用户名: 密码: 验证码:
海洋细菌Glaciecola mesophila KMM241产木聚糖酶的结构、功能和应用潜力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋总面积占到地球面积70%以上,海水占到地球总水量的97%,因此海洋环境是地球生态环境的重要组成部分,海洋碳循环在地球生物圈碳循环中起到至关重要的作用。在海洋碳循环过程中,海洋微生物扮演着重要的角色,它们将海洋浮游植物和光合细菌通过光合作用储存的有机碳重新分解,以二氧化碳的形式重新释放到大气圈中。木聚糖是一种最主要的半纤维素,是地球上仅次于纤维素的第二大碳源物质,也是海洋环境中有机碳的重要组成部分。与纤维素相比,木聚糖结构更为复杂,木聚糖的完全降解需要多种酶类的协同作用。β-1,4-内切木聚糖酶(EC3.2.1.8)能够水解木聚糖主链的β-1,4-木糖苷键,在木聚糖的降解中起到关键作用,因此在整个海洋碳循环中也具有重要意义。海洋环境普遍具有高盐,高流动性的特点,而深海区域(深度超过2000米)更是具有高压,低温,黑暗,寡营养等极端特征。海洋中的微生物为了适应海洋环境,进化出了许多与之相适应的特点,并且在其基因组中往往蕴含着许多有价值的基因资源。因此海洋不但是物种多样性的宝库,也是基因的宝库。对这些基因资源的序列分析和功能鉴定对于研究海洋生境中的许多生化过程具有重要理论意义。
     Glaciecola mesophila KMM241是一株分离自海洋无脊椎动物的海洋细菌。我们的前期研究表明,该菌株能够产生多种木聚糖酶,并且在前期研究中我们已经对该菌株产生的一个属于糖苷水解酶第十家族的木聚糖酶XynA进行了基因克隆和性质研究。在此基础上,本论文对该菌株所产的另一个木聚糖酶XynB进行了基因序列、分子结构、生化性质及其N端结构域的功能研究,并探讨了木聚糖酶XynA在提高面包品质中的应用潜力,取得了以下主要结果。
     1.木聚糖酶XynB的基因克隆和序列分析
     由于菌株G mesophila KMM241与另一株基因组序列已经公布的海洋细菌Pseudoalteromonas atlantica T6c的16S rDNA序列相似性为99%。根据菌株Pseudoalteromonas atlantica T6c基因组中木聚糖酶基因(Gene ID:4172855)的序列设计的一对特异性引物,以菌株G mesophila KMM241基因组DNA为模板,PCR扩增得到了木聚糖酶基因xynB的全序列。序列分析表明,xynB基因序列全长2739bp,编码的木聚糖酶XynB的前体含912个氨基酸残基。木聚糖酶XynB的前体由N端的信号肽序列(Metl-Ala43),一个功能未知的N端结构域(NTD, Glu44-Arg584)和一个C端的糖苷水解酶第八家族(GH8)催化结构域(CD,Ser585-Glu912)组成。通过序列比对发现只有三个酶与XynB氨基酸全序列具有同源性,分别是来自菌株P. atlanlica T6c (98%), Glaciecola chathamensis S18K6(80%)和Glaciecola polaris LMG21857(73%)的糖苷水解酶,但这三个酶都是从基因组序列中推定的糖苷水解酶,并没有被研究报道。序列比对结果表明,XynB的催化结构域与其它酶的最高相似性只有41%,在已经报道的第八家族木聚糖酶中,与之相似性最高的是来自环境DNA文库的Xyn8(39%, ABB71891).将XynB的催化结构域与已报道的其它4个第八家族木聚糖酶氨基酸序列进行比对分析,发现了三个在第八家族木聚糖酶中高度保守的氨基酸残基,分别为第586位的谷氨酸,第646位和第786位的天冬氨酸,这三个残基被认为在第八家族糖苷水解酶的催化反应中起到重要作用。序列分析表明,XynB (?)的NTD的氨基酸序列与数据库中已知功能的序列均没有明显的同源性,表明该NTD可能是一个结构新颖的结构域。因此,对XynB的序列分析表明,该酶是GH8家族中一个结构新颖的多结构域木聚糖酶。2.木聚糖酶XynB的异源表达和性质研究
     XynB是一个多结构域木聚糖酶,通过异源表达得到有活性的酶对酶的催化性质研究非常重要。我们通过pET-22b原核表达系统,成功构建了表达载体pET-22b-xynB,并且在大肠杆菌BL21(DE3)中实现了可溶性表达。为了获得较高的表达量和表达活性,我们进行了产酶条件优化实验,确定了最佳表达条件为在0.5mM的IPTG诱导下15℃培养96h,在此条件下重组大肠杆菌的胞内酶活最高可达到4.2U/ml菌液。由于电泳分析表明在最适条件下培养48h,胞内酶蛋白的表达量基本已达到最大,并且此时目的蛋白占细胞总蛋白的比例较高,我们选择在最适条件下培养48h后从胞内分离纯化重组木聚糖酶XynB,这不但利于重组酶的纯化,而且缩短了培养时间。通过细胞超声破碎获得胞内可溶蛋白成分,再通过阴离子交换色谱层析和镍柱亲和层析两步纯化,得到了电泳纯的重组XynB, SDS-PAGE显示分子量约为100kDa。根据氨基酸序列计算表明,XynB去掉信号肽之后的分子量为97.1kDa。因此,重组表达的XynB是一个含有NTD和CD的多结构域木聚糖酶。
     对重组XynB(?)的底物特异性研究结果表明,该酶是一个特异性的内切木聚糖酶,能高效水解山毛榉木聚糖和燕麦木聚糖,对羧甲基纤维素、淀粉、海藻多糖、几丁质以及甘露聚糖均没有活性。XynB的最适酶活pH为60-7.0,在酸性条件下酶活丧失较快,在弱碱性条件下仍能保持较高的酶活,是一个中性略偏碱性的木聚糖酶。该酶在中性偏碱性较广的pH范围(pH6.0-pH10.0)内比较稳定,在15℃放1h后还能保持80%以上的残余酶活XynB的最适酶活温度为35-40℃,在0℃和5℃时分别保持有最高酶活的7.5%和14.6%,该酶的热稳定性很差,在35℃保温1h后只保持不到40%的残余酶活,在45℃保温20min便丧失全部酶活。这些结果说明该酶具有一定的适冷特征。Co2+、SDS、EDTA、Zn2+、Ni2+、Mn2+和Li2+在5mM浓度下能够强烈抑制XynB酶活性,但在1mM浓度下只有Co2+的抑制作用明显。由于Fe3+和Cu2+两种重金属离子在1mM浓度下对酶活几乎没有抑制作用,这可能使该酶在某些工业应用中具有优势。NaCl对XynB的活性并没有促进作用,在低浓度NaCl存在时(0.5M及以下),XynB的酶活性受到轻微抑制作用(残余酶活在85%以上);当NaCl浓度从1.0M增加到接近饱和的4.0M时,该酶的残余酶活仅从67%下降到约40%,表现出了较强的NaCl耐受性,这反映了该酶对海洋高盐环境的适应。XynB对山毛榉木聚糖和燕麦木聚糖的Km值分别为5.82mg/ml和11.86mg/ml, keat/Km值分别为104.64ml/mg. s和60.03ml/mg.s,表明XynB对山毛榉木聚糖具有更高的亲和力和催化效率。XynB不能水解木三糖和木四糖,能够高效水解木六糖生成木四糖、木三糖和木二糖,该酶水解木五糖的效率比水解木六糖时低很多,只能产生非常少量的木三糖和木二糖,另外所有的酶解反应中均没有木糖产生,这表明XynB是一个严格的内切木聚糖酶,需要至少5个糖基单元才能进行有效的水解。
     木聚糖酶在制浆造纸、食品、饲料、纺织等行业都有广泛的应用,特别是制浆造纸工业是应用木聚糖酶最多的行业。XynB具有对热敏感的特征,在一些不能进行高温加热的食品加工领域中可能具有应用价值。另外,XynB具有耐盐的特征,在海产品和其他含盐产品的加工中也可能具有应用价值。
     3.NTD的异源表达以及NTD对不可溶多糖的结合功能研究
     为了研究NTD在XynB催化木聚糖降解中的作用,我们对NTD进行了单独异源表达。通过pET-22b原核表达系统,成功构建了NTD的表达质粒,并且在大肠杆菌BL21(DE3)中实现了NTD的可溶性表达。为了获得有活性的目的蛋白,对表达条件进行了优化,最终选择的表达条件为:在15℃条件下用0.5mM的IPTG诱导表达20h。然后通过超声波细胞破碎获得胞内可溶性蛋白,利用镍柱亲和层析法纯化得到电泳纯的重组NTD。为了验证NTD在XynB催化木聚糖降解中是否具有结合底物的功能,我们首先利用SDS-PAGE检测了NTD是否能结合不可溶木聚糖。实验结果表明,NTD对不可溶木聚糖具有明显的吸附结合能力。此外,NTD对也具有微晶纤维素很强的吸附结合能力,这些结果表明,NTD中可能含有多糖结合结构域(CBM)。由于NTD的氨基酸序列与已报道的CBM没有同源性,所以NTD中含有的CBM可能是新型的CBM。
     4.NTD的蛋白结晶
     由于NTD的氨基酸序列与目前数据库中已知功能的蛋白序列都没有明显的同源性,因此难以通过同源比对推测NTD中CBM的结构。为了进一步揭示NTD的结构与功能,我们决定通过结晶来解析NTD的结构,然后分析其中可能含有的新型CBM的结构。由于蛋的结晶需要大量高纯度的蛋白,我们首先对NTD进行了大批量高纯度制备。经过镍柱亲和层析,Q柱(强阴离子交换柱)层析和凝胶过滤层析3步纯化,得到高纯度的重组NTD蛋白样品。将样品浓缩到8mg/ml浓度,经过坐滴气相扩散法初筛,确定出了有利于NTD晶体生长的条件,获得一些雪花状的小晶体。由于这些晶体太小,分辨率太低,我们又利用悬滴气相扩散法进行了复筛,经过结晶条件的优化,得到了晶体生长的最佳条件为pH9.0的0.1M Tris-HCl缓冲体系,添加30%(w/v)的PEG6000。在此条件下目前已长出棒状晶体,该晶体经SDS-PAGE分析已证实为蛋白结晶。这些晶体体还在进一步生长之中,经过进一步的生长之后,即可通过X射线衍射分析其分辨率。这些研究结果为进一步得到NTD晶体结构进而阐明其多糖结合作用机制以及NTD与CD的协同作用机制奠定了基础。
     5.木聚糖酶Xyn A提高面包品质的应用潜力研究
     我们的前期研究表明,((?)laciecola mesophila KMM241分泌的木聚糖酶XynA是一个GH10家族的适冷木聚糖酶。本论文研究了木聚糖酶XynA提高面包品质的潜力,并与GH10家族的中温木聚糖酶EX1进行了比较。最适添加量的分析表明,EX1的最适添加量为270U/kg,而Xyn A(?)最适添加量为0.9U/kg。添加Xyn A和EX1都会使面粉的弱化度降低,在最适添加量下可使弱化度降低50%,但是在降低面团形成时间方面,Xyn A的作用较EX1更显著。在面包体积的影响来看,两种木聚糖酶的作用都很显著。这两种木聚糖酶对面包的抗老化作用方面的表现是相似的,相比较来说,EX1在降低面包初始硬度方面作用明显,而Xyn A在减慢面包老化速率方面作用显著。这些结果表明,GH10家族的这两种酶在改善面包和面团的质量方面各有优势,这也是它们具有作为添加剂用于焙烤工业的潜在优势。这是首次发现GH10家族的适冷木聚糖酶具有改善面包品质的潜力。
The area of oceans account for more than70percent of the earth's surface and sea water accounts for97percent of total water on earth. Marine environment is an important part of the global ecological environment and marine carbon cycle plays a critical role in the total carbon cycle of biosphere Marine microorganisms decompose the organic carbon stored through photosynthesis of marine phytoplankton and photosynthetic bacteria into carbon dioxide, and thus play an important role in the marine carbon cycle. Xylan is a main component of hemicellulose and also the second abundant carbon source on the earth, thus represents an important kind of marine organic carbon. Compared to cellulose, the structure of xylan is more complex and needs the synergy of many xylanolytic enzymes to be complete degraded. β-1,4-endo-xylanase (EC3.2.1.8) can cleave the β-1,4-xylosidic bonds of the main chain of xylan and plays a key role in the xylan breakdown. Therefore, it has significance in the marine carbon cycle. Marine environment is generally characterized by high salinity and high fluidity, and the deep sea (more than2000m deep) is specifically characterized by high pressure, low temperature, low transmission of light and oligotrophy. Marine organisms have evolved to adapt the extreme environment and preserve many gene resources which may have great values. Therefore, oceans are reservoir not only for species but also for genes. Sequence analysis and function identification of these gene resources are significant for the study of biochemical processes in the marine environment.
     Glaciecola mesophila KMM241is a cold-adapted marine bacterium isolated from an invertebrate. Our previous study showed that G. mesophila KMM241could produce more than one kind of xylanases and possesses. We have cloned and characterized a xylanase XynA from this strain and studied the potential of XynA in improving the quality of wheat bread. In this study, the xylanase XynB from G. mesophila KMM241was studied, including gene cloning and sequence analysis, heterogenous expression and biochemical propery analyses In addition, the function of the N-terminal domain of XynB was studied and elucidated The main research results are listed as below:
     1. Gene cloning and sequence analysis of gene xynB
     The16S rRNA gene sequence of G. mesophila KMM241had more than99%identity to that of Pseudoalteromonas atlantica T6c The whole genome of strain T6c was sequenced and released in GenBank, which revealed that there is a gene encoding a hypothetical endo-1,4-[3-xylanase in the genome Based on the5' end and3' end sequence of this gene, a pair of specific primers for PCR were designed, and the total sequence of xylanase gene xynH was amplified through PCR using the genomic DNA of strain G. mesophila KMM241as template. Sequence analysis showed that gene xynB is2739bp in length, encoding a protein of912amino acids, which is the precursor of xylanase XynB. XynB precursor is composed of a signal peptide (Metl-Ala43), a N-terminal domain (NTD, Glu44-Arg584) with unknown function and a GH family8catalytic domain(CD, Ser585-Glu912) Sequence alignment showed that only three enzymes have hotnology with the whole amino acid sequence of XynB. They are all hypothetical glycoside hydrolases from strains P. atlantica T6c (98%), Gaciecola chathamensis S18K6(80%) and Glaciecola polaris LMG21857(73%), respectively, none of which has been studied. The amino acid sequence of the catalytic domain of XynB showed highest similarity of41%to a hypothetical xylanase. Among characterized xylanases, XynB had highest identity (39%) to the xylanase Xyn8from an uncultured bacterium (ABB71891) The multiple sequence alignment revealed that XynB contained glutamate and aspartate residues Glu586, Asp646and Asp786, which are considered to be crucial for catalytic activity of GH family8. The amino acid sequence of the NTD of XynB showed no homology to any functional sequence in the data bases, suggesting that the NTD may be a domain with new structure. These analyses of XynB sequence indicated that XynB may be a novel multidomain xylanase of GH8.
     2. Heterologous expression and characterization of Xyn B
     Obtaining the active enzyme through heterologous expression is very important for the study of the enzymatic properties of XynB. An expression plasmid pET-22b-xynB was constructed and successfully expressed in E. coli BL21(DE3). The best condition for XynB expression was determined through optimization experiments. Strain E. coli BL21(DE3) was induced by0.5mM IPTG and cultured at15℃for96hours. At this condition, a highest intracellular enzyme activity of4.2U/ml was obtained. For the purification of recombinant XynB, the E. coli strain was cultured for48hours when the proportion of target protein was relatively high. The recombinant XynB was purified from intracellular proteins through sonication, DEAE-Sepharose ion exchange chromatography and Ni-affinity chromatography. SDS-PAGE analysis showed that the Mr of XynB is about100kDa, which is in accordance with the calculated Mr of XynB (97.1kDa) without the predicted signal peptide. Therefore, the recombinant XynB is a multidomain xylanase containing the NTD and the CD.
     Study on the specificity of substrate of recombinant XynB showed that it is a specific endo-xylanase which could efficiently hydrolyze beechwood xylan and oat spelt xylan, but had no enzymatic activity on CMC, starch, laminarin, chitosan and mannan. The optimum pH for XynB is6.0-7.0. XynB is relatively more active in alkaline condition than in acid condition, which lost its enzymatic activity quickly in acid condition and retained most of its activity in alkalescent conditions. XynB was relatively stable in a wide pH range (pH6.0-10.0), retaining more than80%activity after incubation at pH6.0-10.0,15℃for1h. The optimal temperature for XynB was35℃. It retained7.5%and14.6%activity at0℃and5℃, respectively. XynB exhibited very low thermostability, retaining less than40%activity after60-min incubation at35℃and losing all the activity after20-min incubation at45℃. These results indicated that XynB had cold-adaptaion properties. Co2+(1mM and5mM) had the strongest inhibitory effect on the activity, while Zn2+, Ni2+, Mn2+and Li2+at a concentration of5mM had significantly inhibitory effects. XynB may have advantages in some industrial applications as two heavy metal ions Fe3+and Cu2+at a concentration of1mM had no evident inhibitory effect on its activity NaCl had no stimulative effect on the activity of recombinant XynB, on the contrary, NaCl in a low concentration (below0.5M) had slight inhibitory effect on its enzymatic activity (more than85%residual activity) However, XynB showed salt-tolerant ability, retaining approximately40%activity in4.0M NaCl, reflecting the adaptation of XynB to marine saline environment. XynB had lower Km and higher kcat/Km to beech wood xylan (5.82mg/ml,104.64ml/mg.s) than to oat spelt xylan (11.86mg/ml,6003ml/mg.s), indicating that XynB had stronger alffinity and higher catalytic efficiency to beech wood xylan than to oat spelt xylan XynB could not hydrolyze xylotetraose and xylotriose, and could hydrolyze xylohexaose and xylopentaose. Xylohexaose was completely hydrolyzed, producing xylobiose, xylotriose and xylotetraose The hydrolysis efficiency to xylopentaose was relatively low, producing a small amount of xylotriose and xylobiose. No xylose was detected in all hydrolysis process. These results showed that XynB is a strict endo-β-1,4-xylanase exhibiting an action pattern with a demand of at least five sugar moieties for effective cleavage.
     Xylanases have potential applications in a wide range of industrial processes, such as food processing, animal feeds, paper and pulp, textiles and bioremediation, etc. As a strict endo-xylanase, XynB may have potential in some of these industrial processes. Especially, XynB is thermolabile, which may have advantage in the food industries where a high temperature for enzyme inactivation is not allowed. As a salt-tolerant enzyme, xynB may have potential in the biotechnological processes where the catalysis environment is highly salty, such as in the processing of sea food and saline food
     3. Heterologous expression of the NTD and its binding ability to insoluble polysaccharides
     In order to study the function of the NTD in xylan degradation by XynB, the NTD was expressed in E. coli. The expression vector for NTD was constructed through pET prokaryotic expression system. The NTD was successfully expressed in E. coli BL21(DE3). The expression conditions were optimized to obtain soluble NTD. E. coli BL21(DE3) was induced by0.5mM IPTG and cultured at15℃for20hours. The recombinant NTD was purified from intracellular proteins through sonication and Ni-affinity chromatography. To test whether the NTD has a function of binding the substrate during xylan degradation by XynB, the binding ability of the recombinant NTD to insoluble oat spelt xylan was studied. The result showed that the recombinant NTD exhibited strong binding ability to insoluble oat spelt xylan. In addition, the recombinant NTD also exhibited strong binding ability to avicel, but little binding ability to chitosan and chitin. These results suggested that the NTD may contain a carbohydrate binding module (CBM) As the amino acid sequence of the NTD showed no homology to other CBMs, the NTD may contain a new type of CBM.
     4. Crystallization of the reconibinant NTD
     Because the NTD has no homology to any protein sequence with known function, it is hard to predict the structure of the NTD. In order to further study the structure and function of the NTD, we decided to analyze the structure of the NTD by crystallization. Since a large quantity of protein with high purity is needed for crystallization, we first prepared the recombinant NTD of high purity through Ni-affinity chromatography, Q Sepharose Fast Flow chromatography and gel filtration chromatography. The purified protein of NTD was concentrated to8mg/ml and applied to crystal growing apparatus. Proper conditions for NTD crystallization were determined through preliminary screening and snowflake crystals were obtained, which is small and with low resolution. Therefore, proper conditions for NTD crystallization were further optimized. After optimization, rodlike crystals are now growing on the condition of0.1M Tris-HCl, pH9.0,30%(w/v) PEG6000, which has been testified to be protein crystals by SDS-PAGE These crystals are still growing. When their size is big enough, their resolution can be determined by X ray diffection. These results provide a good foundation for the study of the stucture and the polysaccharide-binding mechanism of the NTD.
     5Improvement of the baking quality by the psychrophilic xylanase XynA
     Although a lot of xylanases have improvement on breadmaking and are even widely used in baking industry, only one GH10xylanase has been reported to be effective in baking. In this study, two GH10xylanases, cold-adapted Xyn A and mesophilic EX1, were compared for their effectiveness in breadmaking. the optimum dosage of the two enzymes to improve the quality of wheat flour dough and bread was270U/kg flour for EX1and0.9U/kg flour for Xyn A, showing that the dosage of cold-adapted xylanase was much smaller. With the optimum dosage, Xyn A and HX1had the same dough-softening ability,50%reduce in BU However, Xyn A was more effective in reducing DDT than EX1. Xyn A and EX1showed similar effect on improvement of bread volume (around30%increase). Although they exhibited similar anti-staling effect on bread based on decrease in bread hardness, Xyn A showed more affect on reducing firming rate, and EX1more on reducing initial crumb hardness. These results showed that the two GH10xylanases have respective advantages in improving the quality of dough and bread, and suggested their potential as additives in breadmaking. It is found for the first time that cold-adapted GH10xylanase has potential in improving the baking quality of bread.
引文
1.自云玲,许正宏,孙微(2000)细菌产木聚糖酶发酵条件的研究。微生物学通报,27(4):278
    2 邵蔚蓝(2002)木聚糖酶,生命的化学。22(3):281-285
    3.刘瑞田,曲音波(1998)木聚糖酶分子的结构区域。生物工程进展,8(6):26-28
    4.杨浩萌,姚斌,范云六 (2005)木聚糖酶分子结构与重要酶学性质关系的研究进展。生物工程学报,21(1):7-12
    5.江正强(2005)微生物木聚糖酶的生产及其在食品工业中应用的研究进展,中国食品学报,5(1):1-9
    6.张良勤,王璋,许时婴(2004)中性木聚糖酶在面包制作中的应用。食品与发酵工业 30:21-25.
    7. Akila G, Chandra TS (2003) A novel cold-tolerant Clostridium strain PXYL1 isolated from a psychrophilic cattle manure digester that secretes thermolabile xylanase and cellulase. FEMS Microbiol Lett.219:63-67
    8. Ali MK, Rudolph FB, Bennett GN (2004) Thermostable xylanaselOB from Clostridium acetobutylicum ATCC824. J. Ind Microbiol Biotechnol.31:229-234
    9. Ali MK, Hayashi H, Karita S, Goto M, Kimura T, Sakka K and Ohmiya K (2001) Importance of the carbohydrate-binding module of Clostridium stercorarium Xyn10B to xylan hydrolysis. Biosci Biotechnol Biochem 65:41-47
    10. Alzari PM, Souchon H, Dominguez R (1996) The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum. Structure 4:265-275
    11. Araki T, Inoue I, Morishita T (1998) Purification and characterization of β-1,3-xylanase from a marine bacterium, Alcaligenes sp. XY-234. J Gen Appl Microbiol.44:269-274
    12. Araki T, Tani S, Maeda K, Hashikawa S, Nakagawa H, Morishita T (1999) Purification and characterization of beta-1,3-xylanase from a marine bacterium, Vibrio sp. XY-214. Biosci Biotechnol Biochem.63:2017-2019
    13. Araki T, Hashikawa S, Morishita T (2000) Cloning, Sequencing, and Expression in Escherichia coli of the New Gene Encoding b-1,3-Xylanase from a Marine Bacterium, Vibrio sp. Strain XY-214
    14. Araki R, Ali MK, Sakka M, Kimura T, Sakka K, Ohmiya K (2004) Essential role of the family-22 carbohydrate-binding modules for β-1,3→1,4-glucanase activity of Clostridmm stercorahnm Xyn10B FEBS Lett. 561: 155-158
    15. Arnosti C (2008) Functional differences between Arctic sedimentary and seawater microbial communities: contrasts in microbial hydrolysis of complex substrates FEMS Microbiol Ecol. 66: .343-51
    16. Arnosti C (2003) Extracellular enzymes and their role in DOM cycling In Aquatic Ecosystems: Interactivity of Dissolved Organic Matter, ed. S Findley, RE Sinsabaugh, pp 315-42 New York: Academic
    17. Badal CS (2002) Production, purification and properties of xylanase from a newly isolated Fusarium proliferation. Process Biochem. 37: 1279-1284
    18. Bai WQ, Xue YF, Zhou C, Ma YH (2012) Cloning, expression and characterization of a novel salt-tolerant xylanase from Bacillus sp SN5 Biotechnology Letters. 34: 2093-2099
    19. Baltar F, Aristegui J, Sintes E, van Aken HM, Gasol JM, Herndl GJ (2009) Prokaryotic extracellular enzymatic activity in relation to biomass production and respiration in the meso- and bathypelagic waters of the (sub)tropical Atlantic. Environ Microbiol. 11: 1998 -2014
    20. Beg Q K, Kapoo M, Mahajan E, Hoondal GS (2001) Microbial xylanases and their industrial applications, a review. Appl Microbiol Biotechnol. 56: 326-338
    21. Beguin P, Cornet P, Aubert JP (1985) Sequence of a cellulase gene of the thermophilic bacterium Clostridium thcnnocellum. J Bacteriol. 162: 102- 105
    22. Belancic A, Scarpa J, Peirano A, Diaz R, Steiner J, Eyzaguirre J (1995) Penicillium purpurogenum produces several xylanases: purification and properties of two of the enzymes. J Biotechnol. 41: 71-79
    23. Biely P, Markovic O, Mislovicova D (1985) Sensitive detection of endo-1,4-beta-glucanases and endo-l,4-beta-xylanases in gels. Anal Biochem. 144: 147-151
    24. Biely P, Vrsanska M, Tenkanen M, Kluepfel D (1997) Endo-beta-1,4-xylanase families:differences in catalytic properties. J Biotechnol.57:151-166
    25. Biely P (2003) Diversity of microbial endo-b-1,4-xylanases In:Applications of Enzymes to Lignocellulosics (Mansfield SD and Saddler JN, Eds.). American chemical Society, Washington pp:361-380
    26. Blanco J, Coque JJR, Velasco J, Martin JF (1997) Cloning, expression in Streptomyces lividans and biochemical characterization of a thermostable endo-β-1,4-xylanase of Thermomonosporu alba ULJB1 with cellulose-binding ability. Appl Microbiol Biotechnol. 48:208-217
    27. Bolam DN, Ciruela A. Mcqueen-Mason S, Simpson P, Williamson MP, Rixon JE, Boraston A, Hazlewood GP, Gilbert HJ (1998) Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J 331:775-781
    28. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules:fine-tuning polysaccharide recognition. Biochem J.382:769-781
    29. Bourne Y, Henrissat B (2001) Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr Opin Struct Biol.11:593-600
    30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem.72:248-254
    31. Bradner JR, Sidhu RK, Gillings M, Nevalainen KM (1999) Hemicellulase activity of antarctic microfungi. J Appl Microbiol.87:366-370
    32. Canals A, Vega MC, Gomis-Ruth FX, Diaz M, Santamaria RR, Coll M (2003) Structure of xylanase Xysl delta from Streptomyces halstedii. Acta Crystallogr D:Biol Crystallogr.59:1447-1453
    33. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy):an expert resource for Glycogenomics. Nucleic Acids Res.37:D233-238
    34. Charnock SJ, Bolam DN, Turkenburg JP, Gilbert HJ, Ferreira LM, Davies GJ Fontes CM (2000) The X6 "thermostabilizing" domains of xylanases are carbohydrate-binding modules:structure and biochemistry of the Clostridium thermocellum X6b domain.39:5013-5021
    35. Chen LL, Zhang M, Zhang DH, Chen XL, Sun CY, Zhou BC, Zhang YZ (2009) Purification and characterization of two (3-endoxylanases from Trichoderma pseudokoningii K9301 and their actions in xylooligosaccharide production Bioresour Technol.100:5230-5236
    36. Christakopoulos P, Katapodis P, Kalogeris E, Kekos D, Maoris BJ, Stamatis H, Skaltsa H (2003) Antimicrobial activity of acidie xylo-oligosaccharides produced by family 10 and 11 endoxylanases. Int J Biol Macromol 31:171-175
    37 Collins T, Meuwis MA, Stals I, Claeyssens M, Feller G, Gerday C (2002) A novel family 8 xylanase:functional and physico-chemical characterization. J Biol Chem. 277:35133-35139
    38. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev. 29:323
    39. Collins T, Hoyoux A, Dutron A, Georis J, Genot B, Dauvrin T, Arnaut F, Cierday C, Feller G (2006) Use of glycoside hydrolase family 8 xylanases in baking. J Cereal Sci. 43:79-84
    40. Coutinho PM, Henrissat B (1999) Carbohydrate-active enzyme server (CAZY) at URL:http://afmb.cnrs-mrs.fr/-cazy/CAZY/.
    41. Daniel C, Pretorius IS, Willem H (1996) Expression of a Trichoderma reesei 13-Xylanase Gene(XYN2) in Sacchuromyces cerevisiae. Applied and Environmental Microbiology.62(3):1036-1044
    42. Derewenda U, Swenson L, Green R, Wei Y, Morosoli R, Shareck F, Kluepfel D, Derewenda ZS (1994) Crystal structure, at 2.6-A° resolution, of the Streptomyces lividans xylanase A, a member of the F family of beta-1,4-D-glycanases. J Biol Chem. 269:20811-20814
    43. Din N, Damude HG, Gilkes NR, Miller RC,Warren RAJ, Kilburn DG (1994) Cl-Cx revisited:intramolecular synergism in a cellulase. Proc Natl Acad Sci.91: 11383-11387
    44. Doner LW, Hicks KB (1997) Isolation of hemicellulose from corn fiber by alkaline hydrogen peroxide extraction[J]. Cereal Chem.74:176-181
    45 Eda S, Ohnishi A, Kato K (1976) Xylan isolated from the stalk of Nicotiana tabacum. Agric Biol Chem.40:359-364
    46. Elegir G, Szakacs M, Jeffries TW (1994) Purification, characterization and substrate specificities of multiple xylanases from Streptomyces sp. strain B-12-2. Appl Environ Microbiol.60:2609-2615
    47. Eun JS, Beauchemin KA, Hong SH (2006) Exogenous enzymes added to untreated or ammoniated rice straw Effcts on in vitro fermentation characteristics and degradability [J]. Animal Feed Science and Technology.131:86-101
    48. Fialho MB, Carmona EC (2004) Purification and characterization of xylanase from Aspergillus giganteus. Folia Microbiol.49:13-18
    49. Flint HJ, Martin J, McPherson CA, Daniel AS, Zhang JX (1993) A bifunctional enzyme, with separate xylanase and beta(1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J Bacteriol.175:2943-2951
    50. Fujimoto Z, Kuno A, Kaneko S, Yoshida S, Kobayashi H, Kusakabe I, Mizuno H (2000) Crystal structure of Streptomyces olivaceoviridis E-86 (3-xylanase containing xylan-binding domain. J Mol Biol.300:575-585
    51. Galante Y M, De Conti A, Monteverdi R. (1998) Application of Trichoderma enzymes in food and feed industries in:Trichoderma and Gliocadium-Enzymes, Biological Controland Commercial Applications (Harman GE and Kubicek CP, Eds.). Taylor and Francis, London, pp:327-342
    52. Gao PJ, Chen GJ, Wang TH, Zhang YS, Liu J (2001) Non-hydrolytic disruption of crystalline structure of cellulose by cellulose binding domain and linker sequence of cellobiohydrolase I from Penicillium janthinellum. Shengwu Huaxue Yu Shengwu Wuli Xuebao.33:13-18
    53. Georis J, Giannotta F, Lamotte-Brasseur J, Devreese B, Van Beeumen J, Granier B Frere JM (1999) Sequence, overproduction and purification of the family 11 endo-beta-1,4-xylanase encoded by the xyl1 gene of Streptomyces sp. S38. Gene.237: 123-133
    54. Gessesse A (1998) Purification and properties of two thermostable alkaline xylanases from an alkaliphilic Bacillus sp. Appl Environ Microbiol.64:3533-3535
    55. Gibbons NE (1957) The effect of salt concentrations on the biochemical reactions of some halophilic bacteria. Can J Microbiol.3:349-255
    56. Gilkes NR, Henrissat B, Kilburn DG, Miller Jr RC, Warren RA (1991) Domains in microbial 4-glycanases:sequence conservation, function, and enzyme families. Microbiol Rev. 55:303-315
    57 Gime'nez MI, Studdert CA, Sanchez JJ, De Castro R (2000) Extracellular protease of natrialba mugudii:purification and biochemical characterization. Extremophiles 4 181-188
    58 Gruppen H, Hamer RJ, Voragen AGJ (1992) Water-unextractable cell wall material from wheat flour 2. Fractionation of alkali-extracted polymers and comparison with waterextractable arabinoxylans J Cereal Sci. 16:53-67
    59. Guerin DM, Lascombe MB, Costabel M, Souchon H, Lamzin V, Beguin P, Alzari PM (2002) Atomic (0.94 A) resolution structure of an inverting glycosidase in complex with substrate. J Mol Biol.316:1061-1069
    60. Gupta S, Bhushan B, Hoondal GS (2000) Isolation, purification and characterization of xylanase from Slaphylococcus sp. SG-13 and its application in biobleaching of kraft pulp. J Appl Microbiol.88:325-334
    61. Guy RCE, Sarabjit SS (2003) Comparison of effects of xylanases with fungal amylases in five Hour types. In:Courtin CM, Veraverbeke WS, Delcour JA (eds) Recent Advances in Enzymes in Grain Processing Laboratory of Food Chemistry, Katholieke Universiteit Leuven, Leuven, pp 235-239
    62. Haros M, Rosell CM, Benedito C (2002) Effect of different carbohydrases on fresh bread texture and bread staling. Eur Food Res Technol.215:425-430
    63. Hayashi H, Takagi KI, Fukumura M, Kimura T, (1997) Sequence of xynC and properties of XynC, a major component of the Clostridium thermocellum cellulosome J Bacteriol.179:4246-4253
    64. Heck JX, Barros SLH, Hertz PF, Z'achia Ayub MA (2006) Purification and properties of a xylanase produced by Bacillus circulans BL53 on solid-state cultivation. Biochem Eng J.32:179-184
    65. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J.280:309-316
    66. Henrissat B, Teeri TT, Warren RAJ (1998) A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett.425:352-354
    67. Henrissat, B. and Coutinho, P.M. (2001) Classification of glycoside hydrolases and glycosyltransferases from hyperthermophiles. Methods Enzymol.330:183-201
    68. Hoppe H-G, Arnosti C, Herndl GJ (2002) Ecological significance of bacterial enzymes in the marine environment. In Enzymes in the Environment, ed. RG Burns, RP Dick, pp.73-107. New York:Dekker
    69. Horikoshi K (1999) Alkaliphiles:some applications of their products for biotechnology. Microbiol Mol Biol Rev.63:735-750
    70. Hou YH, T Wang TH, Long H, Zhu HY (2006) Novel Cold-adaptive Penicillium Strain FS010 Secreting Thermo-labile Xylanase Isolated from Yellow Sea. Acta Biochimica et Biophysica Sinica.38(2):142-149
    71. Humphry DR, George A, Black GW, Cummings SP (2001) Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int J Syst Evol Microbiol.51:1235-1243
    72. Hung KS, Liu SM, Tzou WS, Lin FP, Pan CL, Fang TY, Sun KH, Tang SJ (2005) Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1. Proc Biochem.46: 1257-1263
    73. Hutcheon GW, Vasisht N, Bolhuis A (2005) Characterisation of a highly stable a-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles.9: 487-495
    74. Inglis GD, Popp AP, Selinger LB, Kawchuk LM, Gaudet DA, McAllister TA (2000) Production of cellulases and xylanases by low-temperature basidiomycetes. Can J Microbiol.46:860-865
    75. Irena R, Jacek P, Stanislaw B (2006) Isolation and properties of Aspergillus niger IBT-90 xylanase for bakery. Appl Microbiol Biotechnol.69:665-671
    76 Irwin D, Jung ED Wilson DB (1994) Characterization and sequence of a I hermomonospora fusca xylanase. Appl Environ Microbiol 60:763-770
    77. Ito S, Kuno A, Suzuki R, Kaneko S, Kawabata Y, Kusakabe I, Hasegawa T (2004) Rational affinity purification of native Streptomyces family 10 xylanase. J Biotechnol 110:137-142
    78. Jamal-Talabani S, Boraston AB, Turkenburg JP, Tarbouriech N, Ducros VM, Davies GJ (2004) Ab initio structure determination and functional characterization of CBM36; a new family of calcium-dependent carbohydrate binding modules. Structure 12(7):1177-87
    79 Jaskari J, Kontula P, Siitonen A (1998) Oat beta-glucan and xylan hydrolysates as selective substrates for Bifidobacterium and Lactobacillus strains. Appl Microbiol Biotechnol.48:175-181
    80. Jiang ZQ, Li XT, Yang SQ, Li LT, Tan SS (2005) Improvement of the bread making quality of wheat Hour by the hyperthermophilic xylanase from Thermotoga maritima. Food Res Int.38:37-43
    81 Kamal Kumar B, Balakrishnan H, Rele MV (2004) Compatibility of alkaline xylanases from an alkaliphilic Bacillus NCL (87-6-10) with commercial detergents and proteases. J Ind Microbiol Biotechnol.31(2):83-87
    82. Khandeparker R, Vermal P, Deobagkar D (2011) A novel halotolerant xylanase from marine isolate Bacillus suhlilis cho40 gene cloning and sequencing. N Biotechnol.28:814-821
    83. Kimura T, Ito J, Kawano A, Makino T, Kondo H, Karita S, Sakka K, Ohmiya K (2000) Purification, characterization, and molecular cloning of acidophilic xylanases from Penicillium sp.40. Biosci Biotechnol Biochem.64; 1230-1237
    84. Kiyohara M, Sakaguchi S, Yamaguchi K, Araki T, Nakamura T, Ito M (2005) Molecular cloning and characterization of a novel β-1,3-xylanase possessing two putative carbohydrate-binding modules from a marine bacterium Vibrio sp. strain AX-4. Biochem J.388:949-957
    85. Kleywegt GJ, Zou JY, Divne C, Davies GJ, Sinning I, Stahlberg J, Reinikainen T, Srisodsuk M, Teeri TT, Jones TA (1997) The crystal structure of the catalytic core domain of endoglucanase 1 from Trichoderma reesei at 3.6 A° resolution, and a comparison with related enzymes. J Mol Biol.272:383-397.
    86. Kormelink FJM, Leeuwen MGFSL, Wood TM (1993) Purification and characterization of three endo (1,4)-β-D-xylanases and one β-xylosidase from Aspergillus awamori. J Biotechnol.27:249-253
    87. Krisana A, Rutchadaporn S, Jarupan G, Lily E, Sutipa T, Kanyawim K (2005) Endo-1,4-beta-xylanase B from Aspergillus cf. niger BCC14405 isolated in Thailand: purification, characterization and gene isolation. J Biochem Mol Biol.38:17-23
    88. Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev.23:411-456
    89. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nat.227:680-685
    90. Larson SB, Day J, Barba de la Rosa AP, Keen NT, McPherson A (2003) First crystallographic structure of a xylanase from glycoside hydrolase family 5: implications for catalysis. Biochemistry.42:8411-8422
    91. Laurikainen T, Harkonen H, Autio K, Poutanen K (1998) Effects of enzymes in firbre-enriched baking. J Sci Food Agric.76:239-249
    92. Lee CC, Smith M, Kibblewhite-Accinelli RE, Williams TG, Wagschal K, Robertson GH, Wong DW (2006a) Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp.. Curr Microbiol.52:112-116
    93. Lee CC, Kibblewhite-Accinelli RE, Wagschal K, Robertson GH, Wong DW (2006b) Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles.10:295-300
    94. Li CH, Hong Y, Shao Z, Lin L, Huang X, Liu P, Wu Q Meng X, Liu Z (2009)Novel alkali-stable, cellulase-free xylanase from deep-sea Kocuria sp. Mn22. J Microbiol Biotechnol. doi:10.4014/jmb.0812.689
    95. Li K, Azadi P, Collins R, Tolan J, Kim J, Eriksson K (2000) Relationships between activities of xylanases and xylan structures. Enzyme Microb Technol.27: 89-94
    96. Li N, Meng K, Wang Y, Shi P, Luo H, Bai Y, Yang P, Yao B (2008) Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Slreplomyces sp S9. Appl Microbiol Biotechnol. 80: 231-240
    97. Lin XQ, Han SY, Zhang N, Hu H, Zheng SP, Ye YR, Lin Y () Bleach boosting effect of xylanase A from Bacillus halodurans C-125 in ECF bleaching of wheat straw pulp. Enzyme Microb Technol. 52(2): 91-8
    98. Liu L, Cheng J, Chen H (2010) Xylanase carbohydrate binding module: recent developments. Sheng Wu Gong Cheng Xue Bao. 26(3): 290-6
    99. Liu R, Qu Y, Jiang Y, Gao P (1999) Purification and characterization of alkaline xylanases from Pseudomonas G6-2 Wei Sheng Wu Xue Bao. 39: 132-136
    100. Liu Z, Zhao XQ, Bai FW (2012) Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridocliromogenes strain and improvement by ribosome engineering Appl Microbiol Biotechnol doi: 10.1007/s00253-012-4290-y.
    101. Maat J, Roza M, Verbakel J, Stam H, daSilra MJS, Lgmond MR, Hagemans MLD, van Garcom RFM, Hessing JGM, van Derhondel C, van Rotterdam C (1992) Xylanases and their application in baking In: Xylan and Xylanases (Visser, J., Beldman, G, van Someren, M.A.K. and Voragen, A.G.J., Eds.). Llsevier, Amsterdam, pp: 349-360
    102. Matte A, Forsberg CW (1992) Purification, characterization, and mode of action of endoxylanases 1 and 2 from Fivrohacter succinogenes S85. Appl Environ Microbiol. 58: 157-168
    103. Mamo G, Hatti-Kaul R, Mattiasson B (2006) A thermostable alkaline active endo-β-1-4-xylanase from Bacillus halodurans S7: Purification and characterization. Enzyme Microb Technol 39: 1492 1498
    104. Mathlouthi N, Lalles JP, Lepercq P, Juste C, Larbier M (2002) Xylanase and beta-glucanase supplementation improve conjugated bile acid fraction in intestinal contents and increase villus size of small intestine wall in broiler chickens fed a rye-based diet. J Anim Sci. 80: 2773-2779
    105. McCarter JD, Withers SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct. 4: 885-892
    106. Meng X, Shao Z, Hong Y, Lin L, Li C, Liu Z (2009) A novel pH-stable, bifunctional xylanase isolated from a deep-sea microorganism, Demequina sp JK4. J Microbiol Biotechnol.9:1077-84
    107. Meyer V (2008) Genetic engineering of filamentous fungi-progress, obstacles and future trends. Biotechnol Adv.26:177-185
    108. Miller GL, Blum R, Glennon WE, Burton AL (1960) Measurement of carboxymethyl cellulase activity. Anal Biochem.2:127-132
    109. Millward-Sadler SJ, Davidson K, Hazlewood GP, (1995) Novel cellulose-binding domains, NodB homologues and conserved modular architecture in xylanases from the aerobic soil bacteria Pseudomonas fluorescenssub sp. cellulosa and Cellvibrio mixtus. Biochem J.312 (Pt 1):39-48
    110. Moreau A, Roberge M, Manin C, Shareck F, Kluepfel D, Morosoli R (1994) Identification of two acidic residues involved in the catalysis of xylanase A from Slreptomyces lividans. Biochem J.302:291-295
    111. Morosoli R, Bertrand JL, Mondou F, Shareck F, Kluepfel D (1986) Purification and properties of a xylanase from Streptomyces lividans. Biochem J.239:587-592
    112. Parkkinen T, Hakulinen N, Tenkanen M, Siika-aho M, Rouvinen J (2004) Crystallization and preliminary X-ray analysis of a novel Trichoderma reesei xylanase IV belonging to glycoside hydrolase family 5. Acta Crystallogr. D:Biol Crystallogr.60:542-544
    113. Parsiegla G, Juy M, Reverbel-Leroy C, Tardif C, Belaich JP, Driguez H, Haser R (1998) The crystal structure of the processive endocellulase CelF of Clostridium cellulolyticum in complex with a thiooligosaccharide inhibitor at 2.0 A° resolution. EMBOJ 17:5551-5562
    114. Pason P, Kyu KL, Ratanakhanokchai K (2006) Paenihacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl Environ Microbiol.72:2483-2490
    115. Petrescu I, Lamotte-Brasseur J, Chessa JP, Ntarima P, Claeyssens M, Devreese B, Marino G, Gerday C (2000) Xylanase from the psychrophilic yeast Cryplococcus adeliae. Extremophiles.4:137-144
    116. Pollet A, Schoepe J, Dornez E, Strelkov SV, Delcour JA, Courtin CM (2010) Functional analysis of glycoside hydrolase family 8 xylanases shows narrow but distinct substrate specificities and biotechnological potential Appl Microbiol Biotechnol. 87: 212-2135
    117. Poremba K, Hoppe H-G (1995) Spatial variation of benthic microbial production and hydrolytic enzymatic activity down the continental slope of the Celtic Sea Mar Ecol ProgSer 118: 237-45
    118. Prade RA (1995) Xylanases. from biology to biotechnology.Biotech Genet Eng Rev. 13: 100-131
    119 Prentice 1C (2001) The carbon cycle and atmospheric CO2 The Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report, edited by Houghton JT and Yihui D chap. 3: 85-237
    120. Ratanachomsri U, Sriprang R, Sornlek W, Buaban B, Champreda V, Tanapongpipat S, Hurwilaichitr L (2000) Thermostable Xylanase from Marasmius sp.: Purification and Characterization. J Biochem Mol Biol. 39: 105-1 10
    121. Romanenko LA, Zhukova NV, Rohde M, Lysenko AM, Mikhailov VV, Stackebrandt E (2003) Glaciecola sp. nov., a novel marine agar-digesting bacterium. Int J Syst Evol Microbiol. 53: 647-651
    122. Ruiz-Arribas A, Fernandez-Abalos JM, Sanchez P, Garda AL, Santamaria RI (1995) Overproduction, purification, and biochemical characterization of a xylanase (Xys1) from Streptomyces halstedii JM8 Appl Environ Microbiol. 61: 2414-2419
    123. Saha BC, Bothast RJ (1999) Pretreatment and enzymatic saccharification of corn fiber [J]. Appl Biochem Biotechnol. 76: 65 77
    124. Saha BC (2003) Hemicellulose byconversion. J Ind Microbiol Biotechnol 30: 279-291
    125. Saito H, Miura K (1963) Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta. 72:619-629
    126. Sakata T, Takakura J, Miyakubo H, Osada Y, Wada R, Takahashi H, Yatsunami R, Fukui T, Nakamura S (2006) Improvement of binding activity of xylan-binding domain by amino acid substitution. Nucleic Acids Symp Ser (Oxf) 50: 253-254
    127. Saleem M, Aslam F, Akhtar MS, Tariq M, Rajoka Ml (2012) Characterization of a thermostable and alkaline xylanase from Bacillus sp. and its bleaching impact on wheat straw pulp. World J Microbiol Biotechnol.28(2):513-22
    128. Sa-Pereira P, Duarte J, Costa-Ferreira M (2000) Electroeution as a simple and fast protein purification method:isolation of an extracellular xylanase from Bacillus sp. CCMI 966. Enzyme Microb Technol.27:95-99
    129. Savitha S, Sadhasivam S, Swaminathan K (2007) Application of Aspergillus fumigatus xylanase for quality improvement of waste paper pulp. Bull Environ Contam Toxicol.78:217-221
    130. Selvaraj T, Kim SK, Kim YH, Jeong YS, Kim YJ, Phuong ND, Jung KH, Kim J, Yun HD, Kim H (2010) The role of carbohydrate-binding module (CBM) repeat of a multimodular xylanase (XynX) from Clostridium thermocellum in cellulose and xylan binding. J Microbiol.48:856-61
    131. Senthilkumar SR, Dempsey M, Krishnan C, Gunasekaran P (2008) Optimization of biobleaching of paper pulp in an expanded bed bioreactor with immobilized alkali stable xylanase by using response surface methodology. Bioresour Technol.99(16): 7781-7787
    132. Shah AR, Shah RK, Madamwar D (2006) Improvement of the quality of whole wheat bread by supplementation of xylanase from Aspergillus foetidus. Bioresour Technol.97:2047-2053
    133. Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol.6: 219-228
    134. Sheridan PP, Panasik N, Coomb JM, Brenchley JE (2000) Approaches for deciphering the structural basis of low temperature enzyme activity. Biochim Biophys Acta.1543:417-433
    135. Shibuya N, Iwasaki T (1985) Structural features of rice bran hemicellulose. Phytochemistry.24:285-289
    136. Simon M, Grossart H-P, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol.28:175-211
    137. Singh S, Madlala AM, Prior BA (2003) Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Rev.27:3-16
    138. Sunna A, Antranikian G (1997) Xylanolytic enzymes from fungi and bacteria Crit Rev Biotechnol 17:39-67
    139. Suzuki M, Kato A, Nagata N, Komeda Y (2002) A xylanases, AtXynl, is predominantly expresed in vascular bundles, and four putative xylanase genes were identified in the Arahidopsis thaliana genome. Plant Cell Physiol.43(7):759-767
    140. Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, Fuji F, Hirama C, Nakamura Y, Ogasawara N, Kuhara S, Horikoshi K (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus hulodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317-4331
    141. Tikhomirov I)F, Sinitsyn AP, Zorov IN Williams C (2003) Non-starch polysaccharide hydrolysing microbial enzymes in grain processing In:Recent Advances in Enzymes in Grain Processing (Courtin CM, Veraverbeke WS and Delcour JA, Eds). Kat Univ Leuven, Leuven pp:413-418
    142. Tuncer M, Ball AS (2003) Co-operative actions and degradation analysis of purified xylan-degrading enzymes from Thermomonospora fusca BD25 on oat-spelt xylan. J Appl Microbiol.94:1030-1035
    143. Turkiewiz M, Kalinowska H, Zielinska M, Bielecki S (2000) Purification and characterisation of two endo-1,4-xylanases from Antarctic krill, Euphasia superba Dana. Comp Biol Physiol. Part B.127:325-335
    144. Valenzuela SV, Diaz P, Pastor FLJ (2012) Modular glucuronoxylan-specific xylanase with a family CBM35 carbohydrate-binding module. Appl Environ Microbiol.78:3923-3931
    145. Van Petegem F, Collins T, Meuwis MA, Gerday C, Feller G, Van Beeumen J (2002) Crystallization and preliminary X-ray analysis of a xylanase from the psychrophile Pseudoalteromonas haloplanktis. Acta Crystallogr D:Biol Crystallogr 58:1494-1496
    146. Van Petegem F, Collins T, Meuwis MA, Gerday C, Feller G, Van Beeumen J (2003) The structure of a coldadapted family 8 xylanase at 1.3 A resolution. Structural adaptations to cold and investgation of the active site. J Biol Chem.278: 7531-7539
    147. Waeonukul R, Pason P, Kyu KL, Sakka K, Kosugi A, Mori Y, Ratanakhanokchai K (2009) Cloning, sequencing, and expression of the gene encoding a multidomain endo-beta-l,4-xylanase from Paenibacillus curdlanolyticus B-6, and characterization of the recombinant enzyme J Microbiol Biotechnol.19:277-85
    148. Weiss MS, Abele U, Weckesser J, Welte W, Schiltz E, Schulz GE (1991) Molecular architecture and electrostatic properties of a bacterial porin. Science.254: 1627-30
    149. Whistler R, Masek E (1955) Enzymatic hydrolysis of xylan. J Am Chem Soc.77: 1241-1243
    150 Winterhalter C, Liebl W (1995) Two Extremely Thermostable Xylanases of the Hyperthermophilic Bacterium Thermotogci maritima MSB8. Appl Environ Microbiol. 61:1810-1815
    151. Wong KKY, Tan LUL, Saddler JN (1988) Multiplicity of beta-1,4-xylanases in microorganisms:functions and applications. Microbiol Rev.52:305-317
    152. Wu S, Liu B, Zhang X (2006) Characterization of a recombinant thermostable xylanases from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl Microbiol Biotechnol.72:1210-1216
    153. Xin M, Shao ZZ, Hong WZ, Lin L, Li CJ, Liu ZD (2009) A Novel pH-Stable, Bifunctional Xylanase Isolated from a Deep-Sea Microorganism, Demequina sp. JK4. J Microbiol Biotechnol.19(10):1077-1084
    154. Yamaura I, Koga T, Matsumoto T, Kato T (1997) Purification and some properties of endo-1,4-beta-D-xylanase from a fresh-water mollusc, Pomacea insularus (de Ordigny). Biosci Biotechnol Biochem.61:615-620
    155. Yamaura I, Matsumoto T, Funatsu M, Mukai, E (1990) Purification and some properties of endo-1,3-beta-D-xylanase from Pseudomonas sp. PT-5[J]. Agric Biol Chem.54(4):921-926
    156. Yang VW, Zhuang Z, Elegir G, Jeffries TW (1995) Alkaline-active xylanase produced by an alkaliphilic Bacillus sp isolated from kraft pulp. J Indust Microbiol. 15:434-441
    157. Yoon KH, Yun HN, Jung KH (1998) Molecular cloning of a Bacillus sp. KK-1 xylanase gene and characterization of the gene product Biochem Mol Biol Int.45: 337-347
    158. Zhang G, Huang J, Huang G, Ma L, Zhang X (2007) Molecular cloning and heterologous expression of a new xylanase gene from Plectospae rella cncumerina. Appl Microbiol Biotechnol 74:339-346
    159. Zhang J, Moilanen U, Tang M, Viikari L (2013) The carbohydrate-binding module of xylanase from Nonomuraea flexuosa decreases its non-productive adsorption on lignin Biotechnol Biofuels.6(1)18 doi:101186/1754-6834-6-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700