用户名: 密码: 验证码:
节理岩体卸荷各向异性力学特性试验研究及工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然岩体在漫长的地质作用过程中,被大小不等、方向各异的结构面纵横切割,而形成具有一定结构的不连续体,使得岩体的力学特性要比岩石复杂得多。本文对节理试件进行了声波波速测试、声发射测试、常规三轴压缩试验和三轴卸荷试验,研究了节理岩体的声学特性和加卸载力学特性,同时,通过数值模拟试验研究了节理岩体的尺寸效应,确定了节理岩体的等效力学参数,提出了节理岩体的加卸载屈服准则和节理岩体卸荷损伤等效力学模型,最后,将研究成果应用于实际工程。主要研究内容及结论有以下几点:
     (1)通过对节理试件进行声波波速测试,结果表明:完整试件和节理试件的声波波速服从正态分布,且存在一定的离散性,分析其产生的原因主要来自于试件内部缺陷、测量误差和采集系统精度;对于节理试件,通过改变传感器布设位置,实现了声波以不同入射角穿越节理,与完整试件相比,不同入射角声波穿越节理均有不同程度衰减,且衰减程度随入射角增大呈线性增大关系。
     (2)通过对节理试件的单轴压缩试验进行声发射测试,结果表明:声发射的4个过程,即初始压密区、上升区、峰值区和下降区,与其应力应变全过程一一对应;在声发射过程中,声发射幅值、撞击数和能量的变化规律一致;不同倾角节理试件的声发射幅值、撞击数和能量有明显差异。因此,节理岩体的声学特性具有各向异性。
     (3)通过对节理试件进行单轴压缩试验,结果表明:节理试件的单轴抗压强度和变形模量均有降低,而横向和纵向位移则为增大,上述参数均随节理倾角呈U型变化,60°倾角试件参数均为最小;节理试件分为两种破坏模式,即轴向劈裂破坏和沿节理面滑动破坏。
     (4)通过对节理试件进行常规三轴压缩试验,结果表明:节理试件的弹性模量、变形模量、三轴抗压强度和粘聚力随节理倾角的变化规律与单轴压缩试验一致,均呈U型变化,随着围压等级升高,上述参数极值之比逐渐变小,说明节理试件的力学性能的差异在逐渐减小;内摩擦角随节理倾角增大呈线性增大关系。
     (5)通过对节理试件进行三轴卸荷试验,结果表明:节理试件卸荷过程中的应力应变关系存在较大差异,45°和60°倾角试件应力应变曲线几乎为水平直线,且无破坏特征;变形模量呈指数关系递减:卸载破坏时刻的轴向应力和粘聚力呈U型分布,45°、60°倾角试件在破坏时轴向力几乎未降低,这与其破坏模式紧密相关;不同的卸荷速率(0.01MPa/s、0.02MPa/s、0.05MPa/s)对节理试件变形模量、峰值强度、强度参数和破坏围压均有影响。
     (6)通过对等间距平行节理岩体进行数值模拟试验,结果表明:不同倾角的节理岩体均具有尺寸效应,且变化规律存在差异,当岩体强度为节理面强度控制时,变形模量随模型尺寸呈指数关系增大,当岩体强度为岩石强度控制时,变形模量随模型尺寸呈对数关系减小,且趋于稳定;不同尺寸的节理岩体也具有明显的各向异性,沿节理走向方向的变形模量受节理影响较小,沿节理倾向方向和高程方向的弹性模量受节理影响较大,且呈对称关系。
     (7)根据节理岩体的加卸载试验和节理面力学效应分析,提出了单一节理及层状岩体的加卸载屈服准则,同时,将屈服准则划分为2段,即受节理面强度控制和受岩石强度控制。
     (8)节理岩体在卸荷过程中变形模量和强度参数大大降低,并将其定义为卸荷损伤;通过建立卸荷过程中的变形模量降幅与损伤变量的一一对应关系,提出了节理岩体卸荷损伤等效力学模型。
     (9)采用本文所提出的节理岩体卸荷损伤等效力学模型对小湾水电站高水位运行大坝与边坡相互作用进行了数值模拟,计算结果与监测值变化趋势一致,且在数值上吻合较好,说明此力学模型可较好地反映节理岩体的变形特性。
In the process of long geologic effect, the rock mass was cut by structural planes with different shapes and directions into discontinuous rock mass with certain structure, which led to its complicated mechanical characteristic. Acoustic wave velocity test, Acoustic Emission Testing, conventional triaxial compression test and triaxial unloading test have been conducted on the jointed samples to discuss about their acoustic characteristic, loading and unloading mechanical characteristic. At the meanwhile,the size effect of jointed rock mass has been researched by numerical simulations and the equivalent mechanical parameters are obtained. What's more, the loading and unloading yield criterion, unloading damaged equivalent mechanics model of the jointed rock mass has also been put forward, and the results has been applied in practice. There are several points on the research contents and conclusions as follows:
     (1) The acoustic wave velocity test of jointed samples shows that wave velocity of intact and jointed samples follows normal distribution. As the internal defect, measuring error and acquisition system accuracy, there is certain dispersion between the wave velocities. For jointed samples, wave can through the joint in different incident angle by changing the location of sensor. Compared with the intact samples, the wave attenuation is different with the incident angle, and the attenuation shows a linear increase with incident angle.
     (2) During the uniaxial compression test, the Acoustic Emission Testing on the jointed samples shows that the process of acoustic emission are composed of the initial compression area, the rise area, the peak area and the descending area. It has one-to-one correspondence with the curve of the stress strain. During the AE, the variations of AE amplitudes, hitting number and energy are the same. There are significant differences among them as the rock samples are with different incident angles. Therefore, the acoustic characteristic of jointed rock mass is anisotropic.
     (3) By the uniaxial compression test on jointed samples, the result indicates that the uniaxial compressive strength and deformation modulus of jointed samples both decrease, while the lateral and longitudinal displacements increase. With the changes of jointed dip, these parameters present a U-curve trend, of which the minimum value appears at dip60°The jointed samples have two failure modes, the axial splitting failure and the sliding along the joints failure.
     (4) By the conventional triaxial compression test on jointed samples, it shows that the variations of young modulus, deformation modulus, triaxial compressive strength and cohesion are the same to that present in the uniaxial compression test, which all show a U-curve trend. With the increasing of confining pressure, the ratios of above parameters' extremum value decrease gradually, which indicates that the mechanics characteristic differences of jointed samples decrease. And the internal friction angle linearly increases as the jointed dip rises.
     (5) By the triaxial unloading test on jointed samples, the results shows that during the unloading process, there is big difference in the stress strain of jointed samples. The stress-strain curves of the samples in45°and60°are almost horizontal lines without failure characteristic, and the deformation modulus declines exponentially. In the unloading failure process, the axial stress and cohesion presents a U-curve distribution, while the45°and60°samples'axial stresses nearly do not decrease. This is closely related to failure mode. Different unloading rates (0.01MPa/s,0.02MPa/s,0.05MPa/s) have impact on deformation modulus, peak intensity, intensity parameter and failure confining pressure.
     (6) By the numerical test on equally spaced parallel jointed rock mass, it shows that the jointed rock mass with different dips all have size effect and the variations appear differently. When the rock mass strength is controlled by joint plane, the deformation modulus increases with model size in exponential relationship. When the rock mass strength is controlled by rock strength, the deformation modulus decreases with model size in logarithmic relationship to stabilize. Jointed rock mass with different sizes are also obvious anisotropic. The deformation modulus along the joint strike is less affected by the joints. The deformation modulus along joint inclination and elevation is greatly influenced by joints and presents a symmetric relation.
     (7) Based on the loading and unloading test and the analysis on mechanical effects of joint surface of the jointed rock mass, the loading and unloading yield criterion of single jointed and stratified rock mass was proposed. At the same time, the yield criterion is divided into2sections, one controlled by joint plane and the other by rock mass strength.
     (8) The deformation modulus and strength parameters of jointed rock mass decrease largely during the unloading process, which is defined as unloading damage. An equivalent mechanical model on unloading damage of jointed rock mass was put forward by setting up the one-to-one relationship between deformation modulus decreasing amplitude and damage variable in the unloading process.
     (9) On the basis of the equivalent mechanical model, it makes a numerical simulation on the interaction of high water level operating dam and slope in Xiaowan project. The result suggests that the variations of calculation value is the same with the monitoring one, and the two reaches a good agreement on values. It turns out that the mechanical model can well illustrate the deformation characteristics of jointed rock mass.
引文
[1]A. Perino, J. B. Zhu, J. C. Li, et al. Theoretical Methods for Wave Propagation across Jointed Rock Masses[J]. Rock Mechanics and Rock Engineering,2010,43 (6):799-809.
    [2]R. Resende, L. N. Lamas, J. V. Lemos, et al. Micromechanical Modelling of Stress Waves in Rock and Rock Fractures [J]. Rock Mechanics and Rock Engineering,2010, 13 (6):741-761.
    [3]Oleg Vorobiev. Discrete and continuum methods for numerical simulations of non-linear wave propagation in discontinuous media[J]. International Journal for Numerical Methods in Engineering,2010,83 (4):482-507.
    [4]J. C. Li, H. B. Li, G. W. Ma, et al. A time-domain recursive method to analyse transient wave propagation across rock joints [J]. Geophysical Journal International, 2012,188 (2):631-644.
    [5]Wei-hua WANG, Xi-bing LI, Yu-jun ZUO, et al.3DEC modeling on effect of joints and interlayer on wave propagation [J]. Transactions of Nonferrous Metals Society of China,2006,16, (3):728-734.
    [6]J. B. Zhu, X. B. Zhao, J. C. Li, et al. Normally incident wave propagation across a joint set with the virtual wave source method[J]. Journal of Applied Geophysics, 2011,73 (3):283-288.
    [7]X. B. Zhao, J. Zhao, A. M. Hefny, et al. Normal Transmission of S-Wave Across Parallel Fractures with Coulomb Slip Behavior [J]. Journal of Engineering Mechanics, 2006,132 (6):641-650.
    [8]宋林,邵珠山,吴敏哲.应力波在节理岩体中的传播特性探析[J].煤炭学报,2011,36(增2):241-246.
    [9]Cengiz Kurtulus, Maral Uckardes, Umut Sari, et al. Experimental studies in wave propagation across a jointed rock mass[J]. Bulletin of Engineering Geology and the Environment,2012,71 (2):231-234.
    [10]J. B. Zhu, A. Perino, G. F. Zhao, et al. Seismic response of a single and a set of filled joints of viscoelastic deformational behaviour [J]. Geophysical Journal International,2011,186 (3):1315-1330.
    [11]J. C. Li, G. W. Ma. Experimental study of stress wave propagation across a filled rock joint[J]. International Journal of Rock Mechanics and Mining Sciences,2009, 46 (3):471-478.
    [12]Jianchun Li, Guowei Ma, Xin Huang. Analysis of Wave Propagation Through a Filled Rock Joint[J]. Rock Mechanics and Rock Engineering,2010,43(6):789-798.
    [13]G. W. Ma, J. C. Li, J. Zhao. Three-phase medium model for filled rock joint and interaction with stress waves[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2011,35 (1):97-110.
    [14]Yang Ju, Les Sudak, Heping Xie. Study on stress wave propagation in fractured rocks with fractal joint surfaces[J]. International Journal of Solids and Structures,2007, 44 (13):4256-4271.
    [15]李业学,彭琦,朱建波,等.分形截距对应力波能耗影响规律的试验研究[J].岩石力学与工程学报,2011,30(增2):3982-3988.
    [16]Yexue Li, Zheming Zhu, BixiongLi, et cl. Study on the transmission and reflection of stress waves across joints[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48 (3):364-371
    [17]李业学,谢向东,秦丽.基于分形损失理论的粗糙节理岩体中应力波波速研究[J].振动与冲击,2012,31(2):169-174.
    [18]李业学,谢和平,朱哲明,等.应力波穿越分行节理时的透反射规律研究[J].岩石力学与工程学报,2009,28(1):120-129.
    [19]郭文章,王树仁,张奇,等.节理岩体爆破的破裂规律分析[J].振动与冲击,1999,18(2):30-34.
    [20]郭易圆,李世海.离散元法在节理岩体爆破振动分析中的应用[J].岩石力学与工程学报,2002,21(A02):2408-2412.
    [21]焦玉勇,赵坚.地下爆炸作用下节理岩体力学响应的离散元法模拟[J].岩石力学与工程学报,2004,23(增2):4936-4940.
    [22]张秀丽,焦玉勇,刘泉声,等.节理对爆炸波传播影响的数值研究[J].岩土力学,2008,29(3):717-721.
    [23]Jianchun Li, Guowei Ma. Analysis of Blast Wave Interaction with a Rock Joint[J]. Rock Mechanics and Rock Engineering,2010,43 (6):777-787.
    [24]Jianchun Li, Guowei Ma, Jian Zhao. Analysis of Stochastic Seismic Wave Interaction with a Slippery Rock Fault[J]. Rock Mechanics and Rock Engineering,2011,44 (1): 85-92.
    [25]Z. L. Wang, H. Konietzky, R. F. Shen. Analytical and numerical study of P-wave attenuation in rock shelter layer[J]. Soil Dynamics and Earthquake Engineering, 2010,30:1-7.
    [26]Aamir Ali, Morten Jakobsen. Seismic characterization of reservoirs with multiple fracture sets using velocity and attenuation anisotropy data[J]. Journal of Applied Geophysics,2011,75 (3):590-602.
    [27]许年春,赵明阶,吴德伦.节理岩体应力波反演模型研究[J].岩土力学,2007,28(12):2705-2710.
    [28]许年春,吴德伦,赵明阶,林军志.节理产状的应力波反射法反演研究[J].岩石力学与工程学报,2008,27(增2):3585-3591.
    [29]李建林.三峡工程永久船闸高边坡宏观力学参研究[D].重庆建筑大学,1996.
    [30]李建春,李海波,Guowei MA,等.一维动态等效连续介质模型的研究[J].岩石力学与工程学报,2010,29(A02):4063-4067.
    [31]Oleg Vorobiev, Tarabay Antoun. Equivalent continuum modeling for non-linear wave propagation in jointed media[J]. Journal for Numerical Methods in Engineering, 2011,86 (9):1101-1124.
    [32]L. F. Fan, G. W. Ma, J. C. Li. Nonlinear viscoelastic medium equivalence for stress wave propagation in a jointed rock mass[J]. International Journal of Rock Mechanics and Mining Sciences,2012,50:11-18.
    [33]张建华,吴德伦,朱可善.饱和节理岩体中地震波散射分析[J].重庆建筑大学学报,2000,22(增):15-21.
    [34]雷卫东,ASHRAF M H,滕军,等.二维波穿过单节理的透射率特性及其隐含意义[J].中国矿业大学学报,2006,35(4):492-497.
    [35]赵明阶.二维应力场作用下岩体弹性波速与衰减特性研究[J].岩石力学与工程学报,2007,26(1):123-130.
    [36]俞缙,宋博学,钱七虎.节理岩体双重非线性弹性介质中的纵波传播特性[J].岩石力学与工程学报,2011,30(12):2463-2473.
    [37]徐松林,刘永贵,席道瑛,等.卸荷过程岩体中弹性波波速变化分析[J].岩土力学,2011,32(10):2907-2916.
    [38]R. E. Goodman.不连续岩体中的地质工程方法[M].北方交通大学隧道与地质教研室译.北京:中国铁道出版社,1980.
    [39]余诗刚,王可钧.节理岩体大尺寸取样及三轴试验的建议方法[J].岩土力学,1994,15(1):95-102.
    [40]C I McDermott, B Sinclairb, M Sauterc. Recovery of undisturbed highly fractured bench scale (30cm diameter) drilled samples for laboratory investigation [J]. Engineering Geology,2003,69 (1-2):161-170.
    [41]Z. Y. Yang, J. M. Chen, T. H. Huang. Effect of joint sets on the strength and deformation of rock mass models[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35 (1):75-84.
    [42]P. L. P. Wasantha, P. G. Ranjith, D. R. Viete, et al. Influence of the geometry of partially-spanning joints on the uniaxial compressive strength of rock[J]. International Journal of Rock Mechanics and Mining Sciences,2012,50: 140-146.
    [43]王谦源,李晔.分形节理岩体强度与变形尺度效应的试验研究[J].岩土力学,2008,29(5):1325-1328.
    [44]Tien Yong Ming, Kuo Ming Chuan, Juang Charng Hsein. An experimental investigation of the failure mechanism of simulated transversely isotropic rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43 (8):1163-1181.
    [45]P. H. S. W. Kulatilake, W. He, J. Um, et al. A physical model study of jointed rock mass strength under uniaxial compressive loading[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34 (3-4):165. el-165. e15.
    [46]P. H. S. W. Kulatilake, Bwalya Malama, Jialai Wang. Physical and particle flow modeling of jointed rock block behavior under uniaxial loading[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38 (5):641-657.
    [47]张玉军.节理岩体等效模型及其数值计算和室内试验[J].岩土工程学报,2006,28(1):29-32.
    [48]李建林,王乐华.节理岩体卸荷非线性力学特性研究[J].岩石土力学与工程学报,2007,26(10):1968-1975.
    [49]张振营.岩土力学[M].北京:中国水利水电出版社,2000.
    [50]R. Yoshinaka, T. Yamabe. Joint stiffness and the deformation behaviour of discontinuous rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1986,23 (1):19-28.
    [51]Brown E T, Trollope D H. Strength of a model of jointed rock[J]. Journal of Soil Mechanics & Foundations Div.1970,96:685-704.
    [52]Brown E T. Strength of models of rock with intermittent joints[J]. Journal of Soil Mechanics & Foundations Div,1970,96(6):1935-1949.
    [53]Herbert H. Einstein, Ronald C. Hirschfeld. Model studies on mechanics of jointed rock[J]. Journal of the Soil Mechanics and Foundations Division,1973,99 (3): 229-248.
    [54]陈新,廖志红,李德建.节理倾角及连通率对岩体强度、变形影响的单轴压缩试验研究[J].岩石力学与工程学报,2011,30(4):781-789.
    [55]陈新,王仕志,李磊.节理岩体模型单轴压缩破碎规律研究[J].岩石力学与工程学报,2012,31(5):898-907.
    [56]Xin Chen,Zhihong Liao,Xi Peng. Deformability characteristics of jointed rock masses under uniaxial compression[J]. International Journal of Mining Science and Technology,2012,22 (2):213-221.
    [57]张波,李术才,张敦福,等.含充填节理岩体相似材料试件单轴压缩试验及断裂损伤研究[J].岩土力学,2012,33(6):1647-1652.
    [58]白哲,吴顺川,张晓平.采用光滑节理模型的单节理岩体数值试验[J].铁道建筑,2011,(3):43-46.
    [59]张志刚,乔春生,李晓.单节理岩体强度试验研究[J].中国铁道科学,2007,28(4):34-39.
    [60]Rajendra P. Tiwaria, K. Seshagiri Rao. Postfailurebehaviour of a rock mass under the influence of triaxial and true triaxial confinement[J]. Engineering Geology,2006, 84 (3-4):112-129.
    [61]G. Logters, H. Voort. In-Situ determination of the deformational behaviour of a cubical rock-mass sample under triaxial load[J]. Rock Mechanics,1974,6:65-79.
    [62]Mahendra Singh, Bhawani Singh. High lateral strain ratio in jointed rock masses[J]. Engineering Geology,2008,98 (3-4):75-85.
    [63]Baotang Shen, Ove Stephansson, Herbert H. Einstein, et al. Coalescence of fractures under shear stresses in experiments [J]. JOURNAL OF GEOPHYSICAL RESEARCH,1995,100 (B4):5975-5990.
    [64]Myung Sagong, Duhee Park, Jaeho Yoo, et al. Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48 (7):1055-1067.
    [65]刘刚,赵坚,宋宏伟,等.断续节理岩体中围岩破裂区的试验研究[J].中国矿业大学学报,2008,37(1):62-66.
    [66]张敏思,王述红,杨勇.节理岩体本构模型数值模拟及其验证[J].工程力学,2011,28(5):26-30.
    [67]陈卫忠,朱维申,王宝林,任伟中.节理岩体中洞室围岩大变形数值模拟及模型试验研究[J].岩石力学与工程学报,1998,17(3):223-229.
    [68]李术才,张宁,吕爱钟,等.单轴拉伸条件下断续节理岩体锚固效应试验研究[J].岩石力学与工程学报,2011,30(8):1579-1586.
    [69]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1995.
    [70]张林,范景伟,何江达.拱坝坝肩含断续节理岩体破坏机理研究[J].四川大学学报:工程科学版,2000,32(1):7-11.
    [71]王飞,杜建坡,李秀芬.节理岩体卸荷强度特性的试验研究[J].地质灾害与环境保护,2008,19(3):104-108.
    [72]夏才初,李宏哲,刘胜.含节理岩石试件的卸荷变形特性研究[J].岩石力学与工程学报,2010,29(4):697-704.
    [73]王在泉,张黎明,孙辉.含天然节理灰岩加、卸荷力学特性试验研究[J].岩石力学与工程学报,2010,29(增1):3308-3313.
    [74]刘春.岩体REV和力学参数的数值模拟[J].哈尔滨工业大学学报,2009,41(4):236-238.
    [75]Shuangjian NIU, Hongwen JINGa, Kun HU, et al. Numerical investigation on the sensitivity of jointed rock mass strength to various factor[J]. Mining Science and Technology (China),2010, (20) 4:530-534.
    [76]Amit K. Verma, T. N. Singh. Modeling of a jointed rock mass under triaxial conditions[J]. Arabian Journal of Geosciences,2010,3 (1):91-103.
    [77]王学滨.节理倾角对单节理岩样变形破坏影响的数值模拟[J].四川大学学报(工程科学版),2006,38(2):24-29.
    [78]Ma Haiping, Wang Jing, Zhu Weishen, et al. Influence of joint set with different angles on rock behaviour and cavern Stability[J]. Applied Mechanics and Materials,2011, 90-93:662-665.
    [79]Bing Xie, Jin Jun Guo, Xiang Xia. Influence of loading rate on uniaxial compression test of rock specimen with random joints[J]. Advanced Materials Research,2012, 396-398:217-220.
    [80]郭靓.节理岩体变形与强度特征的三维数值模拟[D].北京:北京交通大学,2009.
    [81]盛谦,黄正加,邬爱清.三峡节理岩体力学性质的数值模拟试验[J].长江科学院院报,2001,18(1):35-37.
    [82]李杭州,廖红建.复杂应力状态下岩体强度的各向异性研究[J].岩石力学与工程学报,2010,29(7):1397-1403.
    [83]刘爱华,董蕾,董陇军.节理岩体强度参数的数值模拟及工程应用[J].中南大学学报(自然科学版),2011,41(1):177-183.
    [84]朱道建,杨林德,蔡永昌.柱状节理岩体压缩破坏过程模拟及机制分析[J].岩石力学与工程学报,2009,28(4):716-724.
    [85]Bhasin and Hoeg, R. Bhasin, K. Hoeg, Numerical modelling of block size effects and influence of joint properties in multiply jointedrock[J]. Tunnelling and Underground Space Technology,13 (2) (1998), pp.181-188
    [86]李世海,董大鹏,燕琳.含节理岩块单轴受压试验三维离散元数值模拟[J].岩土力学,2003,24(4):648-652.
    [87]张红亮,王水林,李春光.基于数值试验的节理岩体变形特性REV研究[J].岩石力学与工程学报,2008,27(A02):3643-3648.
    [88]A. Gens, I. Carol, E. E. Alonso. A constitutive model for rock joints, formulation and numerical implementation[J]. Computers and Geotechnics,1990,9(1-2):3-20.
    [89]C. S. Desai, K. L. Fishman. Plasticity-based constitutive model with associated testing for joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1991,28 (1):15-26.
    [90]Maghous S., Bernaud D., Freard J., et al. Elastoplastic behavior of jointed rock masses as homogenized media and finite element analysis[J]. INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES,2008,45 (8): 1273-1286.
    [91]M. Cai, H. Horii. A constitutive model of highly jointed rock masses [J]. Mechanics of Materials,1992,13 (3):217-246.
    [92]M. Cai, H. Horii. A constitutive model and FEM analysis of jointed rock masses[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1993,30 (4):351-359.
    [93]郭文章,王树仁,陈寿峰,等.节理岩体爆破数值模型及模拟研究[J].岩土力学,1998,19(3):1-9.
    [94]张贵科,徐卫亚.适用于节理岩体的新型黏弹塑性模型研究[J].岩石力学与工程学报,2006,25(增1):2894-2901.
    [95]M. E. Plesha. Constitutive models for rock discontinuities with dilatancy and surface degradation[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1987,11 (4):345-362.
    [96]Duriez J., Darve F., Donze F.. A discrete modeling-based constitutive relation for infilled rock joints[J]. INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES,2011,48 (3):458-468.
    [97]Asadollahi Pooyan, Invernizzi Marco C. A., Addotto Simone, et al. Experimental Validation of Modified Barton's Model for Rock Fractures[J]. ROCK MECHANICS AND ROCK ENGINEERING,2010,43 (5):597-613.
    [98]Asadollahi Pooyan, Tonon Fulvio. Constitutive model for rock fractures:Revisiting Barton's empirical model [J]. ENGINEERING GEOLOGY,2010,113(1-4):11-32.
    [99]Asadollahi Pooyan, Tonon Fulvio. Degradation of rock fracture asperities in unloading, reloading, and reversal [J]. INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS,2011,35 (12):1334-1346.
    [100]肖卫国,兑关锁,陈铁林,等.剪胀和破坏耦合的节理岩体本构模型的研究[J].岩石力学与工程学报,2009,(12):2535-2543.
    [101]肖卫国,兑关锁,朱玉萍,等.充填单节理岩体本构模型研究[J].岩石力学与工程学报,2010,29(A02):3463-3468.
    [102]肖卫国,兑关锁,任青文.节理岩体非线性本构模型的研究[J].工程力学,2010,27(9):1-6.
    [103]唐志成,夏才初,肖素光,等.节理剪切应力-位移本构模型及剪胀现象分析[J].岩石力学与工程学报,2011,30(5):917-925.
    [104]尹显俊,王光纶,张楚汉.岩体结构面切向循环加载本构关系研究[J].工程力学,2005,22(6):97-103,57.
    [105]P. L. P. Wasanthaa, P. G. Ranjitha, D. R. Vieteb. Constitutive models describing the influence of the geometry of partially-spanning joints on jointed rock mass strength:Regression and fuzzy logic analysis of experimental data[J]. Expert Systems with Applications,2012,39 (9):7663-7672.
    [106]Zhu FuWei, Dui GuanSuo, Ren QingWen. A continuum model of jointed rock masses based on micromechanics and its integration algorithm[J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES,2011,54 (3):581-590.
    [107]陈胜宏,王鸿儒,熊文林.节理岩体的数值分析和模型试验研究[J].岩土工程学报,1989,11(3):22-30.
    [108]杨海天,邬瑞锋,王刚,等.节理岩体的复合本构有限元仿真计算[J].岩土工程学报,1996,18(6):69-76.
    [109]陈卫忠,李术才,朱维申,等.考虑裂隙闭合和摩擦效应的节理岩体能量损伤理论与应用[J].岩石力学与工程学报,2000,19(2):131-135
    [110]李夕兵,王卫华,马春德.不同频率载荷作用下的岩石节理本构模型[J].岩石力学与工程学报,2007,26(2):247-253.
    [111]俞缙,林从谋,赵晓豹.岩体节理非线性法向循环加载本构模型的改进[J].华侨大学学报(自然科学版),2009,30(6):694-697.
    [112]彭从文,朱向荣,王金昌,等.基于Plesha本构的岩石节理多层结构模型研究[J].岩土力学,2010,31(7):2059-2071.
    [113]M SOULEY, F HOMAND, B AMADEI. An extension to the Saeb and Amadei constitutive model for rock joints to include cyclic loading paths[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995, 32 (2):101-109.
    [114]俞缙,赵晓豹,赵维炳,等.改进的岩石节理弹性非线性法向变形本构模型研究[J].岩土工程学报,2008,30(9):1316-1321.
    [115]J. G. Wang, Y. Ichikawa, C. F. Leung. A constitutive model for rock interfaces and joints[J]. International Journal of Rock Mechanics and Mining Sciences,2003, 40 (1):41-53.
    [116]Jin C. Y., Feng X. T.. Research and application of nonlinear elastic-hardening interfacial constitutive model in disturbed belt[J]. MATERIALS RESEARCH INNOVATIONS,2011,15 (S1):S605-S608.
    [117]Jiao Yu-Yong, Zhang Xiu-Li, Zhao Jian. Two-Dimensional DDA Contact Constitutive Model for Simulating Rock Fragmentation[J]. JOURNAL OF ENGINEERING MECHANICS-ASCE,2012,138 (2):199-209.
    [118]M. Singh. Applicability of a constitutive model to jointed block mass[J]. Rock Mechanics and Rock Engineering,2000,33 (2):141-147.
    [119]Rong Guan, Huang Kai, Zhou ChuangBing, et al. A new constitutive law for the nonlinear normal deformation of rock joints under normal load[J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES,2012,55 (2):555-567.
    [120]肖卫国.节理岩体本构模型和其细观力学方法理论研究[D].北京:北京交通大学,2011.
    [121]B. Singh. Continuum characterization of jointed rock masses:Part Ⅰ—the constitutive equations[J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1973,10 (4):311-335.
    [122]C. S. Chang, T. H. Huang. A constitutive model for jointed rock masses [J]. Journal of the Chinese Institute of Engineers,1988,11 (1):25-34.
    [123]Gao Zhiwei, Zhao Jidong, Yao Yangping. A generalized anisotropic failure criterion for geomaterials[J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES,2010,47 (22-23):3166-3185.
    [124]Cao Wen-Gui, Zhao Heng, Li Xiang, et al. Statistical damage model with strain softening and hardening for rocks under the influence of voids and volume changes[J]. CANADIAN GEOTECHNICAL JOURNAL,2010,47 (8):857-871.
    [125]蓝航,姚建国,张华兴,等.基于FLAC3D的节理岩体采动损伤本构模型的开发及应用[J].岩石力学与工程学报,2008,27(3):572-579.
    [126]周维垣,杨延毅.节理岩体的损伤断裂模型及验证[J].岩石力学与工程学报,1991,10(1):43-54.
    [127]徐光黎,潘别桐,晏同珍.节理岩体变形模量估算新方法[J].地球科学:中国地质大学学报,1991,16(5):573-580.
    [128]朱维申,王平.节理岩体的等效连续模型与工程应用[J].岩土工程学报,1992,14(2):1-11.
    [129]保长汉.节理岩体的随机本构关系[J].工程力学,1996,(A01):274-278.
    [130]李建林,哈秋舲.节理岩体拉剪断裂与强度研究[J].岩石力学与工程学报,1998, 17(3):259-266.
    [131]伍法权.节理岩体本构模型与强度理论的统计断裂力学分析[J].水文地质与工程地质,1991,18(2):7—11.
    [132]任懿,杨海天.基于时域自适应算法的单向粘弹性节理岩体的等效分析[J].计算力学学报,2009,26(3):301-306.
    [133]Ren Yi, Yang Haitian. Equivalent analysis of orthogonal viscoelastic jointed rock via an adaptive algorithm in time domain[J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN,2010,46 (10):875-888.
    [134]杨海天,王刚.节理岩体两种模式的数值分析[J].岩土工程学报,1999,21(3):273-276.
    [135]牛斌,杨海天.基于均匀化方法的斜交节理岩体复合本构关系研究[J].岩土工程学报,2007,29(5):773-778.
    [136]朱道建,杨林德,蔡永昌.节理岩体复合型多弱面软化模型的研究及实现[J].岩土工程学报,2010,32(2):185-191.
    [137]孙建生,永井哲夫,樱井春辅.一个新的节理岩体力学分析模型及其应用[J].岩石力学与工程学报,1994,13(3):193-204.
    [138]朱珍德,秦天吴,王士宏,等.堆于Cosserat理论的柱状节理岩体各向异性本构模型研究[J].岩石力学与工程学报,2010,29(增2):4068-4076.
    [139]狄圣杰,徐卫亚,王伟,等.柱状节理岩体横观各向同性本构关系研究[J].中国矿业大学学报,2011,40(6):881-887.
    [140]Shengjie Di, WeiyaXu, Yu Ning, et al. Macro-mechanical properties of columnar jointed basaltic rock masses[J]. Journal of Central South University of Technology, 2011,18 (6):2143-2149.
    [141]Dongxu Yan, Weiya Xu, Wentang Zheng, et al. Mechanical characteristics of columnar jointed rock at dam base of Baihetan hydropower station[J]. Journal of Central South University of Technology,2011,18 (6):2157-2162.
    [142]P. H. S. W. Kulatilake. Estimating elastic constants and strength of discontinuous rock[J]. Journal of Geotechnical Engineering,1985,111 (7):847-864.
    [143]Qiong Wu, P. H. S. W. Kulatilake. REV and its properties on fracture system and mechanical properties, and an orthotropic constitutive model for a jointed rock mass in a dam site in China[J]. Computers and Geotechnics,2012,43:124-142.
    [144]Z. T. Bieniawski. Determining rockmass deformability:experience from case histories[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1978,15 (6):237-247.
    [145]F. E. Heuze. Scale effects in the determination of rockmass strength and deformability[J]. Rock Mechanics and Rock Engineering,1980,12(3-4):167-192.
    [146]Nihat Sinan Isik, Resat Ulusay, Vedat Doyuran. Deformation modulus of heavily jointed-sheared and blocky greywackes by pressuremeter tests:Numerical, experimental and empirical assessments[J]. Engineering Geology,2008,101 (3-4): 269-282.
    [147]狄圣杰,徐卫亚,王伟,等.柱状节理岩体原位变形试验力学浅析与模拟[J].岩土力学,2012,33(2):501-508,553.
    [148]C. Okay Aksoy, Melih Genis, Gulsev Uyar Aldas., et al. A comparative study of the determination of rock mass deformation modulus by using different empirical approaches [J]. Engineering Geology,2012,131-132:19-28.
    [149]郝哲.对我国现行岩体分级系统的综述和建议[J].金属矿山,2005,(9):59-62,73.
    [150]丁向东,吴继敏,顾俊.水利工程岩体质量分类方法综述[J].水电能源科学,2006,24(4):44-49.
    [151]胡卸文,黄润秋.水利水电工程中的岩体质量分类探讨[J].成都理工学院学报,1996,23(3):64-68.
    [152]Z. T. Bieniawski. Determining rock mass deformability, experience from case histories[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1978,15 (5):237-247.
    [153]J. L. Sefarim, J. P. Pereira. Consideration of the geomechanics classification of Bieniawski[J]. Proc. Int. Sym. on Eng. Geol. Undergr. Const., Lisbon, Portugal, 1983:1133-1144.
    [154]G. A. Nicholson, Z. T. Bieniawski. A nonlinear deformation modulus based on rock mass classification[J]. International Journal of Mining and Geological Engineering,1990,8 (3):181-202.
    [155]H. S. Mitri, R. Edrissi, J. Henning. Finite element modelling of cable-bolted stopes in hardrock ground mines [J]. SME Annual Meeting. Albuquerque, New Mexico, 1994:94-116.
    [156]A. Palmstrom. Characterizing rock masses by the RMi for use in practical rock engineering, Part2:some practical applications of the rock mass index (RMi) [J]. Tunnelling and Underground Space Technology,1996,11 (3):287-303.
    [157]A. Palmstrom, R. Singh. The deformation modulus of rock masses comparisons between in situ tests and indirect estimates[J]. Tunnelling and Underground Space Technology,2001,16 (2):115-131.
    [158]E. Hoek, E. T. Brown. Practical estimates of rock mass strength [J]. International Journal of Rock Mechanics and Mining Sciences,1997,34 (8):1165-1186.
    [159]S. A. L. Read, L. R. Richards, N. D. Perrin. Applicability of the Hoek-Brown failure criterion to New Zealand greywacke rocks[J]. Proc.9th Int. Cong.on Rock Mech. Paris,1999,2:655-660.
    [160]N. Barton. Some new Q value correlations to assist in site characterization and tunnel design[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39 (2):185-216.
    [161]A. Kayabasi, C. Gokceoglu, M. Ercanoglu. Estimating the deformation modulus of rockmasses:a comparative study [J]. International Journal of Rock Mechanics and Mining Sciences,2003,40 (1):55-63.
    [162]C. Gokceoglu, H. Sonmez, A. Kayabasi. Predicting the deformationmoduli of rockmasses[J]. International Journal of Rock Mechanics and Mining Sciences,2003, 40 (5):701-710.
    [163]H. Sonmez, C. Gokceoglu, R. Ulusay. Indirect determination of the modulus of deformation of rock masses based on the GSI system[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41:849-857.
    [164]H. Sonmez, C. Gokceoglu, H. A. Nefeslioglu, et al. Estimation of rockmodulus: for intact rocks with an artificial neural network and for rockmasses with a new empirical equation[J]. International Journal of Rock Mechanics and Mining Sciences, 2006,43 (2):224-235.
    [165]E. Hoek, M. S. Diederichs. Empirical estimation of rock mass modulus[J]. International Journal of Rock Mechanics and Mining Sciences,2006, 43 (2):203-215.
    [166]Aksoy C. O., Kantarci O., Ozacar V. An example of estimating rock mass deformation around an underground opening using numerical modeling[J]. INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES,2010,47 (2):272-278.
    [167]Lianyang Zhang. Estimating the Strength of Jointed Rock Masses[J]. Rock Mechanics and Rock Engineering,2010,43 (4):391-402.
    [168]J. L. Justo, E. Justo, J. M. Azanon, et al. The Use of Rock Mass Classification Systems to Estimate the Modulus and Strength of Jointed Rock[J]. Rock Mechanics and Rock Engineering,2010,43 (3):287-304.
    [169]张志刚.节理岩体强度确定方法及其各向异性特征研究[D].北京:北京交通大学,2007.
    [170]刘树新,刘长武,袁绍国,等.堪JV. RQD值与Hoek-Brown准则的破碎岩 体强度研究[J].岩石力学与工程学报,2010,29(8):1670-1676.
    [171]周维垣,杨延毅.节理岩体力学参数取值研究[J].岩土工程学报,1992,14(5):1-11.
    [172]赵吉东,尹健民,周维垣,杨若琼.节理岩体断裂损伤模型在三峡坝基岩体力学参数模拟和预测中的应用[J].岩石力学与工程学报,2002,21(2):176-179.
    [173]李同录,罗世毅,何剑,张晓伟.节理岩体力学参数的选取与应用[J].岩石力学与工程学报,2004,23(13):2182-2186.
    [174]李建林,孙志宏.节理岩体压剪断裂及其强度研究[J].岩石力学与工程学报,2000,19(4):444-448.
    [175]胡波,王思敬,刘顺桂,等.基于精细结构描述及数值试验的节理岩体参数确定与应用[J].岩石力学与工程学报,2007,26(12):2458-2465.
    [176]胡波.基于精细结构描述及数值试验的断续节理岩体力学参数智能选取[J].岩石力学与工程学报,2010,29(10):2160-2160.
    [177]C. M. Gerrard. Equivalent elastic moduli of a rock mass consisting of orthorhombic layers[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1982,19 (1):9-14.
    [178]张贵科,徐卫亚.节理岩体正交各向异性等效变形参数研究[J].岩土工程学报,2010,32(6):908-915.
    [179]晏石林,黄玉盈,陈传尧.贯通节理岩体等效模型与弹性参数确定[J].华中科技大学学报:自然科学版,2001,29(6):60-63.
    [180]晏石林,黄玉盈,陈传尧.非贯通节理岩体等效模型与弹性参数确定[J].华中科技大学学报:自然科学版,2001,29(6):64-67.
    [181]张贵科.节理岩体正交各向异性等效力学参数与屈服准则研究及其工程应用[D].南京:河海大学,2006.
    [182]章广成.复杂裂隙岩体等效力学参数及工程应用研究[D].武汉:中国地质大学,2008.
    [183]白明洲,黄润秋,王士天,等.断续节理岩体宏观变形特性差异性的分形估计[J].岩石力学与工程学报,2002,21(6):817-821.
    [184]P. H. S. W. Kulatilake, S. Wang, O. Stephansson. Effect of finite size joints on the deformability of jointed rock in three dimensions [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,,30(5):479-501.
    [185]M. Chalhoub, A. Pouya. Numerical homogenization of a fractured rock mass:a geometrical approach to determine the mechanical representative elementary volume[J]. Electronic Journal of Geotechnical Engineering,2008,13:1-12.
    [186]Kamran Esmaieli, John Hadjigeorgiou, Martin Grenon. Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47 (6):915-926.
    [187]秦娟,耿克勤.节理岩体的代表单元集合体模型及弹性参数预测[J].水利学报,2001,(9):45-50.
    [188]王旭.鄂西三叠系灰岩岩体的REV及强度参数研究[D].武汉:中国地质大学,2007.
    [189]张贵科,徐卫亚.裂隙网络模拟与REV尺度研究[J].岩土力学,2008,29(6):1675-1680.
    [190]卢波,葛修润,朱冬林,陈剑平.节理岩体表征单元体的分形几何研究[J].岩石力学与工程学报,2005,24(8):1355-1361.
    [191]宁宇,徐卫亚,郑文棠,等.柱状节理岩体随机模拟及其表征单元体尺度研究[J].岩石力学与工程学报,2008,27(6):1202-1208.
    [192]周思孟.复杂岩体若干岩石力学问题[M].北京:中国水利水电出版社,1998.
    [193]付志亮,肖福坤,刘元雪,等.岩石力学实验教程[M].北京:化学工业出版社,2011.
    [194]冶金工业部金属研究所.声发射[M].科学出版社,1972,10.
    [195]尤明庆.岩石的力学性质[M].北京:地质出版社,2007.
    [196]Jaeger J C. Rock failure at lower confinig pressure[M]. Engineering,1960.
    [197]赵兴东,唐春安,李元辉,等.花岗岩破裂全过程的声发射特性研究[J].岩石力学与工程学报,2006,25(增2):3673-3678.
    [198]余斐.单轴压缩条件下岩石的声发射试验研究[D].中国地质大学(北京),2012.
    [199]哈秋舲,李建林,张永兴,等.节理岩体卸荷非线性岩体力学[M].北京:中国建筑工业出版社,1998.
    [200]李建林.卸荷岩体力学[M].北京:中国水利水电出版社,2003.
    [201]李建林.卸荷岩体力学理论与应用[M].北京:中国建筑工业出版社,1999.
    [202]吴刚,孙钧.卸荷应力状态下裂隙岩体的变形和强度特性[J].岩石力学与工程学报,1998,17(6):615-621.
    [203]陶履彬,夏才初,陆益鸣.三峡工程花岗岩卸荷全过程特性的试验研究[J].同济大学学报,1998,26(3):330-334.
    [204]李永明,郝临山,魏胜利,翟新献.煤岩加卸荷不同应力途径变形破坏力学参数的研究[J].煤炭技术,2006,25(12):129-131.
    [205]王瑞红.砂岩在卸荷条件下的力学特性研究[D].武汉大学,2009.
    [206]安泰龙,茅献彪,孙凤娟.卸荷速率对岩石强度影响的试验研究[J].力学与实践,2009,31(6):21-24.
    [207]黄润秋,黄达.高地应力条件下卸荷速率对锦屏大理岩力学特性影响规律试验研究[J].岩石力学与工程学报,2010,29(1):21-33.
    [208]邱士利,冯夏庭,张传庆,周辉,孙峰.不同卸围压速率下深埋大理岩卸荷力学特性试验研究[J].岩石力学与工程学报,2010,29(9):1807-1817.
    [209]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,2009.
    [210]陈征宙,胡伏生,方磊,等.岩体节理网络模拟技术研究[J].岩土工程学报,1998,20(1):22-25.
    [211]何杨,李康宏,柴军瑞.由统计规律模拟生成的岩体裂隙网络的非稳定渗流数值分析[J].应用基础与工程科学学报,2005,13(1):81-86.
    [212]尹彦波,李爱兵,袁节平,等.岩体结构面二维网络模拟的计算机辅助技术研究[J].采矿技术,2006,6(4):19-22.
    [213]刘晓丽,王恩志,王思敬.裂隙岩体精细结构描述及工程特性数值试验[J].岩石力学与工程学报,2008,27(s2):3936-3940.
    [214]荣冠,周创兵.基于裂隙网络模拟技术的结构面分布分维数计算[J].岩石力学与工程学报,2004,23(20):3465-3469.
    [215]晏长根,伍法权,祁生文,等.随机节理岩体变形与强度参数及其尺寸效应的数值模拟研究[J].岩土工程学报,2009,31(6):879-885.
    [216]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [217]周维垣,杨强.岩石力学数值计算方法[M].北京:中国电力出版社,2005.
    [218]Lekhnitskii SG. Theory of elasticity of an anisotropic elastic body[M]. Holden Day, Inc.San Francisco,1963.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700