blokker, P., Erbacher, J., Kinkel, H., Pancost, R.D., Schouten, S., SinningheDamsté, J.S. Massive expansion of marine Archea during a mid-Cretaceous oceanic anoxicevent. Science,2001,293:92–94.
    Kvenvolden K.A. Methane hydrate in the global organic carbon cycle. Terra Nova,2002,14,302–306.
    Kvenvolden, K.A. Gas hydrates—geological perspective and global change. Rev. Geophys.,1993,31:173l–187.
    Kvenvolden, K.A. Methane hydrate—a major reservoir of carbon in the shallow geosphere? Chem.Geol.,1988,71,41–51.
    Larson R L, Erba E. Onset of the mid-Cretaceous greenhouse in the Barremian-Aptian: Igneousevents and the biological, sedimentary, and geochemical responses. Paleoceanography,1999,4:663-678.
    Larson R L. Geological consequences of superplumes. Geology,1991a,19:963-966.
    Larson R L. Latest pulse of t he Earth: Evidence for a mid-Cretaceous superplume. Geology,1991b,19:547-550.
    Leavitt S.W. Annual volcanic carbon dioxide emission: An estimate from eruption chronologies.Environmental Geology,1982,4:15-21.
    Leckie R M, Bralower T, Cashman R. Ocean anoxic events and plankton evolution: Bioticresponse to tectonic forcing the mid-Cretaceous. Paleoceanography,2002,17(3):1-29.
    Leckie, R.M.,2002. Bralower T, Cashman R. Ocean anoxic events and plankton evolution: Bioticresponse to tectonic forcing the mid-Cretaceous. Paleoceanography,17(3):1–29.
    Li Guobiao, Wan Xiaoqiao and Pan Mao,2011. Planktic Foraminiferal biostratigraphy of theCretaceous oceanic Red Beds in Kangmar, SouthernTibet, China. Acta Geologica Sinica(English edition),85(6):1238–1253.
    Li Guobiao, Wan Xiaoqiao, Jiang Ganqing, Hu Xiumian, Goudemand N., Han Hongdou, andChen Xi,2007. Late Cretaceous Foraminifera1Faunas from the Saiqu “mélange” in SouthernTibet. Acta Geologica Sinica (English edition),81(6):917–924.
    Li, G.B. Foraminifera-environmental co-evolution during Cretacoeus Oceanic Anoxic Event2inGamba of southern Tibet, China. Disaster Advances,20125(4):383–390.
    Li, X.H., Jenkyns, H.C., Wang, C., Hu, X., Chen, X., Wei, Y., Huang, Y., and Cui, J.,2006. UpperCretaceous carbon-and oxygen-isotope stratigraphy of hemipelagic carbonate facies fromsouthern Tibet, China. Geological Society of London,163:375–382.
    Loeblich, A.R., and Tappan, H.,1988. Foraminiferal Genera and their Classification,2vols. NewYork: Van Nostrand Reinhold,1182.
    Meyers P A. Paleoceanographic and paleoclimatic similarities between Mediterranean sapropelsand Cretaceous black shales. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,235:305–320.
    Millán, M.I., Weissert H.J., Fernández-Mendiola P.A., García-Mondéjar J.. Impact of Early Aptiancarbon cycle perturbations on evolution of a marine shelf system in the Basque-CantabrianBasin (Aralar, N Spain), Earth Planet. Sci. Lett.,2009, doi:10.1016/j.epsl.2009.08.023
    Misumi K, Yamanaka Y. Ocean anoxic events in the mid-Cretaceous simulated by a3-Dbiogeochemical general circulation model. Cretaceous Research,2008:1–8.
    Misumi, K., and Yamanaka, Y.,2008. Ocean anoxic events in the mid-Cretaceous simulated by a3-D biogeochemical general circulation model. Cretaceous Research,29(5-6):893–900.
    Mitchum R.M.J.R., Van W.J.C. High-frequency sequence and their stacking patterns: Sequencestratigraphic evidence of high-frequency eustatic cycles. Sedimentary Geology,1991,70(1):131-160.
    Mitterer R.M. Methanogenesis and sulfate reduction in marine sediments: A new model. Earth andPlanetary Science Letters295(2010)358–366.
    Mort H P, Adatte T, F llmi K B, et al. Phosphorus and the roles of productivity and nutrientrecycling during oceanic anoxic event2. Geology,2007,35(6):483–486.
    Mort H P, Jacquat O, Adatte T, et al. The Cenomanian/Turonian anoxic event at the Bonarelli evelin Italy and Spain: enhanced productivity and/or better preservation? Cretaceous Research,2007,28:597-612.
    Murray, J.W.,1991. Ecology and Palaeoecology of Benthic Foraminifera. Harlow: LongmanScientific&Technical.397.
    Murray, J.W.,1992. Ecology and distribution of benthic foraminifera: A review. In: Takayanagi Y.,Saito T.(eds.), Studies in Benthic Foraminifera. Japan: Tokai University Press:33–41.
    Murray, J.W.,2006. Ecology and Applications of Benthic Foraminifera. London: CambridgeUniversity Press,448.
    Nyong, E.E., Olsson, R.K.,1984. A paleoslope model of Campanian to Lower Maestrichtianforaminifera in the North American basin and adjacent continental margin. MarineMicropaleontology,8:437–477.
    Olsson, R.K., and Nyong, E.E.,1984. A paleoslope model for Campanian–lower Maestrichtianforaminifera of New Jersey and Delaware. Journal of Foraminiferal Research,14:50–68.
    Paul, C.R.C., Mitchell, S.F., Marshall, J.D., Leary, P.N., Gale, A.S., Duane, A.M., Ditch field, P.W.Palaeoceanographic events in the Middle Cenomanian of Northwest Europe. CretaceousResearch,1994,15,707–738.
    Peckmann J, Thiel V. Carbon cycling at ancient methane-seeps. Chem Geol,2004,205:443–467.
    Pippèrr, M., and Reichenbacher, B.,2010. Foraminifera from the borehole Altdorf (SE Germany):Proxies for Ottnangian (early Miocene) palaeoenvironments of the Central Paratethys.Palaeogeography, Palaeoclimatology, Palaeoecology,289:62–80.
    Premoli Silva I., Sliter W V. Cretaceous Paleoceanography: Evidence from planktonicforaminiferal evolution. In: Barrera E, Johnson C C, eds. The Evolution of the CretaceousOcean-Climate System. Geological Society of America, Special Paper,1999,332:301-328.
    Premoli Silva, I., E. Erba, and M. E. Tornaghi, Paleoenvironmental signals and changes in surfacefertility in mid-Cretaceous Corg-rich pelagic facies of the fucoid marls (central Italy),Geobios Mem. Spec.,1989,11,225–236.
    Premoli Silva, I., Erba, E., Salvini, G., Locatelli, C., and Verga, D. Biotic changes in CretaceousOceanic Anoxic Events of the Tethys. Journal of Foraminiferal Research,1999,29:352–370.
    Puceat E, Lecuyer C, Reisberg L. Neodymium isotope evolution of NW Tethyan upper oceanwaters throughout the Cretaceous. Earth and Planetary Science Letters,2005,236:705-720.
    Rutten A, De Lange G J. A novel selective extraction of barite, and its application to easternMediterranean sediments. Earth and Planetary Science Letters,2002,198:11-24.
    Saunders A.D, Storey M, Kent R W, et al. Consequences of plume-lithosphere interactions. In:Storey B C, Alabaster T, Pankhurst R J, eds. Magmatism and the Causes of ContinentalBreak-up. London: Geological Society, Special Publications,1992,68:41–60.
    Schlager W, Philip J. Cretaceous carbonate platforms. In: Ginsburg R N and Beaudoin B, eds.Cretaceous resources, events and rhythms. Netherland: Kluwer Academic Publishers,1990,173-195.
    Schlanger S O, Arthur M A, Jenkyns H C, Scholle P A. The Cenomanian-Turonian oceanicanoxic event: stratigraphy and distribution of organic carbon-rich beds and the marine δ13Cexcursion. In: Brooks J, Fleet A J, eds. Marine petroleum source rocks. Geological SocietySpecial Publication,1987,26:371-399.
    Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events: cause and consequence. Geologieen Mijnbouw,1976,55:179-184.
    Sch nfeld, J.,2001. Enthic foraminifera and pore-water oxygen profiles: a re-assessment ofspecies boundary conditions at the western Iberian margin. Journal of Foraminiferal Research,31(2):86–107.
    Scott R W. Global environmental controls on Cretaceous reefal ecosystems. Palaeogeogruphy,Palaeoclimatology, Palaeoecology,1995,119:167-199.
    Sepkoski J J Jr. Peridicity in extinction and the problem of catastrophism in the history of life.Journal of the Geological Society, London,1989,146:7-19.
    Shi X.Y., Yin J.R., and Cai P. Mesozoic and Cenozoic sepuence stratigraphy and sea level changesin the northern Himalayas, southern Tibet, China. Newsl. Stratigr.,33(1):15-16.
    Sinton, C.W., and Duncan, R.A.,1997. Potential links between ocean plateau volcanism andglobal ocean anoxia at the Cenomanian-Turonian boundary. Economic Geology,92:836–842.
    Skelton P. The Cretaceous World. Cambridge: Cambridge University Press,2002,1-300.
    Sliter, W. V. Biostratigraphic zonation for cretaceous planktonic foraminifers examined in thinsection. JournolofForaminifealResearch,1989,19(1): p.1-19, pl.1-3.
    Speijer, R.P., and Schmitz, B.,1998. A benthic foraminiferal record of Paleocene sea level andtrophic/redox conditions at Gebel Aweina, Egypt. Palaeogeography, Palaeoclimatology,Palaeoecology,137:79–101.
    Speijer, R.P., Van der Zwaan, G.J., and Schmitz, B.,1996. The impact of Paleocene/Eoceneboundary events on middle neritic benthic foraminiferal assemblages from Egypt. MarineMicropaleontology,28:99–132.
    Speijer. R.P., and Van der Zwaan, G.J.,1996. Extinction and survivorship of southern Tethyanbenthic foraminifera across the Cretaceous/Palaeogene boundary. In: Hart, M.B.(eds.), BioticRecovery from Mass Extinction Events. Geological Society of London, Special Publication,102:343–371.
    Stoll, H.M., Schrag, D.P. High-resolution stable isotope recordsfrom the Upper CretaceousrocksofItaly and Spain: Glacial episodes in a greenhouse planet? GSA Bull.,2000,112,308-319.
    Takashima R, et al. Geology and stratigraphy of forearc basin sediments in Hokkaido, Japan:Cretaceous environmental events on the north-west Pacific margin. Cretaceous Research,2004,25:365-390.
    Taylor, S.R., McLennan, S.M. The Continental Crust: its Composition and Evolution. Blackwell,Malden, MA.1985.
    Tong H.P., and Chen D. F. First discovery and characterizations of late Cretaceous seep carbonatesfrom Xigaze in Tibet, China. Chin. Sci. Bull.,2012, doi:10.1007/s11434-012-5434-2.
    Troup M.J. sedimentology and petrology of Miocene cold-seep carbonates in southern hawke’sbay: geological evidence for past seabed hydrocarbon seepage. A thesis submitted in partialfulfilment of the requirements for the degree of Master of Science in Earth Sciences at TheUniversity of Waikato,2010,270pp.
    Tsikos H, Jenkyns H C, Walsworth-B B et al. Carbon-isotope stratigraphy recorded by theCenomanian-Turonian Oceanic Anoxic Event: correlation and implications based on threekey localities. Journal of the Geological Society,2004,161:711–719.
    Turgeon S C, Creaser R A. Cretaceous oceanic anoxic event2triggered by a massive magmaticepisode. Nature,2008,454(17):323-327.
    Tyson R V. Sedimentation rate, dilution, preservation and total organic carbon: some results of amodeling study. Organic Geochemistry,2001,33:333-339.
    Van Cappellen P, Ingall E D. Benthic phosphorus regeneration, net primary production and oceananoxia: A model of coupled marine biogeochemical cycles of carbon and phosphorus.Paleoceanography,1994,9:677-692.
    Van der Zwaan, G.J., Duijnstee, I.A.P., Den Dulk, M., Ernst, S.R., Jannink, N.T., andKouwenhoven, T.J.,1999. Benthic foraminifers: proxies or problems? A review ofpaleoecological concepts. Earth Science Reviews,46:213–236.
    Van der Zwaan, G.J., Jorissen, F.J., and De Stigter, H.C.,1990. The depth-dependency ofplanktonic/benthic foraminiferal rations: constraints and applications. Marine Geology,95:1–16.
    Van Morkhoven, F.P.C.M., Berggren, W.A., and Edwards, A.S.,1986. Cenozoic cosmopolitandeep-water benthic foraminifera. Aquitaine: Bulletin des Centre de RecherchesExploration-Production Elf-Aquitaine, Mem.11,421.
    Vermeij G J. Economocs, Volcanoes, and Phanerozoic revolutions. Paleobiology,1995,21:125-152.
    Vet, I., Ozsvárt, P., Futó, I., and Hetényi, M. Extension of carbon flux estimation to oxicsediments based on sulphur geochemistry and analysis of benthic foraminiferal assemblages:A case history from the Eocene of Hungary. Palaeogeography, Palaeoclimatology,Palaeoecology,2007,248:119–144.
    Vogt P R. Volcanogenic Upwelling of anoxic, nutrient-rich water: a possible facter incarbonate-bank/reef demise and benthic faunal extinction? Gel Soc Am Bull,101:1225-1245.
    Wagner, T., Sinninghe Damste, J. S., Hofmann, P., and Beckmann, B. Euxinia and primaryproduction in Late Cretaceous eastern equatorial Atlantic surface waters fostered orbitallydriven formation of marine black shales. Paleocenaography,2004,19, PA3009, doi:10.1029/2003PA000898.
    Wan X.Q. Chen P.J., Wei M. J. The Cretaceous system in China. Acta Geologica Sinica,2007,81(6):957-983.
    Wan Xiaoqiao and Si Jialiang. Variation on Foraminiferal Composition in CretaceousBlack-Gray-Red Bed Sequence of Southern Tibet, China. Journal of China University ofGeosciences,2004,15(1):46–54.
    Wan, X.Q., Lamolda, M., and Wang, C. Upper Cenomanian-Lower Turonian foraminiferalassemblages from southern Tibet: The responses of the biota to oceanic environmentalchange. Journal of Geological Society of Philippine,1997, L11,183–197.
    Wan, X.Q., Wignall, P.B., and Zhao, W. The Cenomanian-Turonian extinction and oceanic anoxicevent: evidence from southern Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology,2003,199:283–298.
    Wang C.S, Li X.H. Supersuqences of the Phanerozoic in the Tethys Himalayas. Proc.30thInt’lGeol. Congr.,1997,8:275-293.
    Wang, C.S, Hu, X.M, Jansa, L., Wan, X.Q, and Tao, R. The Cenomanian-Turonian anoxic event insouthern Tibet. Cretaceous Research,2001,22:481–490.
    Wedepohl, K.H. Environmental influences on the chemical composition of shales and clays, In:Ahrens L H, Press F, Runcorn, S K et al. eds. Physics and Chemistry of the Earth, Vol.8.Pergamon, Oxford,1971,307-331.
    Wehausen R, Brumsack H J. Cyclic variations in the chemical composition of easternMediterranean Pliocene sediments: a key for understanding sapropel formation. MarineGeology,1999,153:161-176.
    Weldeab S, Emeis K C, Hemleben C, et al. Spatial productivity variations during formation ofsapropels S5and S6in the Mediterranean Sea: evidence from Ba contents. Palaeogeography,Palaeoclimatology, Palaeoecology,2003,191:169-190.
    Wendler, I., Wendler, J., Grafe, K.-U., Lehmann, J., and Willems, H. Turonian to Santonian carbonisotope data from the Tethys Himalaya, southern Tibet. Cretaceous Research,2009,30:961–979.
    Widmark, J.G.V., and Speijer, R.P. Benthic foraminiferal ecomarker species of the terminalCretaceous (late Maastrichtian) deep-sea Tethys. Marine Micropaleontology,1997,31:135–155.
    Willems H., Zhang B. Cretaceous and Lower Tertiary sediments of the Tibetan Tethys Himalaya inthe area of Gamba (South Tibet, PR China). Ber FB Goewiss Univ Bremen,1993a,38:3-27.
    Willems H., Zhang B. Cretaceous and Lower Tertiary sediments of the Tibetan Tethys Himalaya inthe area of Tingri (South Tibet, PR China). Ber FB Goewiss Univ Bremen,1993b,38:28-47.
    Willems, H.(eds.),1993. Geosciences Investigations in the Tethyan Himalayas. FachbereichGeowissenschaften, Universitat Bremen,38:1–183.
    Wilson, P. A., and Norris R. D., Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature,2001,412,425–429.
    Winguth A.M.E., Maier-Reimer E. Causes of the marine productivity and oxygen changesassociated with the Permian–Triassic boundary: A reevaluation with ocean general circulationmodels. Marine Geology,2005,217,283–304.
    Yin J.R., Enray R. Tithonian ammonoid biostratigraphy in eastern Himalayan Tibet. Geobios,2004,37:667-686.
    Zhou Z.C, Willems H., Zhang B. Marine Cretaceous-Paleogene biofacies and southern 'I ibet,China and their sedimentary significance. Marine Micropaleontology,1997,32: chnofacies in3-29.
    Zivkovic, S., and Babic, Z.L. Paleoceanographic Implications of Smaller Benthic and PlanktonicForaminifera from the Eocene Pazin Basin (Coastal Dinarides, Croatia). Facies,2003,49:49–60.
    陈践发,张水昌,孙省利,等.海相碳酸盐岩优质烃源岩发育的主要影响因素.地质学报,2006,80(3):467-472.
    邓宏文,钱凯.沉积地球化学与环境分析.兰州:甘肃科学技术出版社,1993.
    苟宗海.西藏白圣纪特提斯海的固着蛤类(RUDISTS).特提斯地质,1996,20:150-159.
    郝诒纯,茅绍智.微体古生物学教程(第二版).武汉:中国地质大学出版社,1993:1-258.
    郝诒纯,裘松余,林甲兴等.有孔虫.北京:科学出版社,1980,4-173.
    郝怡纯,万晓樵.西藏定日的海相白垩、第三系.见:青藏高原地质文集,北京:地质出版社,1985,16:227-232.
    胡修棉,王成善,李祥辉.藏南海相白至纪碳酸盐碳稳定同位素演化与古海洋溶解氧事件.自然科学进展,2001,11(7):722-728.
    胡修棉,王成善,李祥辉,陈蕾.藏南古错地区上侏罗统上部和下白垩统沉积相.古地理学报,2006,8(2):175-186.
    胡修棉,王成善.100Ma以来若干重大地质事件与全球气候变化.大自然探索,1999,18(67):53-58.
    胡修棉.白垩纪中期异常地质事件与全球变化.地学前缘,2005,12(2):222-230.
    胡修棉.藏南白垩系沉积地质与上白垩统海相红层——大洋富氧事件.成都:成都理工大学博士学位论文,2002:1-281.
    黄永建,王成善,汪云亮.古海洋生产力指标研究进展.地学前缘,2005,12(2):163-170.
    贾建忠,万晓樵,李国彪,等.西藏岗巴地区Cenomanian-Turonian界线前后底栖有孔虫古环境指标及其古海洋学意义.微体古生物学报,2010,27(2):135-143.
    贾建忠,万晓樵,张翼翼.白垩纪中期海相富有机碳沉积地球生物学背景.地学前缘,2009,16(5):143-152.
    李国彪,万晓樵,其和日格,梁定益,刘文灿.藏南岗巴—定日地区始新世化石碳酸盐岩微相与沉积环境.中国地质,2002,29(4):401-406.
    李国彪,万晓樵,于潮.特提斯喜马拉雅白垩纪层序地层分析.沉积与特提斯地质,2003,23(3):21-34.
    李祥辉,王成善,Jenkyns H C等.西藏南部上白垩统高分辨率全岩碳同位素地层学.地质评论,2006,52(3):304-313.
    李祥辉,王成善.西藏特提斯喜马拉雅显生宙的超层序.特提斯地质(21),1997,北京:地质出版社,8-30.
    刘宝珺,余光明,王成善,等.从珠穆朗玛峰地区侏罗系沉积特征讨论该区板块构造的性质.青藏高原地质文集(15),1984,1-12.
    刘宝珺,余光明,王成善.珠穆朗玛峰地区侏罗纪沉积环境.沉积学报,1983,1(2):1-16.
    刘桂芳,王思恩.西藏喜马拉雅地区上侏罗统和下白垩统研究的新进展.见:中国地质科学院地层古生物论文集编委会编.地层古生物论文集(17).北京:地质出版社,1987,143-166.
    刘云龙,李国彪.西藏南部岗巴地区白垩纪化石碳酸盐岩微相与沉积环境研究.现代地质,2012,26(1):22-35.
    刘志飞,胡修棉.白垩纪至早第三纪的极端气候事件.地球科学进展,2003,18(5):681-690.
    马宗晋,杜品仁,卢苗安.地球的多圈层相互作用.地学前沿,2001,8(1):3-7.
    倪建宇,姚旭莹.古海洋生产力的研究方法.海洋地质动态,2004,20(3)∶30-39.
    秦建中,等.中国烃源岩.北京:科学出版社,2004.
    史晓颖,雷振宁,阴家润.珠穆朗玛峰北坡下侏罗统层序地层及沉积相研究.地质学报,1996,70(1):73-83.
    史晓颖.藏南珠峰地区侏罗纪晚期至白垩纪早期层序地层序列及沉积环境演化.见:《第三届全国地层会议论文集》编委会.第三届全国地层会议论文集.北京:地质出版社,2000,260-264.
    司家亮,高莲凤,万晓樵.西藏南部晚白垩世大洋氧含量变化的生物特征.地学前缘,2005,12(2):113-122.
    陶然.西藏南部中白垩世古海洋学研究[硕士学位论文],成都:成都地质学院.1990.
    佟宏鹏,陈多福.日喀则弧前盆地冷泉碳酸盐岩的沉积组构及碳同位素特征—我国古代甲烷冷泉的发现.矿物岩石地球化学通报,2011,30(增刊):487.
    万传彪,乔秀云,赵传本.中国各时代油气形成母源体探讨.世界地质,2004,23(1):35-40.
    万晓樵,赵文金,李国彪.对西藏岗巴上白垩统的新认识.现代地质,2000,14(3):281-285.
    万晓樵,刘文灿,李国彪,等.白垩纪黑色页岩与海水含氧量变化——以西藏南部为例.中国地质,2003,30(1):36-47.
    万晓樵,阴家润.西藏岗巴白垩纪中期微体古生物群与古海洋事件.微体古生物学报,1996,13(1):43-56.
    万晓樵.从有孔虫分析西藏南部白垩纪海平面升降.现代地质,1992,4:392-398.
    万晓樵.西藏白至纪浮游有孔虫化石带.青藏高原地质文集(18).北京:地质出版社,1987,116-121.
    万晓樵.西藏岗巴地区白垩纪地层及有孔虫动物群.见:青藏高原地质文集,北京:地质出版社,1985,16:203-223.
    王成善,胡修棉,万晓樵,等.西藏南部中白垩世Cenomanian-Turonian缺氧事件研究.自然杂志,1999,21(4):244-246.
    王成善,李祥辉,胡修棉,万晓樵,等.特提斯喜马拉雅沉积地质与大陆古海洋学.北京:地质出版社,2005.373pp.
    王成善.白垩纪地球表层系统重大地质事件与温室气候变化研究.地球科学进展,2006,21(7):838-842.
    王红梅,谢树成,赖旭龙,等.分子地质微生物学研究方法述评.地球科学进展,2005,20(6):664-670.
    王鸿祯,史晓颖,王训练,等.中国层序地层研究.广州:广东科技出版社,2000.1-457.
    王立成,王成善,李亚林,等.藏南地区海相白垩系富有机质沉积的影响因素分析.地学前缘,2009,16(5):107-117.
    王义刚,张明亮.珠穆朗玛峰地区的地层一侏罗系.见:珠穆朗玛峰地区科学考察报告(1966-1968)——地质.北京:科学出版社,1974,124-147.
    王义刚.喜马拉雅地区(我国境内)地层研究的新认识.地层学杂志,1980,4(1):55-59.
    文世宣.珠穆朗玛峰地区的地层,白垩系.见:中国地质科学院西藏科学考察队,珠穆朗玛峰地区科学考察报告,1966-1968,北京:科学出版社,148-183.
    吴浩若,王东安,王连城.西藏南部拉孜-江孜一带的白至系.地质科学,1977,3:250-261.
    吴浩若,王东安.西藏南部江孜地区的混杂堆积.沉积岩石学研究.北京:科学出版社,1981.
    西藏地质矿产局.西藏自治区岩石地层.武汉:中国地质大学出版社,1997,183-184.
    谢树成,黄咸雨,黄俊华,等.重大地质突变期生物与环境事件的分子化石记录.地学前缘,2006,13(6):209-217.
    徐钰林,万晓樵,苟宗海,等.西藏侏罗、白垩、第三纪生物地层.武汉:中国地质大学出版社,1989,1-147.
    阴家润,万晓樵.侏罗纪菊石形态-特提斯喜马拉雅海的深度标志.古生物学报,1996,35(6):734-751.
    殷鸿福,丁梅华,张克信,等.扬子区及其周缘东吴期-印支期生态地层学.北京:科学出版社,1995,5-37.
    殷鸿福,童金南,张克信.为层序地层学服务的生态地层学研究.中国科学(D辑),1997,27(2):155-163.
    殷鸿福,谢树成,童金南,等.谈地球生物学的重要意义.古生物学报,2009,48(3):293-301.
    余光明、王成善.西藏特提斯沉积地质,中华人民共和国地质矿产部地质专报,三,岩石矿物、地球化学,第12号.北京:科学出版社,1990.
    张江勇,汪品先.深海研究中的底栖有孔虫:回顾与展望.地球科学进展,2004,19(4):545-551.
    赵文金,万晓樵.特提斯-喜马拉雅海演化晚期的生物古海洋事件。地质出版社,2003,1-136.
    周志澄,Willems H.,章炳高.西藏南部白垩系及下第三系的生物相及遗迹相.微体古生物学报,1998,15:307-317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700