用户名: 密码: 验证码:
利用库仑破裂准则评估活动断层地震危险性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活动断层地震危险性评估既是保证人民生命财产安全、促进社会稳定及经济可持续发展的一项重要工作,也是地球科学领域长期以来所面临的一项研究难题。顾名思义,其主要任务是评估活动断层未来一段时间内发生破坏性地震的可能性与危险性。活动断层地震危险性评估结果对确定建(构)物抗震设防等级、制定城市规划、减轻地震灾害具有重要意义。
     本文从地震孕育和发生的力学与物理机制出发,根据岩石的破裂准则对活动断层进行地震危险性评估。认为在地震孕育过程中活动断层的应力积累主要来自板块的构造运动和地震、火山等地质活动。据此,将活动断层地震危险性评估的主要工作分为:(1)计算待评估活动断层上的构造应力积累速率;(2)分析邻近的历史地质活动对其应力扰动;(3)评估邻近的潜在地质活动对其应力扰动。基于这一评估思想建立起了活动断层地震危险性评估系统。
     本文同时根据青藏高原两种构造运动变形模式——“连续形变模型”和“大陆逃逸模型”计算得到了其内部主要断层上的构造应力积累速率。针对“刚性运动和连续形变耦合模型”,本文采用了最小二乘配置方法;对于“大陆逃逸模型”,采用了弹性块体模型和深部滑动法。利用GPS速度场反演得到的结果表明,青藏高原东部活动断层的构造应力积累速率高于西部,鲜水河断裂系(含甘孜—玉树断裂、鲜水河断裂、安宁河断裂和小江断裂)上的构造应力积累速率高于其他断裂,均值约为5-9KPa/yr。
     本文分析了汶川和玉树地震对周边活动断层的应力扰动。在分析玉树地震时,改进了经典的拉普拉斯平滑算子,提出了一种新的利用三角形位错元构建断层几何模型的方法,推导了角位错在弹性半空间任意深度引起的应变公式。根据提取的发震断层地表精细破裂迹线,同时利用矩形位错元和三角形位错元建立起了断层几何模型。最后利用两幅InSAR干涉图(ENVISAT ASAR T498A和ALOS PALSAR T487A)反演得到了此次地震的矩形和三角滑动分布模型。通过比较发现:(1)三角滑动分布模型不仅能提高对InSAR观测数据的拟合度还可以提高对余震观测数据的拟合度。(2)此次地震的震级为Mw6.76-6.81,出现了两个较大的滑动集中区。其中最大的滑动位于洛荣达村附近(震中东南)的地表,达到~1.6m;第二个滑动集中区位于发震断层的中部,靠近震源,深度为~6km。此外,本文还推导了角位错在弹性半空间中任意深度引起的应变公式,将重复出现的公式项单独列出,程序测试表明利用这些公式可以将计算速度提高~13倍。
     本文选取鲜水河断裂作为待评估的对象,分析了其各个分段特征地震的震级和复发周期。结果表明,特征地震约为7.0~7.5级,康定—石棉分段和乾宁—康定分段的平均复发周期最高,超过200yr。其次是朱倭—炉霍分段,周期在150yr左右。炉霍—道孚分段和道孚—乾宁分段的周期在100yr左右。在此基础上计算了鲜水河断裂各个分段的构造应力积累量。在乾宁—康定分段上的构造应力积累量最高,在未来50年最大值会达到7.46bar,在未来100年最大值会达到10.95bar;其次是朱倭—炉霍分段,在未来50年最大值会达到4.82bar,在未来100年最大值会达到7.53bar。而康定—石棉段分上的构造应力积累最小,约为乾宁—康定分段上积累量的一半。
     2008年汶川地震对鲜水河断裂乾宁—康定段和道孚—乾宁段的下一次特征地震有加速效应,最大加速达到4年。此外对康定—石棉分段有延迟作用,最大延迟接近7年。但对于长达几百年的复发周期而言,这种影响不是很明显。2010年玉树地震对鲜水河断裂的影响很小。在未来100年内,甘孜—玉树断裂、龙门山断裂和大凉山断裂上的潜在地震活动对鲜水河断裂的影响甚微。安宁河断裂北段上的潜在地震对鲜水河断裂的康定—石棉分段影响较大。根据1MPa的应力降得到的结果表明,朱倭—炉霍、炉霍—道孚、道孚—乾宁、乾宁—康定和康定—石棉分段上潜在地震的复发时间分别在公元2158年、2194年、2143年、2096年和2243年左右。
     文中最后对汶川和玉树地震震后区域地震危险性进行了评估。结果表明,玉树地区的震前地震活动率较龙门山地区高。汶川地震的余震持续时间约为230年,汶川地震的余震持续时间较玉树地震长。汶川地震震后出现活动率提高的区域在发震断层两侧约100km内,而玉树地震在~10km内。
The seismic hazard assessments to the active faults are important tasks to ensure the safety of people lives and property and promote social stability and sustainable economic development. Additionally it is an academic challenge, which has not been solved, in the earth science. The primary work is to evaluate the possibilities and hazards of destructive earthquakes on active faults in a time span. The results of assessments are valuable to determine the seismic fortification levels of structures and buildings, formulate the urban planning and mitigate the earthquake disasters.
     In this thesis, a new method using the rock failure criteria is proposed to assess the seismic hazards of active faults. Based on the physical mechanisms of earthquake preparation and occurrence, it is supposed that the stress accumulation on the active faults is mainly from the plate tectonic motion and the geological activities such as earthquakes and volcanoes during the seismogenic process. Consequently, the main contents of this new method can be divided into:(1) calculating the tectonic stressing rates of active faults,(2) calculating the stress disturbance from the historical geological activities to the active faults,(3) assessing the stress disturbance from the potential geological activities to the active faults. According to this method, a new Active Fault Earthquake Risk Evaluating System (AFERES) is developed.
     With the AFERES, the tectonic stressing rates of the main faults in the Tibetan plateau are inverted using GPS data. Two end-member crust motion and deformation hypotheses, continuum and micro-plate, of the Tibetan plateau are adopted. The least-square collocation method and the elastic block model are used respectively for these two models. The results show the tectonic stressing rates of the faults in the eastern Tibetan plateau than in the western. The stressing rates of the Xianshuihe fault system (including the Ganzi-Yushu fault, Xianshuihe fault, Anninghe fault and Xiaojiang fault) are higher than the other faults. on the majority of active faults is~4kPa/yr. The average level is5-9kPa/yro
     The stress disturbances from2008Wenchuan earthquake and2010Yushu earthquake to their adjacent active faults are obtained. For the Yushu event, a refined rupture trace of the causative fault is extracted from two InSAR coseismic interferograms and the field investigation results. A new method to discretize the fault geometry using Triangular Dislocation Elements (TDEs), which can keep a good consistency with the fault geometry modelled with Rectangular Dislocation Elements (RDEs) and avoid the dislocation gaps and overlaps, is presented. Consequently the comprehensive comparisons between RDE and TDE models can be implemented. Due to the classic Laplacian operator minimizes the slip on the boundary RDEs of the fault, a modification to the classic Laplacian operator is accomplished to get more reasonable RDE models. The inversion and comparison results show that two larger slip concentration patches occurred in the Yushu earthquake. The largest locates southeast of the hypocentre near Luorongda country with the maximum slip of~1.6m at the surface. The second largest slip patches are in the middle of the causative fault near the hypocentre. The magnitude of this event is Mw6.76-6.81. Furthermore, the the analytic expressions for the strains associated with angular dislocations in an elastic half-space are re-derived. The computing efficiency increases by~13times than the code presented by Meade, which is mainly attributed to that the terms frequently used in the formulae are extracted.
     The Xianshuihe fault is selected as an object to be assessed by the method presented in this paper. The magnitudes and recurrence intervals of the characteristic earthquakes on five segments of the Xianshuihe fault have been analysed. The results show the magnitude is7.0~7.5. The recurrence intervals of the Kangding-Shimian and Qianning-Kangding segments are both over200years. The recurrence interval of the Zhuwo-Luhuo segment is~150years. The recurrence intervals of the Luhuo-Daofu and Daofu-Qianning segments are both~100years. The calculated tectonic stress accumulation amount show the value of the Qianning-Kangding segment is the highest, about7.46bar for the time span from the last characteristic earthquake to the next50years and10.95bar for the time span from the last characteristic earthquake to the next100years。 The second highest is the Zhuwo-Luhuo segment, whose maximum values is4.82bar and7.53bar respectively for the above two time span. The stress accumulation of the Kangding-Shimian segment is the lowest, about equal to half the value of the Qianning-Kangding segment.
     The2008Wenchuan earthquake has an acceleration effect on the potential earthquakes of the Qianning-Kangding and Daofu-Qianning segment of the Xianshuihe fault. The maximum acceleration approximates4years. On the Kangding-Shimian segment, there is an outstanding delay effect. The maximum amount reaches7years. However, for the recurrence interval long for several hundred years, these influences are not obvious. The effect of the2010Yushu earthquake on the Xianshuihe fault can be omitted. In the next100years, the potential earthquakes on the Ganzi-Yushu fault, Longmenshan fault and Daliangshan fault have little effect on the recurrences of the characteristic earthquakes of the Xianshuihe fault. The potential earthquakes on the Anninghe fault have great effect on the recurrences of the characteristic earthquakes of the Xianshuihe fault. According to the stress drop of1MPa, the recurrence times of the potential earthquakes on the Zhuwo-Luhuo, Luhuo-Daofu, Daofu-Qianning, Qianning-Kangding and Kangding-Shimian segments are respectively in AD2158,2194,2143,2096and2243.
     Finally, the aftershock regional seismic hazard assessments to the Wenchuan earthquake and Yushu earthquake are carried out. The results show the background seismic activity rate in the Yushu region is higher than the Longmenshan region. The aftershock duration time of the Wenchuan earthquake is~230years longer than the Yushu earthquake. The regions of the seismic activity increased mainly locate in~100km wide zone along the causative fault of the Wenchuan earthquake. The width for the Yushu earthquake is~10km.
引文
[1]陈额,陈运泰,张国民等.“十一·五”期间中国重大地震灾害预测预警和防治对策[J].地震地质,2005,20(1):1-14.
    [2]邓起东.城市活动断裂探测和地震危险性评价问题[J].地震地质,2002,24(4):601-605.
    [3]中国地震局.中国地震活动断层探测技术系统技术规程[S].北京:地震出版社,2005.
    [4]刘杰,陈顒,陈凌等.全球地震危险性评估的简化方法[J].科学通报,1999,44(1):92-97.
    [5]章在墉.地震危险性分析及其应用[M].上海:同济大学出版社,1996.
    [6]陈顒,刘杰,陈棋福等.地震危险性分析和震害预测[M].北京:地震出版社,1999.
    [7]Reid, H.F., The Mechanics of the Earthquake, The California Earthquake of April 18,1906, Report of the State Investigation Commission, Vol.2, Carnegie Institution of Washington, Washington, D.C.1910,16-28.
    [8]张永庆,谢富仁.活动断裂地震危险性的研究现状和展望[J].震灾防御技术,2007,2(1):64-74.
    [9]胡聿贤.地震安全性评价技术教程[M].北京:地震出版社,2007.
    [10]B. Gutenberg and C.F. Richter, Seismicity of the Earth and Associated Phenomena,2nd edition. Princeton, N.J.:Princeton University Press,1954,17-19 ("Frequency and energy of earthquakes").
    [11]Cornnel C.A. (1968), Engineering seismic risk analysis, Bull. Seism. Soc. Am.,58(5), 1583-1606.
    [12]A. Der Kiureghian and A. H-S. Ang (1977), A fault-rupture model for seismic risk analysis, Bull. Seism. Soc. Am.,67(4),1173-1194.
    [13]闻学泽.活动断裂段地震潜势的定量评估[M].北京:地震出版社,1995.
    [14]Schwartz, D. P., and K. J. Coppersmith (1984), Fault Behavior and Characteristic Earthquakes: Examples From the Wasatch and San Andreas Fault Zones, J. Geophys. Res.,89(B7),5681-5698, doi:10.1029/JB089iB07p05681.
    [15]Shimazaki, K., and T. Nakata (1980), Time-predictable recurrence model for large earthquakes, Geophys. Res. Lett.,7(4),279-282, doi:10.1029/GL007i004p00279.
    [16]Bakun, W., and T. McEvilly (1984), Recurrence Models and Parkfield, California, Earthquakes, J. Geophys. Res.,89(B5),3051-3058.
    [17]Papazachos C.B. (1992), A time and magnitude predictable model for generation of shallow earthquakes in the Aegean area. Pure Appl. Geophys.,138(2),287-308.
    [18]Working Group on California Earthquake Probabilities (1999), Earthquake probabilities in the San Francisco Bay Region,2000-2030, A Summary of findings, U.S. Geol. Surv.Open-File Rept.,99-517.
    [19]Ellsworth, W. L., M. V. Matthews, R. M. Nadeau, S. P. Nishenko, P. A. Reasenberg, and R. W. Simpson (1999), A physically based earthquake recurrence model for estimation of long-term earthquake probabilities, U.S. Geol. Surv. Open-File Rept.,99-522.
    [20]Matthews, M. V., W. L. Ellsworth, and P. A. Reasenberg (2002), A Brownian model for recurrent earthquakes, Bull. Seismol. Soc. Am.,92,2233-2250.
    [21]Nishenko S.P., and Buland R. (1987), A generic recurrence interval distribution for earthquake forecasting. Bull. Seismol. Soc. Am.,77(4),1382-1399.
    [22]万永革.地震静态应力触发问题的研究[D].北京:中国地震局地球物理研究所博士学位论文,2001.
    [23]汪建军.同震、震后和震间应力触发[D].武汉:武汉大学博士学位论文,2010.
    [24]王仁,何国琦,殷有泉等.华北地区地震迁移规律的数学模拟[J].地震学报,1980,2(1):32-42.
    [25]Das, S., and C. H. Scholz (1981), Off-fault aftershocks clusters caused by shear stress increase? Bull. Seismol. Soc. Am.,71(5),1669-1675.
    [26]Stein, R. S., and M. Lisowski (1983), The 1979 Homestead Valley earthquake sequence, California:Control of aftershocks and postseismic deformation. J. Geophys. Res.,88(B8), 6477-6490.
    [27]Oppenheimer, D. H., P. A. Reasenberg and R. W. Simpson (1988), Fault plane solutions for the 1984 Morgan Hill, California, earthquake sequence:Evidence for the state of stress on the Calaveras fault. J. Geophys. Res.,93,9007-9026.
    [28]King, G. C. P., R. S. Stein, and J. Lin (1994), Static stress changes and the triggering of earthquakes, Bull. Seismol. Soc. Am.,84,935-953.
    [29]赵根模,姚兰予,马淑芹.断层位错引起的应力场变动与地震危险性预测[J].地震学报,1994,16(4):448-454.
    [30]Xu Caijun, Wang Jianjun, Li Zhenhong and Jane Drummond (2009), Applying the Coulomb failure function with an optimally oriented plane to the 2008 Mw 7.9 Wenchuan earthquake triggering. Tectonophysics,, doi:10.1016/j.tecto.2009.09.019
    [31]Parsons T, Ji C., and Kirby E (2008), Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin, Nature,454,509-510.
    [32]Toda S, Lin J, Mustapha M, et al. (2008),12 May 2008 Mw=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophys. Res. Lett.,35:L17305.
    [33]万永革,沈正康,盛书中,徐晓枫.2008年汶川大地震对周围断层的影响[J].地震学 报,2009,31(2):128-139.
    [34]单斌,熊熊,郑勇等.2008年5月12日Mw7.9汶川地震导致的周边断层应力变化[J].中国科学D辑:地球科学,2009,39(5):537-545.
    [35]解朝娣,朱元清,Xinglin LEI等.Ms8.0汶川地震产生的应力变化空间分布及其对地震活动性的影响[J].中国科学D辑:地球科学,2010,40(6):688-698.
    [36]汪建军,许才军.玛尼Mw7.6玛尼地震和可可西里Mw7.8地震应力迁移研究[J].大地测量与地球动力学,2009,29(1):11-14.
    [37]Toda, S., R.S. Stein, G.C. Beroza, and D. Marsan (2012), Aftershocks halted by static stress shadows, Nat. Geosci.,5, doi:10.1038/ngeo 1465,410-413.
    [38]Toda, S., and R. Stein (2003), Toggling of seismicity by the 1997 Kagoshima earthquake couplet:A demonstration of timedependent stress transfer. J. Geophys. Res.,108(B12),2567, doi:10.1029/2003JB002527.
    [39]Toda, S., R. S. Stein, K. Richards-Dinger, and S. B. Bozkurt (2005), Forecasting the evolution of seismicity in southern California:Animations built on earthquake stress transfer, J. Geophys. Res.,110, B05S16, doi:10.1029/2004JB003415.
    [40]石耀霖.关于应力触发和应力影概念在地震预报中应用的一些思考[J].地震,2001,21(3):1-7.
    [41]McCloskey, J., Nalbant, S. S., and Steacy, S. (2005), Indonesian earthquake:Earthquake risk from co-seismic stress. Nature,434(7031),291.
    [42]马宏生,刘杰,张国民等.基于G-R关系的应变积累释放模型研究中国大陆强震的分区活动[J].地震学报,2005,27(4):355-366.
    [43]Bin Shan, Xiong Xiong, et al. (2011), The co-seismic Coulomb stress change and expected seismicity rate caused by 14 April 2010 Ms=7.1 Yushu, China, earthquake, Tectonophysics,, 510,345-353.
    [44]Toda, S., R.S. Stein, and J. Lin, (2011), Widespread seismicity excitation throughout central Japan following the 2011 M9.0 Tohoku earthquake, and its interpretation by Coulomb stress transfer, Geophys. Res. Lett.,38, L00G03, doi:10.1029/2011GL047834.
    [45]Hill, D. P., P. A. Reasenberg, and A. J. Michael, et al. (1993), Seismicity remotely triggered by the magnitude 7.3 Landers, California earthquake. Science,260,1617-1623.
    [46]Hill, D. P., M. J. S. Johnston, O. J. Langbein, and R. Bilham (1995), Response of Long Valley caldera to the Mw=7.3 Landers, California, earthquake. J. Geophys. Res.,100,12985-13005, doi:10.1029/95JB00860.
    [47]Anderson, J. G., J. N. Brune, and J. N. Louie et al. (1994), Seismicity in the western Great Basin apparently triggered by the Landers, California, earthquake 28 June 1992. Bull. Seismol. Soc.Am.,84,863-891.
    [48]Gomberg, J. and Bodin, P. (1994), Triggering of the Little Skull Mountain, Nevada earthquake with dynamic strains. Bull. Seismol. Soc. Am.,84,844-853.
    [49]Gomberg, J. (1996), Stress/strain changes and triggered seismiciry following the Mw 7.3 Landers, California, earthquake, J. Geophys. Res.,101(B1),751-764.
    [50]Cotton, F. and O. Coutant (1997), Dynamic stress variations due to shear faults in a plane layered medium, Geophys. J. Int.,128,676-688.
    [51]Wen, K. L., I. A. Beresnev, and S. N. Cheng (1996), Moderate-magnitude seismiciry remotely triggered in the Taiwan region by large earthquakes around the Philippine Sea plate. Bull. Seismol. Soc. Am.,86,843-847.
    [52]Brodksy, E. E., V. Karakostras, and H. Kanamori (2000), A new observation of dynamically triggered regional seismicity:earthquakes in Greece following the August,1999 Izmit, Turkey earthquake. Geophys. Res. Lett.,27(17),2741-2744.
    [53]Miyazawa, M. and J. Mori (2005), Detection of triggered deep low-frequency events from the 2003 Tokachi-oki earthquake, Geophys. Res. Lett.,32, L10307.
    [54]Dmowska, R., J. R. Rice, L. C. Lovison, and D. Josell (1988), Stress Transfer and Seismic Phenomena in Coupled Subduction Zones During the Earthquake Cycle, J. Geophys. Res., 93(B7),7869-7884, doi:10.1029/JB093iB07p07869.
    [55]Zeng, Y. (2001), Viscoelastic stress-triggering of the 1999 Hector Mine earthquake by the 1992 Landers earthquake, Geophys. Res., Lett.,28(15),3007-3010.
    [56]Pollitz, F. F. and I. S. Sacks (2002), Stress triggering of the 1999 Hector Mine earthquake by transient deformation following the 1992 Landers earthquake, Bull. Seismol. Soc. Am.,92(4), 1487-1496, doi:10.1785/0120000918.
    [57]Masterlark, T., and H. F. Wang (2002), Transient stress coupling between the 1992 Landers and 1999 Hector Mine, California, earthquakes, Bull. Seismol. Soc. Am.,92(4),1470-1480.
    [58]Ali, S. T., A. M. Freed, E. Calais, D. M. Manaker, and W. R. McCann (2008), Coulomb stress evolution in Northeastern Caribbean over the past 250 years due to coseismic, postseismic and interseismic deformation, Geophys. J. Int.,174(3),904-918.
    [59]王时标,白广忱,王光远.断层地震危险性分析的双限随机应力水平模型[J].地震学报,1993,15(4):477-483.
    [60]Stein, R.S., Barka, A.A., and Dieterich, J.H. (1997), Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering, Geophys. J. Int.,128,594-604.
    [61]Dieterich J. (1994), A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res.,99,2601-2618.
    [62]Toda, S., R. S. Stein, P. A. Reasenberg, J. H. Dieterich, and A. Yoshida (1998), Stress transferred by the 1995 Mw=6.9 Kobe, Japan, shock:Effect on aftershocks and future earthquake probabilities,J. Geophys. Res.,103(B 10),24543-24565.
    [63]Hardebeck, J. L. (2004), Stress triggering and earthquake probability estimates, J. Geophys. Res.,109, B04310,doi:10.1029/2003JB002437.
    [64]Gomberg, J., M. E. Belardinelli, M. Cocco, and P. Reasenberg (2005), Time-dependent earthquake probabilities,J. Geophys. Res.,110, B05S04, doi:10.1029/2004JB003405.
    [65]Parsons, T. (2005), Significance of stress transfer in time-dependent earthquake probability calculations, J. Geophys. Res.,110, B05S02, doi:10.1029/2004JB003190.
    [66]Parsons, T., Y. Ogata, J. Zhuang, and E. L. Geist (2012), Evaluation of static stress change forecasting with prospective and blind tests, Geophys. J. Int.,188,1425-1440.
    [67]Parsons, T. (2004), Recalculated probability of M≥7 earthquakes beneath the Sea of Marmara, Turkey,J. Geophys. Res.,109, B05304, doi:10.1029/2003JB002667.
    [68]Console, R., M. Murru, G. Falcone, and F. Catalli (2008), Stress interaction effect on the occurrence probability of characteristic earthquakes in Central Apennines, J. Geophys. Res., 113, B08313,doi:10.1029/2007JB005418.
    [69]Woessner, J., S. Hainzl, W. Marzocchi, M. J. Werner, A. M. Lombardi, F. Catalli, B. Enescu, M. Cocco, M. C. Gerstenberger, and S. Wiemer (2011), A retrospective comparative forecast test on the 1992 Landers sequence, J. Geophys. Res.,116, B05305.
    [70]Ogata, Y. (1988), Statistical models for earthquake occurrence and residual analysis for point processes, J. Am. Stat. Assoc.,83,9-27.
    [71]Ogata, Y., and Zhuang, J. (2006), Space-time ETAS models and an improved extension, Tectonophysics,,413,13-23.
    [72]Deng, J., and L. R. Sykes (1997), Evolution of the stress field in southern California and triggering of moderate-size earthquakes:A 200-year perspective, J. Geophys. Res.,102(B5), 9859-9886.
    [73]Nalbant, S. S., J. McCloskey, S. Steacy, and A. A. Barka (2002), Stress accumulation and increased seismic risk in eastern Turkey, Earth Planet. Sci. Lett.,195,291-298.
    [74]Smith, B., and D. Sandwell (2003), Coulomb stress accumulation along the San Andreas Fault system,J.Geophys. Res.,108,2296, doi:10.1029/2002JB002136, B6.
    [75]Smith, B., and D. Sandwell (2004), A three-dimensional semianalytic viscoelastic model for time-dependent analyses of the earthquake cycle, J. Geophys. Res.,109, B12401.
    [76]Parsons, T. (2006), M≥7.0 earthquake recurrence on the San Andreas fault from a stress renewal model, J. Geophys. Res., 111, B12305, doi:10.1029/2006JB004415.
    [77]Smith-Konter, B., and D. Sandwell (2009), Stress evolution of the San Andreas fault system: Recurrence interval versus locking depth, Geophys. Res. Lett,,36, L13304.
    [78]J. C. Jaeger, N. G.W. Cook, andR. W. Zimmerman (2007), Fundamentals of Rock Mechanics, 4th Ed., Blackwell Publishing, pp.90-100.
    [79]Terzaghi, K. (1936), The shearing resistance of saturated soils and the angle between planes of shear, in Proc. Int. Conf. Soil Mech. Found. Eng.,Vol.1,Harvard University Press, Cambridge, MA, pp.54-6.
    [80]Oppenheimer, D. H., P. A. Reasenberg, and R. W. Simpson (1988), Fault Plane Solutions for the 1984 Morgan Hill, California, Earthquake Sequence:Evidence for the State of Stress on the Calaveras Fault, J. Geophys. Res.,93(B8),9007-9026.
    [81]Rice, J. R., and M. P. Cleary (1976), Some basic stress diffusion solutions for fluidsaturated elastic porous media with compressible constituents, Rev. Geophys.,14,227-241.
    [82]Cocco, M., and J. R. Rice (2002), Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions, J. Geophys. Res.,107,2030.
    [83]Kuempel, H. J. (1991), Poroelasticity:Parameters reviewed, Geophys. J. Int.,105(3),783-799.
    [84]Green D. H. and H. F. Wang (1986), Fluid pressure response to undrained compression in saturated sedimentary rock, Geophysics,51(4),948.
    [85]Roeloffs, E. (1996), Poroelastic techniques in the study of earthquake-related hydrologic phenomena, Adv. Geophys.,37,135-195.
    [86]Rice, J. R. (1992), Fault stress states, pore pressure distributions, and the weakness of the San Andreas Fault, in Fault Mechanics and Transport Properties of Rocks, edited by B. Evans and T.-F. Wong, pp.475-503, Elsevier, New York.
    [87]Harris, R. A. (1998), Introduction to special section:Stress triggers, stress shadows, and implications for seismic hazard, J. Geophys. Res.,103(B 10),24,347-24,358.
    [88]Parsons, T., R. S. Stein, R. W. Simpson, and P. A. Reasenberg (1999), Stress sensitivity of fault seismicity:A comparison between limited-offset oblique and major strike-slip faults, J. Geophys. Res.,104(B9),20,183-20,202, doi:10.1029/1999JB900056.
    [89]单斌.中国大陆地震应力传输及断层相互作用的研究[D].武汉:中科院测量与地球物理研究所博士学位论文,2012.
    [90]安欧.构造应力场[M].北京:地震出版社,1992.
    [91]Gross, S., and C. Kisslinger (1997), Estimating tectonic stress rate and state with Landers aftershocks, J. Geophys. Res.,102(B4),7603-7612, doi:10.1029/96JB03741.
    [92]张永庆,谢富仁,Susanna J Gross.利用1996年丽江地震序列反演震区应力状态.地球物理学报,2009,52(4):1025-1032.
    [93]Toda. S., R. S. Stein, and T. Sagiya (2002), Evidence from the ad 2000 izu islands earthquake swarm that stressing rate governs seismicity, Nature,419,58-61.
    [94]Freed, A. M., S. T. Ali, and R. Burgmann (2007), Evolution of stress in southern California for the past 2000 years from coseismic, postseismic and interseismic stress changes, Geophys. J. Int.,169,1164-1179.
    [95]王辉,刘杰,石耀霖等.鲜水河断裂带强震相互作用的动力学模拟研究[J].中国科学D辑:地球科学,2008,38(7):808-818.
    [96]杨少敏,游新兆,杜瑞林等.用双三次样条函数和GPS资料反演现今中国大陆构造形变场[J].大地测量与地球动力学,2002,22(1):68-75.
    [97]丁开华.青藏高原中东部地区的现今地壳形变研究[D].武汉:武汉大学博士学位论文,2010.
    [98]陶本藻,王新洲,于正林等.用于垂直形变模型的多面函数拟合法的试验研究[J].地壳形变与地震,1992,12(1):1-13.
    [99]刘经南,施闯,姚宜斌等.多面函数拟合法及其在建立中国地壳平面运动速度场模型中的应用研究[J].武汉大学学报信息科学版,2001,26(6):500-504.
    [100]石耀霖,朱守彪.用GPS位移资料计算应变方法的讨论[J].大地测量与地球动力学,2006,26(1):1-8.
    [101]江在森,张希,陈兵等.华北地区近期地壳水平运动与应力应变场特征[J].地球物理学报,2000,43(9):657-665.
    [102]江在森,马宗晋,张希等.GPS初步结果揭示的中国大陆水平应变场与构造变形[J].地球物理学报,2003,46(3):352-358.
    [103]柴洪洲,崔岳,明锋.最小二乘配置方法确定中国大陆主要块体运动模型[J].测绘学报,2009,38(1):61-65.
    [104]杨元喜,曾安敏,吴富梅.基于欧拉矢量的中国大陆地壳水平运动自适应拟合推估模型[J].中国科学D辑:地球科学,2011,41(8):1116-1125.
    [105]Parsons, T. (2002), Post-1906 stress recovery of the San Andreas fault system calculated from three-dimensional finite element analysis, J. Geophys. Res.,107(B8),2162.
    [106]Parsons, T. (2006a), Tectonic stressing in California modeled from GPS observations, J. Geophys. Res., 111, B03407, doi:10.1029/2005JB003946.
    [107]Parsons, T. (2006b), M≥ 7.0 earthquake recurrence on the San Andreas fault from a stress renewal model, J. Geophys. Res., 111, B12305, doi:10.1029/2006JB004415.
    [108]Li, Q., and M. Liu (2006), Geometrical impact of the San Andreas Fault on stress and seismicity in California, Geophys. Res. Lett.,33, L08302, doi:10.1029/2005GL025661.
    [109]Gilbert, L., C. H. Scholz, and J. Beavan (1994), Strain localization along the San Andreas fault:Consequences for loading mechanisms, J. Geophys. Res.,99,975-984.
    [110]Nalbant, S. S., J. McCloskey, S. Steacy and A. A. Barka (2002), Stress accumulation and increased seismic risk in eastern Turkey, Earth Planet. Sci. Lett.,195,291-298.
    [111]Smith, B., and D. Sandwell (2003), Coulomb stress accumulation along the San Andreas Fault system, J. Geophys. Res.,108(B6),2296, doi:10.1029/2002JB002136.
    [112]Smith, B., and D. Sandwell (2004), A three-dimensional semianalytic viscoelastic model for time-dependent analyses of the earthquake cycle, J. Geophys. Res.,109, B12401.
    [113]Smith, B. R., and D. T. Sandwell (2006), A model of the earthquake cycle along the San Andreas Fault System for the past 1000 years, J. Geophys. Res.,111, B01405.
    [114]Smith-Konter, B., and D. Sandwell (2009), Stress evolution of the San Andreas fault system: Recurrence interval versus locking depth, Geophys. Res. Lett.,36, L13304.
    [115]崔笃信,胡亚轩,王文萍等.海源断裂带库仑应力积累[J].地球科学——中国地质大学学报,2009,34(4):641-650.
    [116]Del Pardo, C., B. R. Smith-Konter, L. F. Serpa, C. Kreemer, G. Blewitt, and W. C. Hammond (2012), Interseismic deformation and geologic evolution of the Death Valley Fault Zone, J. Geophys. Res.,117, B06404, doi:10.1029/2011JB008552.
    [117]Savage, J. C. (1983), A dislocation model of strain accumulation and release at a subduction zone, J. Geophys. Res.,88,4984-4996.
    [118]Matsu'ura, M., and D. D. Jackson (1986), Dislocation model for aseismic crustal deformation at Hollister, California, J. Geophys. Res.,91,12661-12674.
    [119]Deng, J., and L. R. Sykes (1997a), Evolution of the stress field in southern California and triggering of moderate-size earthquakes:A 200-year perspective, J. Geophys. Res.,102, 9859-9886.
    [120]Deng, J., and L. R. Sykes (1997b), Stress evolution in southern California and triggering of moderate-, small-, and micro-size earthquakes, J. Geophys. Res.,102(B11),24411-24435.
    [121]Smith-Konter, B. R., D. T. Sandwell, and P. Shearer (2011), Locking depths estimated from geodesy and seismology along the San Andreas Fault System:Implications for seismic moment release, J. Geophys. Res.,116, B06401, doi:10.1029/2010JB008117.
    [122]Loveless, J.P. and B.J. Meade (2011), Stress modulation on the San Andreas fault by interseismic fault system interactions, Geology,39(11),1035-1038.
    [123]Hanks, T. C., and H. Kanamori (1979), A Moment Magnitude Scale, J. Geophys. Res., 84(B5),2348-2350, doi:10.1029/JB084iB05p02348.
    [124]Well, D. L., and Coppersmith, K. J. (1994), New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement, Bull. Seismol. Soc. Am.,84(4),974-1002.
    [125]Okada, Y. (1992), Internal deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am.,82(2),1018-1040.
    [126]Comninou, M., and Dundurs, J. (1975), The angular dislocation in a half space, J. Elasticity: 5,203-216.
    [127]Stark, P. B. and Parker, R. L. (1995), Bounded variable least squares:An algorithm and application,J.Comp. Stat.,10,129-141.
    [128]Schwartz, D. P., and K. J. Coppersmith (1984), Fault Behavior and Characteristic Earthquakes:Examples From the Wasatch and San Andreas Fault Zones, J. Geophys. Res., 89(B7),5681-5698, doi:10.1029/JB089iB07p05681.
    [129]Gutenberg, B., and C.F. Richter (1954). Seismicity of the Earth, second ed., Princeton Press.
    [130]Richard C. Aster, Brian Borchers, and Clifford H. Thurber (2005), Parameter estimation and inverse problems, Elsevier.
    [131]Zeng, Yuehua, and Chen Chau-Huei (2001), Fault Rupture Process of the 20 September 1999 Chi-Chi, Taiwan, Earthquake, Bull. Seismol. Soc. Am.,91(5),1088-1098.
    [132]Moritz H. (1962), Interpolation and prediction of gravity and their accuracy. Rep 24, Inst Geod Phot Cart. Ohio State Univ, Columbus, USA.
    [133]Tapponnier, P., Z. Xu, F. Roger, B. Meyer, N. Arnaud, G. Wittlinger, and J. Yang (2001), Oblique step-wise growth of the Tibetan Plateau, Science,294,1671-1677.
    [134]Copley, A., J.-P. Avouac, and B. P. Wernicke (2011), Evidence for mechanical coupling and strong Indian lower crust beneath southern Tibet, Nature, 472,79-81.
    [135]Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeβ, D.& Muller, B. (2010), Global crustal stress pattern based on the World Stress Map database release 2008, Tectonophysics,, 482,3-15.
    [136]Molnar, P., and P. Tapponnier (1975), Cenozoic tectonics of Asia:Effects of continental collision, Science,189,419-425.
    [137]Murphy, M. A., A. Yin, T. M. Harrison, S. B. Durr, Z. Chen, F. J. Ryerson, W. S. F. Kidd, X. Wang, and X. Zhou (1997), Did the Indo-Asian collision alone create the Tibetan Plateau?, Geology,25,719-722.
    [138]Royden, L. H., B. C. Burchfiel, and R. D. van der Hilst (2008), The geological evolution of the Tibetan plateau, Science,321,1054-1058, doi:10.1126/science.1155371.
    [139]Tapponnier, P., G. Peltzer, A.Y. Le Dain, R. Armijo, and P. Cobbold (1982), Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine,Geology,10, 611-616
    [140]Peltzer, G., and P. Tapponnier (1988), Formation and evolution of strike slip faults, rifts, and basins during the India-Asia collision:An experimental approach, J. Geophys. Res.,93, 15,085-15,117.
    [141]Avouac, J. P., and P. Tapponnier (1993), Kinematic model of active deformation in central Asia, Geophys. Res. Lett.,20,895-898.
    [142]Replumaz, A., and P. Tapponnier (2003), Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks, J. Geophys. Res.,108(B6), 2285, doi:10.1029/2001JB000661.
    [143]Shen, Z.-K., J. Lii, M. Wang, and R. Burgmann (2005), Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau, J. Geophys. Res.,110, B11409.
    [144]Thatcher, W. (2007), Microplate model for the present-day deformation of Tibet, J. Geophys. Res.,112,B01401,doi:10.1029/2005JB004244.
    [145]England, P., and D. P. McKenzie (1982), A thin viscous sheet model for continental deformation, Geophys. J. R. Astron. Soc.,70,295-321.
    [146]Houseman, G., and P. England (1986), Finite strain calculations of continental deformation 1. Method and general results for convergent zones, J. Geophys. Res.,91,3651-3663.
    [147]Holt, W. E., N. Chamot-Rooke, X. Le Pichon, A. J. Haines, B. Shen-Tu, and J. Ren (2000), Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations,J.Geophys. Res.,105,19,185-19,209.
    [148]Flesch, L. M., W. E. Holt, and A. J. Haines (2001), Dynamics of the India-Eurasia collision zone, J. Geophys. Res.,106,16,435-16,460.
    [149]Gan, W., P. Zhang, Z.-K. Shen, Z. Niu, M. Wang, Y. Wan, D. Zhou, and J. Cheng (2007), Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements, J. Geophys. Res.,112, B08416, doi:10.1029/2005JB004120.
    [150]Paul, J., et al. (2001), The motion and active deformation of India, Geophys.Res. Lett.,28(4), 647-650.
    [151]Wang, Q., et al. (2001), Present-day crustal deformation in China constrained by Global Positioning System measurements, Science,294,574-577.
    [152]Banerjee, P., and R. Burgmann (2002), Convergence across the northwest Himalaya from GPS measurements, Geophys. Res. Lett.,29(13),1652, doi:10.1029/2002GL015184.
    [153]Deng, Q., Zhang, P., Ran, Y., Yang, X., Min, W., Chu, Q. (2003), Basic characteristics of active tectonics of China.Sci. China Earth Sci.,46 (4),356-372.
    [154]Taylor, M., Yin, A. (2009), Active structures of the Himalayan- Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism, Geosphere,5 (3),199-214.
    [155]Zhang, P.-Z. (2013), A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau, Tectonophysics,,584,7-22.
    [156]Krarup T. (1969), A contribution to the mathematical foundation of physical geodesy. Geodetisk Institut.Copenhagen.
    [157]El-Fiky, G. S., T. Kato, and Y. Fujii (1997), Distribution of the vertical crustal movement rates in the Tohoku district. Japan, predicted by least-squares collocation. J. Geodesy,71, 432-442.
    [158]El-Fiky, G. S. and T. Kato (1999), Continuous distribution of the horizontal strain in the Tohoku district. Japan, deduced from least squares prediction, J. Geodynamics,27,213-236.
    [159]Reddy, C. D., El-Fiky, G., Kato, T., Shimada, S., and Kumar, K. V. (2000),Crustal strain field in the Deccan trap region, western India, derived from GPS measurements. Earth, Planets and Space,52,965-969.
    [160]Kahle, H.-G., M. Cocard, Y. Peter, A. Geiger, R. Reilinger, A. Barka, and G. Veis (2000), GPS-derived strain rate field within the boundary zones of the Eurasian, African, and Arabian Plates, J. Geophys. Res.,105(B10),23,353-23,370, doi:10.1029/2000JB900238.
    [161]江在森,刘经南.应用最小二乘配置建立地壳运动速度场与应变场的方法[J].地球物理学报,2010,53(5):1109-1117.
    [162]Yanqiang Wu, Zaisen Jiang, Guohua Yang, Wenxin Wei and Xiaoxia Liu (2011), Comparison of GPS strain rate computing methods and their reliability, Geophys. J. Int.,185,703-717.
    [163]Moritz, H. (1972), Advanced least squares methods, Report of Dep. of Geod. Science, No. 175, The Ohio State Univ., Columbus, U.S.A.
    [164]Savage, J. C., W. Gan, and J. L. Svarc (2001), Strain accumulation and rotation in the Eastern California Shear Zone, J. Geophys. Res.,106(B 10),21,995-22,007.
    [165]Mikhail, E.M., Ackermann, F. (1976), Observation and least squares. Harper and Row Publishers Inc., New York, pp.497.
    [166]Hirvonen, R.A. (1962), On the statistical analysis of gravity anomalies. Isostatic Inst. Int. Ass. Geod. Publ., Helsinki, pp.37.
    [167]Van der Woerd, J., Tapponnier, P., Ryerson, F.J., Meriaux, A.S., Meyer, B., Gaudemer, Y, Finkel, R.C., Caffee, M.W., Zhao, G., Xu, Z. (2002), Uniform postglacial slip-rate along the central 600 km of the Kunlun fault (Tibet), from 26A1, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology, Geophys. J. Int.,148,356-388.
    [168]Li, H., Van der Woerd, J., Tapponnier, P., Klinger, Y., Qi, X., Yang, J., and Zhu, Y. (2005), Slip rate on the Kunlun fault at Hongshui Gou, and recurrence time of great events comparable to the 14/11/2001, Mw~7.9 Kokoxili earthquake, Earth Planet. Sci. Lett.,237,285-299.
    [169]He, J., Chery, J. (2008), Slip rates of the Altyn Tagh, Kunlun and Karakorum faults (Tibet) from 3D mechanical modeling, Earth Planet. Sci. Lett.,274,50-58.
    [170]Lin, A., Fu, B., Guo, J., Zeng, Q., Dang, G., He, W., Zhao, Y. (2002), Co-seismic strike-slip and rupture length produced by the 2001 Ms 8.1 Central Kunlun earthquake, Science,296, 2015-2017.
    [171]Liao, C., Zhang, C., Wu, M., Ma, Y., Ou, M. (2003), Stress change near the Kunlun fault before and after the Ms 8.1 Kunlun earthquake. Geophys. Res. Lett.,30 (20),2027.
    [172]Lin, A., Kikuchi, M., Fu, B. (2003), Rupture segmentation and process of the 2002 Mw 7.8 Central Kunlun earthquake, China, Bull. Seism. Soc. Am.,93,2477-2492.
    [173]Robinson, D.P., Brough, C., Das, S. (2006), The Mw 7.8,2001 Kunlunshan earthquake: Extreme rupture speed variability and effect of fault geometry, J. Geophys. Res., 111, B08303, doi:10.1029/2005JB004137.
    [174]Scholz, C.H. (2002), The Mechanics of Earthquakes and Faulting,2nd Edition. Cambridge Univ. Press, New York.
    [175]Xu, L., and Chen, Y. (2005), Temporal and spatial rupture process of the great Kunlun Mountain Pass earthquake of November 14,2001 from the GDSN long period waveform data, Sci. China Earth Sci.,48 (1),112-122.
    [176]Fu, B., Awata, Y., Du, J., Ninomiya, Y., He,W. (2005), Complex geometry and segmentation of the surface rupture associated with the 14 November 2001 great Kunlun earthquake, northern Tibet, China, Tectonophysics,,407,43-63.
    [177]张培震,徐锡伟,闻学泽,冉勇康.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J].地球物理学报,2008,51(4):1066-1073.
    [178]Zhang, Y., Feng, W.P., Xu, L.S., Zhou, C.H., Chen, Y.T. (2009), Spatio-temporal rupture process of the 2008 great Wenchuan earthquake, Sci. China Earth Sci.,52 (2),145-154.
    [179]Brune, J.N. (1970), Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res.,75 (26),4997-5009.
    [180]Ge, S., Liu, M., Lu, N., Godt, J.W., Luo, G. (2009), Did the Zipingpu Reservoir trigger the 2008 Wenchuan earthquake?. Geophys. Res. Lett.,36, L20315, doi:10.1029/2009GL040349.
    [181]Luo, G., and Liu, M. (2010), Stress evolution and fault interactions before and after the 2008 Great Wenchuan earthquake, Tectonophysics,,491,127-140.
    [182]Shen, Z.-K., Lu, J., Wang, M., and Burgmann, R. (2005), Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau, J. Geophys. Res.,110, B11409, doi:10.1029/2004JB003421.
    [183]Wang, H., Wright, T.J., and Biggs, J. (2009), Interseismic slip rate of the northwestern Xianshuihe fault from InSAR data, Geophys. Res. Lett.,36, L03302.
    [184]Wang, S.F., Wang, E., Fang, X.M., Fu, B.H. (2008), Late Cenozoic systematic left-lateral stream deflections along the Ganzi-Yushu Fault, Xianshuihe Fault System, Eastern Tibet, Int. Geol. Rev.,50 (7),624-635.
    [185]Wang, H., Liu J., Shi Y.L., Zhang H., Zhang G. M. (2008), Dynamic simulation of interactions between major earthquakes on the Xianshuihe fault zone, Sci. China Earth Sci., 51 (10),1388-1400.
    [186]Bendick, R., Bilham, R., Freymueller, J., Larson, K., Yin. G.H. (2000), Geodetic evidence for a low slip rate in the Altyn Tagh fault system, Nature,404 (6773),69-72.
    [187]Zhang, P.-Z., Molnar, P., Xu, X. (2007), Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau, Tectonics,26, TC5010.
    [188]Cowgill, E., Gold, R.D., Chen, X., Wang, X.F., Arrowsmith, J.R., Southon, J. (2009), Low Quarternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet, Geology,37 (7),647-650.
    [189]Wang, H., Liu, M., Cao, J., Shen, X., Zhang, G. (2011), Slip rates and seismic moment deficits on major active faults in mainland China, J. Geophys. Res.,116, B02405.
    [190]Xu, X.W., Wen, X.Z., Zheng, R.Z., Ma, W.T., Song, F.M., Yu, G.H. (2003), Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China. Sci. China Earth Sci.,46 (Suppl.2),210-226.
    [191]Wang, Y., Wang, E., Shen, Z.,Wang, M., Gan, W., Qiao, X., Meng, G., Li, T., Tao,W., Yang, Y., Cheng, J., and Li, P. (2008), GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China. Sci. China Earth Sci.,51 (9),1267-1283.
    [192]Wen, X., Xu, X., Zheng, R., Xie, Y., and Wan, C. (2003), Average slip-rate and recent large earthquake ruptures along the Ganzi-Yushu fault, Sci. China Earth Sci.,46 (Suppl.2), 276-288.
    [193]Li, C., Zhang, P.-Z., Yin, J., and Min, W. (2009), Late Quaternary left-lateral slip rate of the Haiyuan fault, northeastern margin of the Tibetan Plateau, Tectonics,28, TC5010.
    [194]Loveless, J.P., Meade B.J. (2011), Partitioning of localized and diffuse deformation in the Tibetan Plateau from joint inversions of geologic and geodetic observations, Earth Planet. Sci. Lett.,303,11-24.
    [195]Kirby, E., Harkins, N., Wang, E., Shi, X., Fan, C., Burbank, D. (2007), Slip rate gradients along the eastern Kunlun fault, Tectonics,26, TC2010, doi:10.1029/2006TC002033.
    [196]Brown, E.T., Bendick, R., Bourles, D.L., Gaur, V., Molnar, P., Raisbeck, G.M., Yiou, F. (2002), Slip rates of the Karakorum fault, Ladakh, India, determined using cosmic ray exposure dating of debris flows and moraines, J. Geophys. Res.,107 (B9),2192.
    [197]Wright, T.J., Parsons, B., England, P.C., Fielding, E.J. (2004), InSAR observations of low slip rates on the major faults of western Tibet, Science,305 (5681),236-239.
    [198]Phillips, R.J., Parrish, R.R., Searle, M.P. (2004), Age constraints on ductile deformation and long-term slip rates along the Karakorum fault zone, Ladakh, Earth Planet. Sci. Lett.,226, 305-319.
    [199]Chevalier, M.-L., Ryerson, F.J.P., Tapponnier, R.C., Finkel, J., Van Der Woerd, Li, H., Liu, Q. (2005), Slip-rate measurements on the karakorum fault may imply secular variations in fault motion, Science,307 (5708),411-414.
    [200]Lin, A., Kano, K., Maruyama, T., Guo, J. (2008), Late Quaternary activity and dextral strike-slip movement on the Karakax fault zone, northwest Tibet, Tectonophysics,453,44-62.
    [201]Zhang, P., Shen, Z., Wang, M., Gan,W., Burgmann, R., Molnar, P.,Wang, Q., Niu, Z., Sun, J., Wu, J., Sun, H., You, X. (2004), Continuous deformation of the Tibetan Plateau from global positioning system data, Geology,32,9809-9812.
    [202]Banerjee, P., and Burgmann, R. (2002), Convergence across the northwest Himalaya from GPS measurements, Geophys. Res. Lett.,29 (13),1652, doi:10.1029/2002GL015184.
    [203]李传友,张培震,张剑玺,袁道阳,王志才.西秦岭北缘断裂带黄香沟段晚第四纪活动表现与滑动速率[J].第四纪研究,2007,27(1):54-63.
    [204]Armijo, R., Tapponnier, P., Mercier, J.L., Han, T.L. (1986), Quaternary extension in southern Tibet:Field observations and tectonic implications, J. Geophys. Res.,91,13803-13872.
    [205]Chen, Q., Freymueller, J.T., Wang, Q., Yang, Z., Cai, C., Liu, J. (2004a), A deforming block model for the present-day tectonics of Tibet, J. Geophys. Res.,109(B1), B01403.
    [206]Chen, Q., Freymueller, J.T., Yang, Z., Xu, C., Jiang, W., Wang, Q., Liu, J. (2004b), Spatially variable extension in southern Tibet based on GPS measurements, J. Geophys. Res.,109, B09401, doi:10.1029/2002JB002350.
    [207]Savage, J. C., and R. O. Burford (1970), Accumulation of tectonic strain in California, Bull. Seismol. Soc. Am.,60,1877-1896.
    [208]Savage, J., and R. Burford (1973), Geodetic determination of relative plate motion in central California, J. Geophys. Res.,78,832-845.
    [209]Johnson, K. M., and P. Segall (2004), Viscoelastic earthquake cycle models with deep stress-driven creep along the San Andreas fault system, J. Geophys. Res.,109, B10403.
    [210]Savage, J., and W. H. Prescott (1978), Asthenosphere readjustment and the earthquake cycle, J. Geophys. Res.,83(B7),3369-3376.
    [211]Nur, A., and G. Mavko (1974), Postseismic viscoelastic rebound, Science,183(4121),204-206.
    [212]Johnson, K. M., and J. Fukuda (2010), New methods for estimating the spatial distribution of locked asperities and stress-driven interseismic creep on faults with application to the San Francisco Bay Area, California, J. Geophys. Res.,115, B12408.
    [213]Savage, J. (1983), A dislocation model of strain accumulation and release at a subduction zone, J. Geophys. Res.,88(B6),4984-4996, doi:10.1029/JB088iB06p04984.
    [214]Savage, J. C., and M. Lisowski (1993), Inferred depth of creep on the Hayward Fault, central California, J. Geophys. Res.,98,787-793,
    [215]Savage, J., and M. Lisowski (1998), Viscoelastic coupling model of the San Andreas Fault along the Big Bend, southern California, J. Geophys. Res.,103(B4),7281-7292.
    [216]Matsu'ura, M., D. D. Jackson, and A. Cheng (1986), Dislocation model for aseismic crustal deformation at Hollister, California, J. Geophys. Res.,91(B12),12661-12674.
    [217]Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am.,75,1135-1154.
    [218]Matsu'ura, M., and T. Sato (1989), A dislocation model for the earthquake cycle at convergent plate boundaries, Geophys. J. Int.,96,23-32.
    [219]McCaffrey, R. (2002), Crustal block rotations and plate coupling, in Plate Boundary Zones, Geodyn. Ser., vol.30, edited by S. Stein and J. T. Freymueller, pp.101-122, AGU, Washington, D. C.
    [220]Meade, B. J., B. H. Hager, S. C. McClusky, R. E. Reilinger, S. Ergintav, O. Lenk, A. Barka, and H. Ozener (2002), Estimates of seismic potential in the Marmara Sea region from block models of secular deformation constrained by Global Positioning System measurements, Bull. Seismol. Soc. Am.,92,208-215.
    [221]Meade, B. J., and B. H. Hager (2005), Block models of crustal motion in southern California constrained by GPS measurements, J. Geophys. Res.,110, B03403.
    [222]McCaffrey, R. (2005), Block kinematics of the Pacific-North America plate boundary in the southwestern United States from inversion of GPS, seismological, and geologic data, J. Geophys. Res.,110, B07401, doi:10.1029/2004JB003307.
    [223]Pollitz, F. F., P. McCrory, J. Svarc, and J. Murray (2008), Dislocation models of interseismic deformation in the western United States, J. Geophys. Res.,113, B04413.
    [224]Meade, B.J., and Loveless, J.P. (2009), Block modeling with connected fault network geometries and a linear elastic coupling estimator in spherical coordinates, Bull. Seismol. Soc. Am.,99(6),3124-3139.
    [225]Evans, E. L., J. P. Loveless, and B. J. Meade (2012), Geodetic constraints on San Francisco Bay Area fault slip rates and potential seismogenic asperities on the partially creeping Hayward fault, J. Geophys. Res.,117, B03410, doi:10.1029/2011JB008398.
    [226]Bell, M. A., J. R. Elliott, and B. E. Parsons (2011), Interseismic strain accumulation across the Manyi fault (Tibet) prior to the 1997 Mw 7.6 earthquake, Geophys. Res. Lett.,38, L24302, doi:10.1029/2011GL049762.
    [227]McCaffrey, R., Qamar, A. I., King, R. W.. Wells, R., Khazaradze, G., Williams, C. A., Stevens, C. W., Vollick, J. J. and Zwick, P. C. (2007), Fault locking, block rotation and crustal deformation in the Pacific Northwest, Geophys. J. Int.,169,1315-1340.
    [228]崔笃信,王庆良,胡亚轩,王文萍,朱桂芝.用GPS数据反演海原断裂带断层滑动速率和闭锁深度[J].地震学报,2009,31(5):516-525.
    [229]McCaffrey, R. (2009), Time-dependent inversion of three-component continuous GPS for steady and transient sources in northern Cascadia, Geophys. Res. Lett.,36, L07304.
    [230]Spinler, J. C., R. A. Bennett, M. L. Anderson, S. F. McGill, S. Hreinsdottir, and A. McCallister (2010), Present - day strain accumulation and slip rates associated with southern San Andreas and eastern California shear zone faults, J. Geophys. Res.,115, B11407, doi:10.1029/2010JB007424.
    [231]Benford, B., DeMets, C., Tikoff, B., Williams, P., Brown, L. and Wiggins-Grandison, M. (2012a), Seismic hazard along the southern boundary of the Gonave microplate:block modelling of GPS velocities from Jamaica and nearby islands, northern Caribbean. Geophys. J. Int.,190,59-74. doi:10.1111/j.1365-246X.2012.05493.x
    [232]Benford, B., DeMets, C., and Calais, E. (2012b), GPS estimates of microplate motions, northern Caribbean:evidence for a Hispaniola microplate and implications for earthquake hazard, Geophys. J. Int.,191(2),481-490. doi:10.1111/j.1365-246X.2012.05662.x
    [233]Del Pardo, C., B. R. Smith-Konter, L. F. Serpa, C. Kreemer, G. Blewitt, and W. C. Hammond (2012), Interseismic deformation and geologic evolution of the Death Valley Fault Zone, J. Geophys. Res.,117, B06404, doi:10.1029/2011JB008552.
    [234]Payne, S.J., McCaffrey, R., King, R.W. and Kattenhorn, S.A. (2012), Anew interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements. Geophys. J. Int.,189,101-122.
    [235]Peyret, M., Masson, F., Yavasoglu, H., Ergintav, S., and Reilinger, R. (2013), Present-day strain distribution across a segment of the central bend of the North Anatolian Fault Zone from a Persistent-Scatterers InSAR analysis of the ERS and Envisat archives, Geophys. J. Int.,192 (3),929-945.doi:10.1093/gji/ggs085
    [236]Wallace, L. M., P. Barnes, J. Beavan, R. Van Dissen, N. Litchfield, J. Mountjoy, R. Langridge, G. Lamarche, and N. Pondard (2012), The kinematics of a transition from subduction to strike-slip:An example from the central New Zealand plate boundary, J. Geophys. Res.,117, B02405, doi:10.1029/2011JB008640
    [237]张培震,邓起东,张国民等.中国大陆的强震活动与活动地块[J].中国科学地球科学,2003,33(增刊):]2-3].
    [238]李延兴,杨国华,李智等.中国大陆活动地块的运动与应变状态[J].中国科学地球科学,2003,33(增刊):65-81.
    [239]崔军文,张晓卫,唐哲民等.青藏高原的构造分区及其边界的变形构造特征[J].中国地质,2006,33(2):256-167.
    [240]张国民,汪素云,李丽等.中国大陆地震震源深度及其构造含义[J].科学通报,2002,47(9):663-670.
    [241]Yang Youqing, Mian Liu (2009), Crustal thickening and lateral extrusion during the Indo-Asian collision:A 3D viscous flow model, Tectonophysics,,465,128-135.
    [242]王辉,金红林.基于GPS资料反演中国大陆主要断裂现今活动速率[J].地球物理学进展,2010,25(6):1905-1916.
    [243]Shen, Z-K. et al. (2009), Slipmaxima at fault junctions and rupturing of barriers during 8 the 12 May 2008Wenchuan earthquake, Nat. Geosci.,2,718-724.
    [244]XU Caijun, LIU Yang. WEN Yangmao (2010), WANG Rongjiang. Coseismic Slip Distribution of the 2008 Mw 7.9 Wenchuan Earthquake from Joint Inversion of GPS and InSAR Data, Bull. Seism. Soc. Am.,100(5B):2736-2749.
    [245]Wang Qi, Qiao Xuejun, Lan Qigui et al. (2011), Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan, Nat. Geosci,4,634-640.
    [246]张勇,许力生,陈运泰.2010年青海玉树地震震源过程[J].中国科学地球科学,2010,40(7):819-821.
    [247]Li, Z., Elliott, J. R., Feng, W., Jackson, J. A., Parsons, B. E.& Walters, R. J. (2011), The 2010 Mw 6.8 Yushu (Qinghai, China) earthquake:Constraints provided by InSAR and body wave seismology, J. Geophys. Res.,116,10302-10318.
    [248]乔学军,王琪,杜瑞林.川滇地区活动地块现今地壳形变特征[J].地球物理学报,2004,47(5):805-811.
    [249]Xu Caijun, Wen Yangmao (2007), Identification and analyze of crustal motion and deformation models in the Sichuan-Yunnan region, J. Applied Geodesy,1(4),213-222.
    [250]Cowgill, E. (2007). Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting:Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China. Earth Planet. Sci. Lett.,254,239-255.
    [251]张培震,王敏,甘卫军,邓起东.GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J].地学前缘,2003,10(特刊):81-92.
    [252]Ryder, I., et al. (2007), Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modeling, Geophys. J. Int.,169,1009-1027.
    [253]Biggs, J., et al. (2009), The postseismic response to the 2002 M 7.9 Denali Fault earthquake: Constraints from InSAR 2003-2005, Geophys. J. Int.,176,353-367.
    [254]Wen, Y., Z. Li, C. Xu, I. Ryder, and R. Burgmann (2012), Postseismic motion after the 2001 MW 7.8 Kokoxili earthquake in Tibet observed by InSAR time series, J. Geophys. Res.,117, B08405, doi:10.1029/2011JB009043.
    [255]国家重大科学工程“中国地壳运动观测网络”项目组.GPS测定的2008年汶川Ms 8.0级地震的同震位移场[J].中国科学地球科学,2008,38(10):1195-1206.
    [256]张勇,冯万鹏,许力生等.2008年汶川大地震的时空破裂过程[J].中国科学地球科学,2008,38(10):1186-1197.
    [257]黄媛,吴建平,张天中等.汶川8.0级大地震及其余震序列重定位研究[J].中国科学地球科学,2008,38(10):1242-1249.
    [258]徐锡伟,闻学泽,叶建青等.汶川Ms8.0地震地表破裂带及其发震构造[J].地震地质,2008,30(9):597-629.
    [259]张国民,马宏生,王辉等.中国大陆活动地块边界带与强震活动[J].地球物理学报,2005,48(3):602-610.
    [260]He, H. L., Ran, H. L.& Ikada, Y. (2006), Uniform strike-slip rate along the Xianshuihe-Xiaojiang fault system and its implications for active tectonics in southeastern Tibet, Acta Geol. Sin.,2,376-386.
    [261]陈立春,王虎,冉勇康等.玉树Ms7.1级地震地表破裂与历史大地震[J].科学通报,2010,55(13):1200-1205.
    [262]Lin, A. M., Rao, G., Jia, D., Wu, X. J., Yan, B.& Ren, Z. K. (2011), Co-seismic strike-slip surface rupture and displacement produced by the 2010 Mw 6.9 Yushu earthquake, China, and implications for Tibetan tectonics, J. Geodyn.,52,249-259.
    [263]Guo, J. M., Zheng, J. J., Guan, B. B., Fu, B. H., Shi, P. L., Du, J. G., Xie, C.& Liu, L. (2012), Coseismic surface rupture structures associated with 2010 Ms 7.1 Yushu earthquake, China, Seismol. Res. Lett,83,109-118.
    [264]张勇,许力生,陈运泰.2010年青海玉树地震震源过程[J].中国科学地球科学,2010,40(7):819-821.
    [265]Tobita, M., Nishimura, T., Kobaysahi, T., Hao, K. X.& Shindo, Y. (2011), Estimation of coseismic deformation and a fault model of the 2010 Yushu earthquake using PALSAR interferometry data, Earth Planet. Sci. Lett.,307,430-438.
    [266]Li, Z., Elliott, J. R., Feng, W., Jackson, J. A., Parsons, B. E.& Walters, R. J. (2011), The 2010 Mw 6.8 Yushu (Qinghai, China) earthquake:Constraints provided by InSAR and body wave seismology, J. Geophvs. Res.,116,10302-10318.
    [267]Shan, B., Xiong, X., Zheng, Y., Wei. S.J., Wen, Y. M., Jin, B. K.& Ge, C. (2011), The co-seismic Coulomb stress change and expected seismicity rate caused by 14 April 2010 Ms=7.1 Yushu, China, earthquake, Tectonophysics,,510(3-4),345-353.
    [268]Zha, X. J., Dai, Z. Y., Ge, L. L., Zhang, K., Li, X. J., Chen, X. F., Li, Z. H.,& Fu, R. S. (2011), Fault Geometry and Slip Distribution of the 2010 Yushu Earthquakes Inferred from InSAR Measurement, Bull. Seism. Soc. Am.,101(4),1951-1958.
    [269]Wen, Y., Xu, C., Liu, Y., Jiang, G.& He, P. (2013), Coseismic slip in the 2010 Yushu earthquake (China), constrained by wide-swath and strip-map InSAR, Nat. Hazards Earth Syst. Sci.,13,35-44.
    [270]Yoffe, E. H. (1960), The angular dislocation. Phil. Mag.,5(50),161-175.
    [271]Jeyakumaran, M., Rudnicki, J.W.& Keer, L.M. (1992), Modeling slip zones with triangular dislocation elementsk, Bull. Seism. Soc. Am.,82,2153-2169.
    [272]Thomas, A. L. (1993), Poly3D:a three-dimensional, polygonal element, displacement discontinuity boundary element computer program with applications to fractures, faults, and cavities in the earth's crust, M.S. thesis, Stanford University, USA.
    [273]Resor, P. G. (2003), Deformation associated with continental normal faults, PhD thesis, Stanford University, USA.
    [274]Meade, B.J. (2007), Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space, Comp. Geosci., 33(8),1064-1075.
    [275]Resor, P. G., Pollard, D. D., Wright, T. J., and Beroza, G. C. (2005), Integrating high-precision aftershock locations and geodetic observations to model coseismic deformation associated with the 1995 Kozani-Grevena earthquake, Greece, J. Geophys. Res.,110, B09402.
    [276]Schmidt, D. A., Burgmann, R., Nadeau, R. M., and d'Alessio, M. (2005), Distribution of aseismic slip rate on the Hayward fault inferred from seismic and geodetic data, J. Geophys. Res.,110, B08406.
    [277]Maerten, F., Resor, P., Pollard, D., and Maerten, L. (2005), Inverting for slip on three-dimensional fault surfaces using angular dislocations, Bull. Seism. Soc. Am.,95, 1654-1665.
    [278]Burgmann, R., Kogan, M. G., Steblov, G. M., Hilley, G., Levin, V. E., and Apel, E. (2005), Interseismic coupling and asperity distribution along the Kamchatka subduction zone, J. Geophys. Res.,110, B07405.
    [279]Murray, J., and Langbein, J. (2006), Slip on the San Andreas Fault at Parkfield, California, over Two Earthquake Cycles, and the Implications for Seismic Hazard, Bull. Seism. Soc. Am., 96(4B), S283-S303.
    [280]Zhang, L., Wu, J. C., Ge, L. L., Ding, X. L., and Chen, Y. L. (2008), Determining fault slip distribution of the Chi-Chi Taiwan earthquake with GPS and InSAR data using triangular dislocation elements, J. Geodyn.,45,163-168.
    [281]Belabbes, S., Wicks, C., Cakir, Z. and Meghraoui, M. (2009), Rupture parameters of the 2003 Zemmouri (Mw 6.8), Algeria, earthquake from joint inversion of interferometric synthetic aperture radar, coastal uplift, and GPS, J. Geophys. Res.,114, B03406.
    [282]Ochi, T., and Kato T. (2011), The plate coupling in the Tokai District, the Central Japan, inferred from the different data using triangular dislocation elements, Tectonophysics,, 497(1-4),15-22.
    [283]Miyazaki, S., McGuire, J. J., and Segall, P. (2011), Seismic and aseismic fault slip before and during the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space,63, 637-642.
    [284]Loveless, J. P., and Meade, B. J. (2011), Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 Mw=9.0 Tohoku-oki earthquake, Geophys. Res. Lett., 38, L17306.
    [285]Rosen, P.A., Hensley, S., Peltzer, G., and Simons, M. (2004), Updated Repeat Orbit Interferometry package released, EOS, Trans. Am. geophys. Un.,85,35.
    [286]Chen, C. W., and Zebker, H. A. (2000), Network approaches to two-dimensional phase unwrapping:intractability and two new algorithms, J. Opt. Soc. Am. A. Opt. Image Sci. Vis., 17,401-414.
    [287]Zweck, C., Freymueller, J. T., and S. C. Cohen (2002), Elastic dislocation modeling of the postseismic response to the 1964 Alaska earthquake, J. Geophys. Res.,107, B42064.
    [288]Furuya, M., and Yasuda, T. (2011), The 2008 Yutian normal faulting earthquake (Mw 7.1), NW Tibet:Non-planar fault modelling and implications for the Karakax Fault, Tectonophysics, 511(3),125-133.
    [289]Welstead, S. T. (1999), Fractal and wavelet image compression techniques, pp.51-54, SPIE Optical Engineering Press, Bellingham, Washington.
    [290]Jonsson, S., Zebker, H., Segall, P., and Amelung, F. (2002), Fault slip distribution of the 1999 Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements, Bull. Seism. Soc. Am.,92,1377-1389.
    [291]Lohman, R.B., and Simons, M. (2005), Some thoughts on the use of InSAR data to constrain models of surface deformation, Geochem. Geophys. Geosyst.,6(1), Q01007.
    [292]Desbrun, M., Meyer M., Schroder P., and Barr A. H. (1999), Implicit fairing of irregular meshes using diffusion and curvature flow, SIGGRAPH,99,317-324.
    [293]Harris, R. A., and P. Segall (1987), Detection of a Locked Zone at Depth on the Parkfield, California, Segment of the San Andreas Fault, J. Geophys. Res.,92(B8),7945-7962.
    [294]Zhang, G. H., Qu, C. Y., Shan, X. J., Song, X. G., Zhang, G. F., Wang, C. S., Hu, J. C,& Wang, R. J. (2011), Slip distribution of the 2008 Wenchuan Ms 7.9 earthquake by joint inversion from GPS and InSAR measurements:a resolution test study, Geophys. J. Int.,186, 207-220.
    [295]张培震.青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程[J].中国科学地球科学,2008,38(9):1041-1056.
    [296]徐锡伟,闻学泽,郑荣章等.川滇地区活动块体最新构造变动样式及其动力来源[J].中国科学地球科学,2003,33(增刊):151-162.
    [297]Cotton, F., and Coutant, O. (1997), Dynamic stress variations due to shear faults in a plane-layered medium, Geophys. J. Int.,128,676-688.
    [298]温扬茂.利用InSAR资料研究若干强震的同震和震后形变[D].武汉:武汉大学博士学位论文,2009.
    [299]唐荣昌,韩渭宾.四川活动断裂与地震[M].北京:地震出版社,1993.
    [300]Yang Z.X., F. Waldhauser, Y.T. Chen, and P.G. Richards (2005), Double-difference relocation of earthquakes in central-western. China,1992-1999. J. Seismol.,9,241-264.
    [301]李勇,周荣军,Densemore L., MichaelA.,青藏高原东缘大陆动力学与地质响应[M].北京:地质出版社,2006:69-85.
    [302]Densmore, A. L., M. A. Ellis, Y. Li, R. Zhou, G. S. Hancock, and N. Richardson (2007), Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau, Tectonics,26, TC4005, doi:10.1029/2006TC001987.
    [303]Burchfiel, B. C., L. H. Royden, R. D. van der Hilst, and B. H. Hager (2008), A geological and geophysical context for the Wenchuan earthquake ofMay 12,2008, Sichuan, People's Republic of China, GSA Today,18,4-11, doi:10.1130/GSATG18A.1.
    [304]任俊杰,张世民,马保起,田勤俭.龙门山断裂带中北段大震复发特征与复发间隔估计[J].地震学报,2009,31(2):160-171.
    [305]易桂喜,闻学泽,徐锡伟.川滇地区若干活动断裂带整体的强震复发特征研究[J].中国地震,2002,18(3):267-276.
    [306]周荣军,马声浩,蔡长星.甘孜—玉树断裂带的晚第四纪活动特征[J].中国地震, 1996,12(3):250-260.
    [307]周荣军,闻学泽,蔡长星等.甘孜—玉树断裂带的近代地震与未来地震趋势估计[J].地震地质,1997,19(2):115-124.
    [308]闻学泽,徐锡伟,郑荣章等.甘孜-玉树断裂的平均滑动速率与近代大地震破裂[J].中国科学地球科学,2003,33(增刊):199-208.
    [309]闻学泽,黄圣睦,江在雄等.甘孜—玉树断裂带的新构造特征与地震危险性估计[J].地震地质,1985,7(3):23-34.
    [310]中国地震简目编写组.中国地震简目[M].北京:地震出版社,1988.
    [311]任俊杰,谢富仁,刘冬英,张爱武.2010年玉树地震的构造环境、历史地震活动及其复发周期估计[J].震灾防御技术,2010,5(2):228-233.
    [312]闻学泽.中国大陆活动断裂的段破裂地震复发行为[J].地震学报,1999,21(4):411-418.
    [313]周荣军,黎小刚,黄祖智等.四川大凉山断裂带的晚第四纪平均滑动速率[J].地震研究,2003,26(2):191-196.
    [314]何宏林,池田安隆,何玉林等.新生的大凉山断裂带—鲜水河-小江断裂系中段的裁弯取直[J].中国科学地球科学,2008,38(5):564-574.
    [315]魏占玉,何宏林,石峰等.大凉山断裂带南段滑动速率估计[J].地震地质,2012,34(2):282-293.
    [316]宋方敏,李如成,徐锡伟.四川大凉山断裂带古地震研究初步结果[J].地震地质,2002,24(1):27-35.
    [317]王新明,张成贵,裴锡瑜.安宁河活动断裂带的新活动性[J].四川地震,1998,(4):13-34.
    [318]周荣军,何玉林,杨涛等.鲜水河—安宁河断裂带磨西—冕宁段的滑动速率与强震位错[J].中国地震,2001,17(3):253-262.
    [319]何宏林,池田安隆.安宁河断裂带晚第四纪运动特征及模式的讨论[J].地震学报,2007,29(5):537-548.
    [320]闻学泽,范军,易桂喜等.川西安宁河断裂上的地震空区[J].中国科学地球科学,2008,38(7):797-807.
    [321]唐荣昌,黄祖智,文德华等.试论安宁河断裂带新活动的分段性与地震活动[J].地震研究,1989,12(4):337-347.
    [322]钱洪,伍先国,马声浩等.安宁河断裂带北段的古地震事件及其在地震研究中的意义[J].中国地震,1990,6(4):43-49.
    [323]唐荣昌,钱洪,黄祖智等.安宁河断裂带北段晚更新世以来的分段活动特征[J].中国地震,1992,8(3):60-69.
    [324]冉勇康,陈立春,程建武等.安宁河断裂冕宁以北晚第四纪地表变形与强震破裂行为[J].中国科学地球科学,2008,38(5):543-554.
    [325]闻学泽,杜平山,龙德雄.安宁河断裂带小相岭段古地震的新证据及最晚事件的年代[J].地震地质,2000,22(1):1-8.
    [326]易桂喜,闻学泽,范军等.由地震活动参数分析安宁河—则木河断裂带的现今活动习性及地震危险性[J].地震学报,2004,26(3):294-303.
    [327]程建武,郭桂红,岳志军.安宁河断裂带晚第四纪活动的基本特征及强震危险性分析[J].地震研究,2010,33(3):265-274.
    [328]冉洪流,何宏林.鲜水河断裂带北西段不同破裂源强震震级(M≥6.7)及复发间隔研究[J].地球物理学报,2006,49(1):153-161.
    [329]钱洪.鲜水河断裂带的地震复发间隔[J].四川地震,1986,(01):28-32.
    [330]闻学泽.鲜水河断裂带未来三十年内地震复发的条件概率[J].中国地震,1990,6(4):8-16.
    [331]闻学泽.准时间可预报复发行为与断裂带分段发震概率估计[J].中国地震,1993,9(4):289-300.
    [332]安欧.鲜水河断裂带大震复发机制和时空分布原因[J].地震,1995,(3):214-221.
    [333]Zielke, O., and J. R. Arrowsmith (2008), Depth variation of coseismic stress drop explains bimodal earthquake magnitude-frequency distribution, Geophys. Res. Lett.,35, L24301.
    [334]Utsu, T.,1961. A statistical study on the occurrence of aftershocks. Geophys. Mag.,30, 521-605.
    [335]张培震,甘卫军,沈正康,王敏.中国大陆现今构造作用的地块运动和连续变形耦合模型[J].地质学报,2005,79(6):748-756.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700