用户名: 密码: 验证码:
GPS观测结果的精化分析与中国大陆现今地壳形变场研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪60年代以来板块构造理论解释海洋地壳构造与形变取得极大成功并被全球地球科学家所接受。但是人们也意识到,大陆内部构造形变并不能完全被板块构造理论所解释,因此板内构造与形变的研究一直是地球科学探索的热点之一。在过去20多年的大陆动力学研究过程中,人们提出了多种理论和假设。针对中国大陆内部的形变模式,这些理论和假设基本上可以归结为“大陆逃逸”和“地壳增厚”两大理论。两大理论的长期并存与争议,重要的原因之一是缺乏现今地壳运动资料的实际验证。随着GPS观测手段的出现,这种状况得到了很大的改观。本文在精化分析GPS观测资料的基础上,对中国大陆现今地壳形变场进行研究。
     以中国地壳运动观测网络的GPS观测资料为主,辅以区域性的加密观测资料及中国周边地区的观测资料,借助GAMIT软件对数据进行处理。数据处理采用卫星轨道的松弛模式,在处理中国大陆区域数据的同时,还处理了同期全球IGS站的数据,确保模型和方法的统一,并避免不同时期IGS精密星历的偏差。在模型方面,采用了目前国际上最新的研究成果,例如天线的绝对相位中心模型、全球气象模型和映射函数、长基线的载波相位模糊度解算技术,等等,确保后续研究的可靠性和严密性。
     GPS观测得到的地壳形变场通常包含有构造形变与非构造形变两类信息,认知非构造形变对GPS定位结果的影响,探寻消除和修正非构造形变的方法是非常必要的。本文运用国际卫星对地观测资料及各类地球物理模型,定量计算海潮、大气、积雪和土壤水、海洋非潮汐四项负荷效应造成的地壳非构造形变,并以此研究和修正这些非构造形变对中国地壳运动观测网络GPS基准站位置时间序列的影响。研究发现此四项负荷效应,特别是大气、积雪和土壤水,对于测站垂向位置的影响显著;通过地球物理模型改正可以使测站垂向位置的RMS降低~1 mm,占其总量的~11%;对于垂向时间序列的周年项部分,这一改正可降低其振幅的~37%。研究还表明,经过地球物理模型改正和周年、半周年谐波拟合改正的时间序列,比仅经过周年、半周年谐波拟合改正的时间序列更为平滑,表明地球物理模型改正对于消除非构造形变的作用不是周年、半周年谐波拟合改正所能替代的。
     在精化分析GPS数据、分析各类因素所导致的地壳非构造形变对GPS定位结果影响的基础上,采用多年来在工作实践中逐步探索和发展起来的一套高精度GPS数据处理模式,借助QOCA软件,在地震地表破裂模型约束下参数估计地震的同震和震后形变,并同时导出中国大陆地壳运动速度场。GPS点的垂直运动速率结果显示,除东北和华南外,中国大陆大部分区域都存在上升趋势,特别是华北地区和青藏高原的上升速率最大达到了5 mm/a。
     以刚性块体运动模型为基础,发展可形变块体模型。在综合地质、地震和大地测量多方面研究成果的基础上初步将中国大陆及周边地区划分为27个块体,然后通过F检验判定块体的性质(刚性或可均匀形变)和刚性块体的相对独立性,最终得到22个独立的活动块体。研究结果表明中国大陆形变场可分为三类地区:第一类地区是中国大陆东部(南北带以东)及准噶尔和塔里木盆地块体。这些区域内部结构完整,不发生内部形变,相邻GPS点不发生相对位移,地震活动性较弱,块体的空间尺度很大,均在上千公里以上。第二类地区处于青藏高原的边缘带,如阿拉善、西宁及西南龙门山块体。这类地区的地壳形变表现出块体运动特征,形变主要集中在块体边界,但内部仍然具有一定的构造活动性,块体的空问尺度也有限。第三类地区包括青藏高原内部、天山造山带和川滇地区。各类形变在全区域内广泛分布,包括挤压、剪切和拉张,形变很难用具有相当规模的块体运动来描述。
     通过分析各类地区岩石圈结构以及形变模式推断:中国大陆地壳形变模式主要由地壳结构所控制。中国大陆东部及准噶尔和塔里木盆地地区地壳介质具有相当强度,形变表现为刚性块体的相对运动。印度板块的北向挤压造成青藏高原和天山的隆起并产生巨厚地壳,壳内温度上升,下地壳低速高导层发育,介质呈较强粘塑性,地壳脆性层在下地壳塑性流变场作用下产生各种类型的、多层次的形变,形变广泛分布而不仅局限于少量块体边界。青藏高原边缘的地壳结构为第一、三类地区之间的过渡区,其形变特征也介于第一、三类地区之间,为强度较低的较小活动块体在边界作用力下的运动与形变。
     综合GPS观测得到的水平与垂直形变场结果及上述岩石圈结构模型,对青藏高原内部及周边地区的形变模式及其机制给出了新的解释。(1)印度板块的北北东向推挤造成跨喜马拉雅山脉的水平汇聚和垂向隆升,水平汇聚速率为12-15mm/a,隆升速率超过5 mm/a。(2)喜马拉雅以北、班公-怒江缝合线以南地区形变表现为近南北向压缩和近东西向拉张,并且压缩量与拉张量大致均衡,为15-20×10-9 strain/a;下地壳内印度板块斜向推进造成~2 mm/a的地表隆升。(3)班公-怒江以北的羌塘地区表现为强烈的南北向挤压(应变率~25×10-9strain/a)和东西向拉张(应变率~20×10-9strain/a),韧性的下地壳与上地幔受到下插印度板块前缘的北向推挤而增厚,推动地表~5 mm/a的快速隆升。(4)高原北部的柴达木块体南北向主压应变率达~25×10-9strain/a,大于东西向的主张应变率~4×10-9strain/a;该地区岩石圈内解耦并不充分,南北向汇聚造成全岩石圈整体增厚,从而推动地表隆升1-3 mm/a。
     中国大陆处于欧亚、印度、太平洋和菲律宾板块的交汇地区,印度板块向欧亚板块的碰撞与推挤是中国大陆西部地壳运动与形变的主要驱动力已被地学界所公认。但中国大陆东部地区地壳运动场的驱动力如何却尚存争议。本文的块体模型结果显示中国大陆东部块体整体呈现向东偏南运动,运动量从北往南逐渐增大,同时华北和东北块体还存在0.7-1.7×10-9radian/a的逆时针旋转,揭示从北往南欧亚板块东缘动力学边界条件的变化。在此基础上进一步结合前人地质、地震与力学模型方面的研究成果,得出中国大陆东部地区形变场动力源主要在于太平洋和菲律宾板块东向退行造成的东西向拉张、且由北向南逐步增大的结论。
     2008年5月12日发生在四川汶川的大地震造成映秀-北川断裂和灌县-江油断裂同时破裂,分别形成了240多公里和70多公里的地表破裂带。分析地震前、后GPS观测数据获得地震同震形变场,并以该同震形变场为约束,反演地震破裂的空间分布。反演结果显示映秀-北川主破裂带倾向北西,沿破裂带的走向从南到北倾角逐渐变大,破裂断层的平均宽度在12-15 km左右。破裂断层的错动在南段以逆冲为主,在北段走滑分量逐步加大,右旋走滑成为断层破裂的主要特征。破裂断层的最大错动量分别达到了7.9 m和7.5 m,恰好对应这次地震中地表破坏最为严重的映秀和北川地区。本次地震释放的地震矩为0.678×1021N.m,对应矩震级Mw=7.9。
Since the 1960s, the plate tectonics theory has been very successful in interpreting oceanic crustal structure and deformation, and accepted by the geoscientists around the world. However, in the meantime people realized that such a theory did not explain structure and deformation of the continents well, so studies about inner continental structure and deformation has been one of foci in geosciences. Over the past 20 years, many theories and hypotheses have been proposed to describe the deformation and dynamics of the continents. These theories and hypotheses, when applied to the study of deformation pattern of the Chinese continent, could be categorized into two groups of theories, namely "continental extrusion" and "crustal thickening".The two groups of theories have coexisted, been debated, and reached to no consensus over the years, one of the reasons was the lack of observational verification of present-day crustal deformation. With the applications of GPS technique to crustal deformation monitoring in recent years, the situation has been improved. This thesis is focused on the study of present-day crustal deformation of the Chinese continent, based on high precision analysis of GPS data.
     GPS data used in the study ware mainly collected by the Crustal Movement Observation Network of China, and some other densification data observed in some regions and surrounding areas of the Chinese continent. When using the GAMIT software to process GPS data, a relaxation mode of the satellite orbits is used to process the local data as well as the global data, and in doing so not only ensuring the consistency of the models and methods adopted, but also avoiding systematic biases from using IGS precise orbits of different periods. Meanwhile, the newest research findings in geophysical models and algorithms, such as the absolute phase center models of the satellite and receiver antennae, the global meteorologic models and troposphere mapping functions, and a new algorithm to efficiently solve for ambiguities for long baselines, are adopted.
     GPS observed crustal deformation usually includes both tectonic and non-tectonic deformation signals, and it is vitally important to detect and remove the non-tectonic deformation signals in the data in order to effectively use GPS observations for tectonic deformation studies. Using the Earth satellite data and geophysical models, non-tectonic crustal deformation caused by the ocean tide loading, atmospheric mass loading, snow and soil moisture mass loading, and non-tidal ocean mass loading are calculated. Based on the quantitative analyses, the effects due to non-tectonic crustal deformation for the position time series of GPS fiducial stations from the Crustal Movement Observation Network of China are studied and corrected. The study shows that these effects on the vertical components of station positions are remarkable, especially ones from the atmospheric mass loading and snow and soil moisture mass loading. Using these geophysical models to correct for the non-tectonic deformation, the RMS of the station vertical positions can be reduced by about 1 mm, which is about 11% of the total RMS, and the amplitudes of annual vertical position variations are also reduced by about 37%. Moreover, the position time series corrected using these models followed by an empirical fitting of annual and semi-annual variations are smoother than that corrected using the empirical fitting of annual and semi-annual variations only, indicating that the geophysical model corrections can not be substituted by pure empirical fitting in removing the non-tectonic deformation effects.
     Based on high precision analysis of GPS data and evaluation of the effect of non-tectonic deformation, the velocity field of crustal motion of the Chinese continent is obtained using the QOCA software, with the coseismic and postseismic displacements of large earthquakes being modeled under constraints. The result indicates that, except for Northeast China and South China, most part of the Chinese continent has been uplifting, particularly in North China and the Tibet plateau, where the uplifting rates reach 5 mm/a.
     Starting from the rigid block motion model, a deformable block motion model is developed. Based on prior information from geologic, seismologic, and geodetic studies, the Chinese continent and its surrounding areas are partitioned into 27 tectonic blocks initially, and the F-test is used to justify whether a block is rigid or deforming, and whether two neighboring blocks are independent or should be merged together. Finally, the process has yielded 22 independent tectonic blocks. The result reveals 3 categories of deformation patterns in the Chinese continent. The first category, associated with the region east of the north-south seismic belt of China and within the Tarim and Junggar blocks, is characterized with stable interior having no relative motion between internal GPS sites and weak seismic activities, and the sizes of these blocks are usually greater than a thousand kilometers. The second category, associated with the borderland of the Tibetan plateau, such as the Alxa, Xining, and southwest Longmenshan blocks, is characterized with block-like motion with deformation mainly accommodated along the block boundaries, but with limited block sizes and moderate internal tectonic activities. The third category, associated with the interior of the Tibetan plateau, the Tian Shan orogenic belt, and the Sichuan-Yunnan region, is characterized with broadly distributed deformation within the regions, including compression, extension, and shear motion, which cannot be reasonably described by relative motion of rigid blocks of large sizes.
     Based on the analysis of regional lithospheric structures and deformation patterns above, it is inferred that the deformation modes of the Chinese continent are mainly controlled by the crustal structure. The crust of eastern China, Tarim, and Jungger regions is mechanically strong, and its deformation takes the form of relative motion between rigid blocks. On the other hand, the northward indentation of the India plate into the Asia continent has created the uplift of the Tibetan plateau and the Tian Shan Mountains, thickened their crust, and raised the temperature in the crust. The lower crust is likely developed with low seismic velocity and high electric conductivity layers and deforms visco-plastically. The brittle part of the crust, driven by the visco-plastic flow of the lower crust, deforms extensively at all scales. The regions of the second category located at the borderland of the Tibetan plateau are the transition zone between the regions of the first and the third categories in term of the crustal structure. Driven by the lateral boundary forces, their deformation mode is also between the two, in the form of block motion and deformation with smaller block size and less internal strength.
     Synthesizing the horizontal and vertical deformation fields derived from GPS measurements and the lithospheric structures elaborated above, a new model is proposed for deformation mode and mechanism of the Tibetan plateau and its surrounding regions.(1) the NNE indentation of the India plate into the Asia continent has caused the horizontal convergence and vertical uplift of the Himalayas, and the convergence and uplift rates are 12-15mm/a and 5mm/a, respectively. (2) In the region north of the Himalayas and south of the Bangong-Nujiang suture zone, the deformation at the surface shows about the equal amount of N-S compression and E-W extension at the rate of 15-20×10-9 strain/a, and the northward under-thrusting of the India plate in the lower crust has resulted in the surface uplift at the rate of about 2 mm/a. (3)the Qiangtang region located north of the Bangong-Nujiang suture zone undergoes strong N-S compression (at a rate of~25×10-9 strain/a) and E-W extension (at a rate of~20×10-9 strain/a), the visco-plastic lower crust and upper mantle is thickened resulting from the northward indentation of the under-thrusting India plate front, driving rapid uplift at the surface at a rate of about 5 mm/a. (4) The Qaidam region located in the northeast of the Tibetan plateau has been compressed in the N-S direction at a rate of~25×10-9 strain/a, and stretched in the E-W direction at a rate of~4×10-9 strain/a, respectively. Large difference between the two components is interpreted as the result of mechanic coupling of the lithosphere, causing N-S convergence and thickening of the whole lithosphere, and the surface uplift at a rate of 1-3 mm/a.
     The Chinese continent is located in the junction region of the Eurasia, India, Pacific, and Philippine Sea plates. It is generally agreed that deformation of the western part of the Chinese continent is predominantly driven by intensive collision between the India plate and the Eurasia plate and the northward push of the former into latter. On the other hand, it is still controversial what the dominant driving force is for deformation of the eastern part of the Chinese continent. In this study, the result of block motion model reveals that the blocks located in the eastern part of the Chinese continent have a consistent ESEward motion and the motion rates increase gradually from north to south. Meanwhile, the blocks of North China and Northeast China show counter-clockwise rotation rates of about 0.7-1.7×10-9 radian/a, suggesting progresssive change of dynamic boundary conditions along the eastern margin of the Eurasia plate from north to south. In light of the above result, combining with previous geologic and seismologic findings and mechanic modeling result, it is concluded that deformation of the eastern part of the Chinese continent is mainly the result of tensional and ocean-ward stresses caused by the eastward retreat of western trenches the Pacific and Philippine Sea plates, which increases progressively from north to south.
     The 12 May 2008 Wenchuan, Sichuan earthquake ruptured the Beichuan-Yingxi-u and Guanxian-Jiangyou faults, and produced surface rupture of~240 km and~70 km in length along the two faults, respectively. In this study, the coseismic displacement field is derived using GPS observations collected before and after the quake, and then is used to invert for the fault geometry and slip distribution of the rupture. The result shows that the Beichuan-Yingxiu fault dips to the northwest at a moderate angle of~41°at the southwest end, and the fault plane gets progressively steeper northeastward along strike, reaching a dip angle of~73°at Qingchuan. The averaged width of fault plane is 12-15 km. Slip caused by the earthquake is characterized mainly by thrust motion with a modest right-lateral strike slip component at the south segment of the fault. As the rupture travelled farther northeastward, the thrust component tapers down gradually, and the dextral component becomes dominant at the northeast end of the rupture. The slip distribution on the Beichuan-Yingxiu fault shows two high-slip concentrations of up to 7.9 m and 7.5 m, respectively. The two high-slip concentrations are just in the neighborhood of Yingxiu Beichuan cities,which suffered the greatest fatalities and structure damages during the quake.The seismic moment release is estimated 6.78×1020Nm, corresponding to an Mw 7.9 earthquake.
引文
Abdrakhmatov, K. Y.,S. A. Aldazhanov, and B. H. Hager, et al.(1996), Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates, Nature,384(6608),450-453.
    Altamimi, Z., P. Sillard, and C. Boucher (2002), ITRF2000:A new release of the International Terrestrial Reference Frame for earth science applications, J Geophys Res,107(B10),2214, doi:10.1029/2001JB000561.
    Altamimi, Z., X. Collilieux, and J. Legrand, et al. (2007), ITRF2005:A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters, J Geophy Res,112, B09401,doi:10.1029/2007JB004949.
    Argus, D. F., and R. G. Gordon(1991),No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1,Geophys Res Lett,18(11),2039-2042.
    Armijo, R., P. Tapponnier, and J. L. Mercier, et al.(1986), Quaternary extension in southern Tibet: Field observations and tectonic implications, J Geophys Res,91(B14),13803-13872.
    Armijo, R., P. Tapponnier, and H.Tonglin(1989), Late Cenozoic right-lateral strike-slip faulting in southern Tibet, J Geophys Res,94(B3),2787-2838.
    Avouac, J. P., and P. Tapponnier(1993),Kinematic model of active deformation in central Asia, Geophys Res Lett,20(10),895-898.
    Banerjee, P., and R. Burgmann (2002), Convergence across the northwest Himalaya from GPS measurements, Geophys Res Lett,29(13),1652, doi:10.1029/2002GL015184.
    Banerjee, P., F. Pollitz, and R. Burgmann (2005), Implications of far-field static displacements for the size and duration of the great 2004 Sumatra-Andaman earthquake, Science,308,1769-1772, doi:10.1126/science.1113746.
    Bendick, R.,R. Bilham, and J.Freymueller, et al. (2000), Geodetic evidence for a low slip rate in the Altyn Tagh fault system, Nature,404(6773),69-72.
    Bird, P. (2003), An updated digital model of plate boundaries, Geochemistry Geophysics Geosystems, 4(3),1027.
    Boehm, J., B. Werl, and H. Schuh (2006), Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, J Geophys Res,11,B2406, doi:10.1029/2005JB003629.
    Boehm, J., R. Heinkelmann, and H.Schuh (2007), Short Note:A global model of pressure and temperature for geodetic applications, J Geodesy,81(10),679-683.
    Brace, W. F., and D. L. Kohlstedt(1980), Limits on lithospheric stress imposed by laboratory experiments, J Geophys Res,85(B11),6248-6252.
    Brocher, T. M., J. McCarthy, and P. E. Hart, et al.(1994), Seismic evidence for a lower-crustal detachment beneath San Francisco Bay, California, Science,265(5177),1436-1439.
    Burchfiel, B.C.,Z. Peizhen, and W. Yipeng, et al.(1991),Geology of the Haiyuan fault zone, Ningxia-Hui autonomous region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau, Tectonics,10(6),1091-1110.
    Burchfiel, B.C.,L. H. Royden, and R. D. Van der Hilst, et al. (2008), A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People's Republic of China, GSA today,18(7),4-11.
    Byerlee, J.(1978), Friction of rocks, Pure Appl Geophys,116(4),615-626.
    Calais, E., M. Vergnolle, and V. San kov, et al. (2003),GPS measurements of crustal deformation in the Baikal-Mongolia area(1994-2002):Implications for current kinematics of Asia, J Geophys Res,108(B10),2501,doi:10.1029/2002JB002373.
    Calais, E., J. Y. Han, and C.DeMets, et al. (2006), Deformation of the North American plate interior from a decade of continuous GPS measurements, J Geophys Res,111,B06402, doi:10.1029/2005JB004253.
    Cavalie, O., C. Lasserre, and M. P. Doin, et al.(2008), Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR, Earth Planet Sci Lett,275(3-4),246-257.
    Chen, Z., Y. Liu, and W. Tang, et al. (2000), Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation, J Geophys Res, 105(B7),16215-16227.
    Clark, M. K., and L. H. Royden (2000), Topographic ooze:Building the eastern margin of Tibet by lower crustal flow,Geology,28(8),703-706.
    Cook, K. L., and L. H. Royden (2008), The role of crustal strength variations in shaping orogenic plateaus, with application to Tibet, J Geophys Res,113, B08407, doi:10.1029/2007JB005457.
    Cowgill, E. (2007), Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting:Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China, Earth Planet Sc Lett,254(3-4),239-255.
    DeMets, C.,R. G. Gordon, and D. F. Argus, et al.(1990), Current plate motions, Geophys J Int,101(2), 425-478.
    DeMets, C.,R. G. Gordon, and D. Argus, et al.(1994), Effect of recent revisions to the geomagnetic reversal time scale on estimate of current plate motions, Geophys Res Lett,21(20),2191-2194.
    Densmore, A. L., M. A. Ellis, and Y. Li, et al. (2007), Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau, Tectonics,26(4),1-17.
    Dixon, T. H.(1991),An introduction to the Global Positioning System and some geological applications, Rev Geophys,29(2),249-276.
    Dong, D. D. QOCA software online manual, In:http://gipsy.jpl.nasa.gov/qoca
    Dong, D. D., P. Fang, and Y. Bock, et al. (2002), Anatomy of apparent seasonal variations from GPS-derived site position time series, J Geophys Res,107(B4),2075,doi:10.1029/2001JB000573.
    Dong, D. D., T. Yunck, and M. Heflin (2003), Origin of the international terrestrial reference frame, J Geophys Res,108(B4),2200, doi:10.1029/2002JB002035.
    Dragert, H., T. S.James, and A. Lambert (2000), Ocean loading corrections for continuous GPS:A case study at the Canadian coastal site Holberg, Geophys Res Lett,27(14),2045-2048.
    England, P., and D. McKenzie(1982), A thin viscous sheet model for continental deformation, Geophys J Int,70(2),295-321.
    England, P., and P. Molnar(1997a), The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults, Geophys J Int,130(3),551-582.
    England, P., and P. Molnar(1997b), Active deformation of Asia:from kinematics to dynamics, Science, 278,647-650,doi:10.1126/science.278.5338.647.
    Farrell, W. E.(1972), Deformation of the Earth by surface loads, Rev Geophys,10(3),761-797.
    Ferland R. (2003), IGS00 (v2) Final, IGSMAIL-4666, In:http://igscb.jpl.nasa.gov/mail/igsmail
    Ferland R. (2006a), Proposed IGS05 Realization, IGSMAIL-5447, In: http://igscb.jpl.nasa.gov/mail/igsmail
    Ferland R. (2006b), IGS05 Fine Tuning, IGSMAIL-5455,In:http://igscb.jpl.nasa.gov/mail/igsmail
    Flesch, L. M., A.J. Haines, and W. E. Holt (2001),Dynamics of the India-Eurasia collision zone, J Geophys Res,106(B8),16435-16460.
    Flesch, L. M.,W. E. Holt, and P. G.Silver, et al. (2005), Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear wave splitting data, Earth Planet Sci Lett, 238(1-2),248-268.
    Gan, W., P. Zhang, and Z. K. Shen, et al. (2007), Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements, J Geophys Res,112, B08416, doi:10.1029/2005JB004120.
    Ge, M., G.Gendt, and G.Dick, et al. (2005a), Impact of GPS satellite antenna offsets on scale changes in global network solutions, Geophys Res Lett,32, L06310, doi:10.1029/2004GL022224.
    Ge, M., G. Gendt, and G.Dick, et al.(2005b), Improving carrier-phase ambiguity resolution in global GPS network solutions, J Geodesy,79(1),103-110.
    Gendt, G., and R. Schmid (2005), Planned changes to IGS antenna calibrations, IGSMA1L-5189, In: http://igscb.jpl.nasa.gov/mail/igsmail
    Gendt,G. (2006),IGS switch to absolute antenna model and ITRF2005,IGSMAIL-5438,In: http://igscb.jpl.nasa.gov/mail/igsmail
    Hager, B. H., R. W. King, and M. H. Murray(1991),Measurement of crustal deformation using the Global Positioning System, Annu Rev Earth Planet Sci,19,351-382.
    Hatanaka, Y., M. Sawada, and A. Horita, et al. (2001),Calibration of antenna-radome and monument-multipath effect of GEONET-Part 2:Evaluation of the phase map by GEONET data, Earth Planets Space,53(1),23-30.
    Harvard University, USA, In:http://www.globalcmt.org/CMTsearch.html
    Heki, K., S. Miyazaki, and H. Takahashi, et al.(1999), The Amurian Plate motion and current plate kinematics in eastern Asia, J Geophys Res,104(B12),29147-29155.
    Herring T. A., R. W. King, and S. C.McClusky (2006), GPS Analysis at MIT, Release 10.3, Massachusetts Institute of Technology.
    Holt, W. E., M. Li, and A. J. Haines(1995), Earthquake strain rates and instantaneous relative motions within central and eastern Asia, Geophys J Int,122(2),569-593.
    Holt, W. E., N.Chamot-Rooke, and X. Le Pichon, et al. (2000), Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations, J Geophys Res,105(B8), 19185-19209
    Houseman, G., and P. England(1986), Finite strain calculations of continental deformation 1:Method and general results for convergent zones, J Geophys Res,91(B3),3651-3663.
    Houseman, G.,and P. England(1993), Crustal thickening versus lateral expulsion in the Indian-Asian continental collision, J Geophys Res,98(B7),12233-12249.
    Huang, J., and D. Zhao (2006), High-resolution mantle tomography of China and surrounding regions, J Geophys Res,111,B9305, doi:10.1029/2005JB004066.
    Jacobs, G. A., G. H. Born, and M. E. Parke(1992), The global structure of the annual and semiannual sea surface height variability from Geosat altimeter data, J Geophys Res,97(C11),17813-17828.
    Ji, C. (2008), Preliminary Result of the May 12,2008 Mw7.97 ShiChuan Earthquake, In: http://www.geol.ucsb.edu/faculty/ji/big_earthquakes/2008/05/12/ShiChuan.html
    Kanamitsu, M., W. Ebisuzaki, and J. Woollen, et al. (2002), NCEP/DOE AMIP-Ⅱ Reanalysis (R-2), Bull Amer Meteor Soc,83(11),1631-1643.
    Kanamori, H.(1977), The energy release in great earthquakes, J Geophys Res,82(20),2981-2987.
    Kay, R. W., and S. M. Kay(1981),The nature of the lower continental crust:Inferences from geophysics, surface geology, and crustal xenoliths, Rev Geophys,19(2),271-297.
    King, R. W., F. Shen, and B. C. Burchfiel, et al.(1997), Geodetic measurement of crustal motion in southwest China, Geology,25(2),179-182.
    Kogan, M. G., G. M. Steblov, and R. W. King, et al. (2000), Geodetic constraints on the rigidity and relative motion of Eurasia and North America, Geophys Res Lett,27(14),2041-2044
    Lasserre, C.,P. H. Morel, and Y. Gaudemer, et al.(1999), Postglacial left slip rate and past occurrence of M≥8 earthquakes on the western Haiyuan fault, Gansu, China, J Geophys Res,104(B8), 17633-17651.
    Lasserre, C.,Y. Gaudemer, and P. Tapponnier, et al. (2002), Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault, Qinghai, China, J Geophys Res,107(B11),2276, doi:10.1029/2000JB000060.
    Liu, K. H., S. S. Gao, and Y.Gao, et al. (2008), Shear wave splitting and mantle flow associated with the deflected Pacific slab beneath northeast Asia, J Geophys Res,113,B01305, doi:10.1029/2007JB005178.
    Lyard, F., F. Lefevre, and T. Letellier, et al. (2006), Modelling the global ocean tides:modern insights from FES2004, Ocean Dynamics,56(5),394-415.
    Mader, G. L.(1999), GPS antenna calibration at the National Geodetic Survey, GPS solutions,3(1), 50-58.
    Mangiarotti, S., A. Cazenave, and L. Soudarin, et al. (2001),Annual vertical crustal motions predicted from surface mass redistribution and observed by space geodesy, J Geophys Res,106(B3), 4277-4291
    Mao, A., C. Harrison, and T. H.Dixon(1999), Noise in GPS coordinate time series, J Geophys Res, 104(B2),2797-2816.
    McCarthy, D. D.(1992), IERS standards, IERS Technical Note#13,US Naval Observatory.
    McCarthy, D. D., and G. Petit (2004), IERS Technical Note#32-IERS Conventions (2003), US Naval Observatory.
    Meade, B. J., and B. H. Hager (2005), Block models of crustal motion in southern California constrained by GPS measurements, J Geophys Res,110,B03403,doi:10.1029/2004JB003209.
    Melbourne, W. G.(1985), The case for ranging in GPS based geodetic systems, In:Proceedings of the first international symposium on precise positioning with the Global Positioning System,15-19, April 1985,373-386.
    Meriaux, A. S., P. Tapponnier, and F. J. Ryerson, et al. (2005), The Aksay segment of the northern Altyn Tagh fault:Tectonic geomorphology landscape evolution and Holocene slip rate, J Geophys Res,110,B04404, doi:10.1029/2004JB003210
    Minster, J. B.,and T. H. Jordan(1978), Present-day plate motions, J Geophys Res,83(B11), 5331-5354.
    Miyazaki S., K. Heki, and Y. Hatanaka et al.(1996), Determination of the Euler vector between the Amurifln and the Eurasian plates with GPS data, Paper presented at 86th Meeting of the Geodetic Society of Japan, Geod Soc of Jpn, Kochi, Japan.
    Morgan, W. J.(1968), Rises, trenches, great faults, and crustal blocks, J Geophys Res,73(6), 1959-1982.
    Niell, A.E.(1996), Global mapping functions for the atmosphere delay at radio wavelengths, J Geophys Res,101(B2),3227-3246.
    Okada, Y.(1985), Surface deformation due to shear and tensile faults in a half-space, Bull Seismol Soc Am,75(4),1135-1154.
    Paul, J., R. Burgmann, and V. K. Gaur, et al. (2001),The motion and active deformation of India, Geophys Res Lett,28(4),647-651.
    Peltzer, G., P. Tapponnier, and Z. Zhitao, et al.(1985), Neogene and Quaternary faulting in and along the Qinling Shan, Nature,317,500-505, doi:10.1038/317500a0.
    Peltzer, G., and P. Tapponnier(1988), Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision:An experimental approach, J Geophys Res,93(B12), 15085-15117.
    Peltzer, G., P. Tapponnier, and R. Armijo(1989), Magnitude of Late Quaternary left-lateral displacements along the north edge of Tibet, Science,246,1285-1289, doi:10.1126/science.246.4935.1285.
    Penna, N. T., and M. P. Stewart (2003), Aliased tidal signatures in continuous GPS height time series, Geophys Res Lett,30(23),2184, doi:10.1029/2003GL018828.
    Penna, N. T., M. A. King, and M. P. Stewart (2007), GPS height time series:Short-period origins of spurious long-period signals, J Geophys Res,112, B02402, doi:10.1029/2005JB004047.
    Plafker, G.(1965), Tectonic Deformation Associated with the 1964 Alaska Earthquake:The earthquake of 27 March 1964 resulted in observable crustal deformation of unprecedented areal extent,Science,148,1675-1687,doi:10.1126/science.148.3678.1675.
    Prawirodirdjo, L., and Y. Bock (2004), Instantaneous global plate motion model from 12 years of continuous GPS observations, J Geophys Res,109, B08405,doi:10.1029/2003JB002944.
    Ray, R.(1999), A global ocean tide model from TOPEX/Poseidon Altimetry:GOT99.2, NASA Tech Memo 209478.
    Ray, J., D. Dong and Z. Altamimi (2004), IGS reference frames:status and future improvements, GPS Solutions,8,251-266.
    Replumaz, A., and P. Tapponnier (2003), Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks, J Geophys Res,108(B6),2285, doi:10.1029/2001JB000661.
    Rhie, J., D. Dreger, and R. Burgmann et al. (2007), Slip of the 2004 Sumatra-Andaman earthquake from joint inversion of long-period global seismic waveforms and GPS static offsets, Bull Seismol Soc Am,97,115-127.
    Royden, L. H., B. C.Burchfiel, and R. W. King, et al.(1997), Surface deformation and lower crustal flow in eastern Tibet,Science,276,788-790,doi.10.1126/science.276.5313.788.
    Scherneck, H. G., J. M.Johansson, and F. H. Webb (2000), Ocean loading tides in GPS and rapid variations of the frame origin, In:Schwarz, K. P. (editor):Geodesy beyond 2000, The challenges of the first decade, IAG Symposia,121,32-40.
    Schmid, R., and M. Rothacher (2003),Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites, J Geodesy,77(7-8),440-446.
    Scholz, C. H.(1990), The mechanics of earthquakes and faulting, Cambridge Univ. Press, New York.
    Segall, P., and J. L. Davis(1997), GPS applications for geodynamics and earthquake studies, Annu Rev Earth Planet Sci,25,301-336.
    Sella, G. F., T. H. Dixon, and A. Mao (2002), REVEL:A model for recent plate velocities from space geodesy, J Geophys Res,107(B4),2081,doi:10.1029/2000JB000033.
    Shen, F., L. H. Royden, and B.C. Burchfiel (2001a), Large-scale crustal deformation of the Tibetan Plateau, J Geophys Res,106(B4),6793-6816.
    Shen, Z. K., and D. D. Jackson(1993),Global Positioning System Reoccupation of Early Triangulation Sites:Tectonic Deformation of the Southern Coast Ranges, J Geophys Res,98(B6),9931-9946.
    Shen, Z. K., B. X. Ge, and D. D. Jackson, et al.(1996), Northridge earthquake rupture models based on the global positioning system measurements, Bull Seismol Soc Am,86(1B),37-48.
    Shen, Z. K., C. K. Zhao, and A. Yin, et al. (2000), Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements, J Geophys Res,105(B3),25955-25968.
    Shen, Z. K. (2000), Optimal estimation of geodetic strains from discretized data.见:塑性力学和地球动力学进展,北京:世界图书出版公司.
    Shen, Z. K., M.Wang, and Y. Li, et al. (2001b), Crustal deformation along the Altyn Tagh fault system, western China, from GPS, J Geophys Res,106(B12),30607-30621.
    Shen, Z. K., J. N. Lu, and M. Wang, et al. (2005), Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau, J Geophys Res,110, B11409, doi:10.1029/2004JB003421.
    Sibson, R. H.(1982), Fault zone models heat flow and the depth distribution of earthquakes in the continental crust of the United States,Bull Seismol Soc Am,72(1),151-163.
    Springer T. (2000), IGS ITRF97 realization, IGSMAIL-2904, In:http://igscb.jpl.nasa.gov/mail/igsmail
    Steigenberger, P., M.Rothacher, and R. Dietrich, et al. (2006), Reprocessing of a global GPS network, J Geophys Res,111,B05402, doi:10.1029/2005JB003747.
    Stewart, M. P., N. T. Penna, and D. D. Lichti (2005), Investigating the propagation mechanism of unmodelled systematic errors on coordinate time series estimated using least squares, J Geodesy, 79(8),479-489.
    Subarya, C.,M. Chlieh and L. Prawirodirdjo, et al. (2006), Plate-boundary deformation associated with the great Sumatra-Andaman earthquake, Nature 440(2 March 2006),46-51, doi:10.1038/nature04522
    Tao, W., and Z. K. Shen (2008), Heat flow distribution in Chinese continent and its adjacent areas, Progress In Natural Science,18(007),843-849.
    Tapponnier, P., and P. Molnar(1977), Active faulting and tectonics in China, J Geophys Res,82(20), 2905-2930.
    Tapponnier, P., X. Zhiqin, and F. Roger, et al. (2001),Oblique stepwise rise and growth of the Tibet Plateau,Science,294(5547),1671-1677.
    Tapponnier, R., G. Peltzer, and A. Y. Le Dain, et al.(1982), Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine, Geology,10(12),611-616.
    Thatcher, W. (2007), Microplate model for the present-day deformation of Tibet, J Geophys Res,112, B01401,doi:10.1029/2005JB004244.
    Turcotte, D. L., and G. Schubert(1982), Geodynamics, John Wiley and Sons Inc, New York.
    USGS, Magnitude 7.9-EASTERN SICHUAN, CHINA,In: http://earthquake.usgs.gov/eqcenter/eqinthenews/2008/us2008ryan
    Van Dam, T., J. Wahr, and P. Milly, et al. (2001),Crustal displacements due to continental water loading, Geophys Res Lett,28(4),651-654.
    Van Der Woerd, J., F. J. Ryerson, and P. Tapponnier, et al. (2000), Uniform slip-rate along the Kunlun fault:Implications for seismic behaviour and large-scale tectonics, Geophys Res Lett,27(16), 2353-2356.
    Van Der Woerd, J., P. Tapponnier, and F. J. Ryerson, et al. (2002), Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26 AI 10Be and 14C dating of riser offsets, and climatic origin of the regional morphology, Geophys J Int,148(3),356-388.
    Vergnolle, M., E. Calais, and L. Dong (2007), Dynamics of continental deformation in Asia, J Geophys Res,112, B11403, doi:10.1029/2006JB004807.
    Vigny, C.,W. Simons, and S. Abu, et al. (2005), Insight into the 2004 Sumatra-Andaman earthquake from GPS measurements in southeast Asia, Nature,436(14 July 2005),201-206, doi:10.1038/nature03937.
    Wang, Q., P. Z. Zhang, and J. T. Freymueller, et al. (2001),Present-day crustal deformation in China constrained by global positioning system measurements, Science,294(5542),574-577.
    Ward, S. N.(1990), Pacific-North America plate motions:new results from very long baseline interferometry, J Geophys Res,95(B13),21965-21981.
    Watson, C.,P. Tregoning, and R. Coleman (2006), Impact of solid Earth tide models on GPS coordinate and tropospheric time series, Geophys Res Lett,33,L08306, doi:10.1029/2005GL025538.
    Wu, X., M. B. Heflin, and E. R. Ivins, et al. (2003),Large-scale global surface mass variations inferred from GPS measurements of load-induced deformation, Geophys Res Lett,30(14),1742, doi:10.1029/2003GL017546.
    Wubbena, G.(1985), Software developments for geodetic positioning with GPS using TI4100 code and carrier measurements, In:Proceedings of the first international symposium on precise positioning with the Global Positioning System,15-19 April 1985,403-412.
    Xu, C.,J. Liu, and C.Song, et al.(2000), GPS measurements of present-day uplift in the Southern Tibet, Earth Planets Space,52(10),735-740.
    Yao, H., R. D. van der Hilst, and M. V. de Hoop (2006), Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-I.Phase velocity maps, Geophys J Int,166(2), 732-744.
    Zhang, P. Z., Z. K. Shen, and M.Wang, et al. (2004), Continuous deformation of the Tibetan Plateau from global positioning system data, Geology,32(9),809-812.
    Zhang, P. Z., P. Molnar, and X. Xu (2007), Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau, Tectonics,26, TC5010, doi:10.1029/2006TC002014.
    Zeng, Y. (2001),Viscoelastic stress-triggering of the 1999 Hector Mine Earthquake by the 1992 Landers Earthquake, Geophys Res Lett,28(15),3007-3010.
    Zhu, S. Y., F. H. Massmann, and Y. Yu, et al. (2003), Satellite antenna phase center offsets and scale errors in GPS solutions, J Geodesy,76(11-12),668-672.
    Zonenshain, L. P., and L. A.Savostin(1981),Geodynamics of the Baikal rift zone and plate tectonics of Asia, Tectonophysics,76(1-2),1-45.
    陈杰,陈宇坤,丁国瑜等(2003),2001年昆仑山口西8.1级地震地表破裂带,第四纪研究,23(6),629-639.
    陈九辉,刘启元,李顺成等(2009),汶川Ms8.0地震余震序列重新定位及其地震构造研究,地球物理学报,52(2),390-397.
    陈俊勇,王泽民(2001),论珠穆朗玛峰地区地壳运动,中国科学,D辑,31(4),265-271.
    陈运泰,许力生,张勇(2008),2008年5月12日汶川特大地震震源特性分析报告,见:http://www.cea-igp.ac.cn.
    党光明,王赞军(2002),青海昆仑山口西Ms8.1级地震地表破裂带特征与主要震害-对青藏高原区域稳定性评价的制约,地质通报,21(2),105-120.
    邓起东,冉永康,杨晓平等(2007),中国活动构造图,北京:地震出版社.
    丁国瑜,卢演俦(1989),板内块体的现代运动,见:马杏垣主编,中国岩石圈动力学地图集,北京:中国地图出版社.
    丁国瑜,卢演俦(1991),活动亚板块、构造块体的相对运动,见:丁国瑜主编,中国岩石圈动力学概论,北京:地震出版社.
    顾国华(2005),GPS观测得到的中国大陆地壳垂直运动,地震,25(3),1-8.
    国家地震局阿尔金活动断裂带课题组(1993),阿尔金活动断裂带,北京:地震出版社.
    国家地震局地质研究所,国家地震局兰州地震研究所(1993),祁连山河西走廊活动断裂系,北京:地震出版社.
    国家重大科学工程“中国地壳运动观测网络”项目组(2008),GPS测定的2008年汶川Ms8.0级地震的同震位移场,中国科学,D辑,38(10),1195-1206.
    何宏林,池田安隆(2002),小江断裂带第四纪晚期左旋走滑速率及其构造意义,地震地质,24(1),14-26.
    黄立人,马青,王若柏(2004),中国大陆部分地区的地壳垂直运动,大地测量与地球动力学,24(4),7-12.
    赖院根,刘启元,陈九辉等(2006),首都圈地区横波分裂与地壳应力场特征,地球物理学报,49(1),189-196.
    李齐,孟淑德,王钧(1989),地热特征,见:马杏垣主编,中国岩石圈动力学地图集,北京:中国地图出版社.
    李延兴,黄诚,胡新康等(2001),板内块体的刚性弹塑性运动模型与中国大陆主要块体的应变状态,地震学报,23(6),565-572.
    李延兴,杨国华,李智等(2003),中国大陆活动地块的运动与应变状,中国科学,D辑,33(supp),265-271.
    刘福田,刘建华(2000),滇西特提期造山带下扬子地块的俯冲板片,科学通报,45(1),79-84.
    刘基余(2003),GPS卫星导航定位原理与方法,北京:科学出版社.
    刘经南,姚宜斌(2002),中国大陆现今垂直形变特征的初步探讨,大地测量与地球动力学,22(3),1-5.
    刘启元 王峻 陈九辉等(2007),1976年唐山大地震的孕震环境:密集地震台阵观测得到的结果,地学前缘,4(6),205-213.
    刘启元,李昱,陈九辉等(2009),汶川Ms8.0地震:地壳上地幔S波速度结构的初步研究,地球物理学报,2(2),309-319.
    马保起,苏刚,侯治华等(2005),利用岷江阶地的变形估算龙门山断裂带中段晚第四纪滑动速率, 地震地质,27(2),234-242.
    马宗晋,赵俊猛(1999),天山与阴山-燕山造山带的深部结构与地震,地学前缘,6(3),95-102.
    牛之俊,马宗晋(2002),中国地壳运动观测网络,大地测量与地球动力学,22(3),88-93.
    任金卫,汪一鹏,吴章明(1999),青藏高原北部东昆仑断裂带第四纪活动特征和滑动速率,北京:地震出版社.
    任金卫,沈军,汪一鹏等(2001),西藏南部嘉黎断裂带第四纪右旋走滑运动研究,见:马宗晋,汪一鹏,张燕平等,现代地壳运动与地球动力学研究,北京:地震出版社.
    沈军,李莹甄,汪一鹏等(2003),阿尔泰山活动断裂,地学前缘,10(8),132-141.
    沈正康,王敏,甘卫军等(2003),中国大陆现今构造应变率场及其动力学成因研究,地学前缘,10(8),93-100.
    史志宏,刘占坡,殷秀华,(1989),地壳厚度(重力反演),见:马杏垣主编,中国岩石圈动力学地图集、北京:中国地图出版社.
    宋方敏,俞维贤(1998),走滑断裂带中挤压阶区内部剪切构造初探,地震地质,20(4),343-348.
    孙建宝,梁芳,沈正康等(2008),,汶川Ms8.0地震InSAR形变观测及初步分析,地震地质,30(3),789-795.
    唐文清,刘宇平,陈智梁等(2004),岷山隆起边界断裂构造活动初步研究,沉积与特提斯地质,24(4),31-34.
    万永革,王敏,沈正康等(2004),利用GPS和水准测量资料反演2001年昆仑山口西8.1级地震的同震滑动分布,地震地质,26(3),393-404.
    王椿镛,W. D Mooney (2002),川滇地区地壳上地幔三维速度结构研究,地震学报,24(1),1-16.
    王敏,张培震,沈正康等(2006),全球定位系统(GPS)测定的印尼苏门达腊巨震的远场同震地表位移,科学通报,51(3),365-368.
    王琪,丁国瑜(2000),天山现今地壳快速缩短与南北地块的相对运动,科学通报,45(14),1543-1547.
    王琪(2004),用GPS监测中国大陆现今地壳运动:变形速度场与构造解释,博士学位论文,武汉大学.
    王庆良,张希,王文萍等(1999),中国典型强震震后形变有效松弛时间研究,首届李善邦青年优秀地震科技论文奖论文,中国地震学会.
    王庆良,崔笃信,王文萍等(2008),川西地区现今垂直地壳运动研究,中国科学,D辑,38(5),598-610.
    王双绪,江在森(2002),青藏块体东北缘现今构造形变与蕴震特征,地震学报,24(1),27-34.
    王卫民,赵连锋,李娟等(2008),四川汶川8.0级地震震源过程,地球物理学报,51(5),1403-1410.
    王小亚,朱文耀,符养等(2002),GPS监测的中国及其周边现时地壳形变,地球物理学报,45(2),198-209.
    王阎昭,王恩宁,沈正康等(2008),基于GPS资料约束反演川滇地区主要断裂现今活动速率,中国科学,D辑,38(5),582-597.
    魏文博,叶高峰,金胜等(2007),华北地区地壳P波三维速度结构,中国地质大学学报:在球科学,32(4),441-452.
    闻学泽,徐锡伟,郑荣章等(2003),甘孜-玉树断裂的平均滑动速率与近代大地震破裂,中国群学,D辑,33(4),199-208.
    熊熊(2001),青藏高原岩石层强度的弱化,见:马宗晋等编,青藏高原岩石圈现今变动与动力学,北京:地震出版社.
    丁国瑜,卢演俦(1991),活动亚板块、构造块体的相对运动,见:丁国瑜主编,中国岩石圈动力学概论,北京:地震出版社.
    徐杰,宋长青(1998),张家口-蓬莱断裂带地震构造特征的初步探讨,地震地质,20(2),146-154.
    徐锡伟,陈文彬,于贵华等(2002),2001年11月14日昆仑山库赛湖地震(Ms8.1)地表破裂带的基本特征,地震地质,24(1),1-13.
    徐锡伟,闻学泽,郑荣章等(2003),川滇地区活动块体最新构造变动样式及其动力来源,中国科学,D辑,33(4),151-162.
    徐锡伟,张培震,闻学泽等(2005),川西及其邻近地区活动构造基本特征与强震复发模型,增震地质,27(3),446-461.
    徐锡伟,闻学泽,陈桂华等(2008a),巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义,中国科学,D辑,38(5),529-542.
    徐锡伟,闻学泽,叶建青等(2008b),汶川Ms8.0地震地表破裂带及其发震构造,地震地质,30(3),597-629.
    徐影,丁一汇(2001),美国NCEP/NCAR近50年全球再分析资料在我国气候变化研究中可信度的初步分析,应用气象学报,12(3),337-347.
    叶叔华,黄诚(2000),天文地球动力学,济南:山东科学技术出版社.
    易桂喜,闻学泽,王思维(2006),由地震活动参数分析龙门山-岷山断裂带的现今活动习性与强震危险性,中国地震,22(2),117-125.
    张飞鹏,董大南(2002),利用GPS监测中国地壳的垂向季节性变化,科学通报,47(18),1370-1377.
    张培震,邓起东,张国民等(2003),中国大陆的强震活动与活动地块,中国科学,D辑,33(supp),12-20.
    张培震,徐锡伟,闻学泽等(2008),2008年汶川8.0级地震发震断裂的滑动速率,复发周期和构造成因,地球物理学报,51(4),1066-1073.
    张全德,张燕平,张鹏(2001),青藏高原亚板块近期垂直形变运动的状态,北京:地震出版社.
    张先康,李松林(2003),青藏高原东北缘,鄂尔多斯和华北唐山震区的地壳结构差异-深地震测深的结果,地震地质,25(1),52-60.
    张祖胜,耿世昌,陈德民(1989),现代地壳垂直形变速率,见:马杏垣主编,中国岩石圈动力学地图集,北京:中国地图出版社.
    中国地震台网中心,In:http://www.csi.ac.cn
    周荣军,蒲晓虹(2000),四川岷江断裂带北段的新活动,岷山断块的隆起及其与地震活动的关系,地震地质,22(3),285-294.
    周荣军,何玉林(2001),鲜水河-安宁河断裂带磨西-冕宁段的滑动速率与强震位错,中国地震,17(3),253-262.
    周忠谟,易杰军,周琪(1995),GPS卫星测量原理与应用,北京:测绘出版社.
    朱介寿,曹家敏(1997),中国及其邻区地球三维结构初始模型的建立,地球物理学报,40(5),627-648.
    朱介寿(2008),汶川地震的岩石圈深部结构与动力学背景,成都理工大学学报:自然科学版,35(4),348-356.
    朱文耀,黄立人(1997),利用GPS技术监测青藏高原地壳运动的初步结果,中国科学,D辑,27(5),385-389.
    朱文耀,符养,李彦(2003),GPS高程导出的全球高程振荡运动及季节变化,中国科学,D辑,33(5),470-481.
    朱文耀,熊福文,宋淑丽(2008), ITRF2005简介和评析,天文学进展,26(1),1-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700