用户名: 密码: 验证码:
北京首云铁矿尾矿库生态恢复的植被特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿产资源的开发会导致许多生态与环境问题,生态恢复对于矿山废弃地生态环境质量的改善和区域经济的可持续发展具有重要的现实意义,而植被建植是矿山废弃地生态系统恢复中至关重要的问题之一。近年来我国矿山废弃地的植被恢复发展迅速,但尚缺乏长期和系统的作用机理研究,尤其是利用人工措施恢复植被的长期动态方面,系统性研究案例和资料严重欠缺。本论文研究了首云铁矿采用三种不同治理方法数年后,尾矿库的植被、土壤及恢复植被的生态化学计量学特征,以期探讨和评价不同措施的治理效果和应用前景,为采矿废弃地的有效治理提供实践例证。研究结果表明:
     (1)在治理7年后,采用覆盖客土加生态植被毯措施(简称为SC+VC)恢复的植被物种丰富度和多样性指数显著高于单独覆盖客土(简称为SC)或覆盖生态植被毯(简称为VC)恢复的植被;VC处理下植物多度和SC+VC处理下差异不大,均显著高于SC处理:SC处理下植物均匀度指数显著高于VC处理。SC+VC处理下植物的地上、地下部生物量及地表枯落物量显著高于另外两种处理;采用SC+VS处理样地的土壤养分指标均高于另外两种处理样地,而采用SC处理的样地土壤总氮、速效钾、有机质含量显著高于VC处理样地。从植被和土壤指标衡量,覆盖客土辅加生态植被毯应用显然是类似采矿迹地最佳的恢复措施;而在土壤缺乏的情况下,单独应用生态植被毯也可以取得与覆盖客土类似的植被恢复效果。
     (2)治理15年后,尾矿库定植的植物主要以禾本科、豆科和菊科植物为主,占物种总数的58%;群落物种多度和丰富度分别以恢复第1年和2年群落为最高;Shannon-Wiener物种多样性指数随着恢复年限呈降低趋势,但和周边植被差异不大;均匀度指数随着恢复年限增加而增加,直到在第八年达到最大值。地上部生物量随着恢复年限呈先降低后增加的趋势,而地下部生物量随着恢复年限则呈下降趋势;地表枯落物量第5年起逐渐接近周边植被水平。土壤有机碳库占整个生态系统碳库的72.2%,主要分布于表层0-20cm深度的土层中。经过治理15年后尾矿库土壤碳储量远低于周边植被下的土壤碳储量。利用SC+VC'恢复措施能够快速地实现尾矿库的植被恢复,生物多样性和植被生产力可以迅速恢复至未扰动植被水平。
     (3)尾矿库的3种优势菊科植物(猪毛蒿、黄花蒿和茵陈蒿)叶片和细根N、P生态化学计量特征季节内呈现一定的波动。叶片N、P含量在生长季内表现为先增加后减小的趋势,而细根N、P的季节变化则与叶片呈相反的趋势。叶片N:P比值在生长季内表现为生长季内先降低后增加的趋势;细根N:P比值初期略增加,后期与叶片N:P比值呈现一致的变化。植物叶片N、P含量之间存在显著的正相关关系,P含量与N:P比值之间存在负相关关系。
     (4)群落水平叶片和细根N、P含量随着恢复年限呈现一定的波动。叶片N、P含量在恢复初期波动较大,第4年后趋于稳定。叶片N:P值随着恢复年限整体呈现先降低后增加趋势。细根N、P含量随恢复时间整体呈现先降低后期逐渐趋于稳定,细根N:P值在恢复初期变化波动较大,后期变化逐渐趋缓稳定。
Exploitation of mineral resources can lead to many ecological and environmental consequences. Ecological restoration of mined lands is of great significance to both improvement of eco-environmental quality and regional sustainable economic development. Establishment of vegetation is one of the critical steps in achiving the goal of ecosystem restoration on mined lands. In recent years, restoration of vegetation on mined lands has progressed rapidly in China, but generally lacks long-term and systematic studies on the operating mechanisms; especially the well-established case studies and information are lacking on the vegetation dynamics following restoration practices. At the Shouyun Iron Ore Mine in suburb of Beijing, this dissertation investigated selective traits of vegetation, soil, and ecological stoichiometry on a tailings dam many years after treatments with three different methods. The objectives were to determine the effectiveness of vegetation establishment on sites with different treatments and to provide a case study for treatment of mined lands. Major results are as follows:
     (1) The site treated by combination of soil covering and application of vegetation carpet (designated as SC+VC) had significantly higher species richness and greater values of Shannon-Wiener index than the sites treated by either soil covering (designated as SC) alone or application of ecological vegetation carpet (designated as VC) alone. The VC site had a comparable plant abundance with the SC+VC site; whereas the SC site outperformed the VC and SC+VC sites in species evenness. Above-and belowground biomass and litter mass on the SC+VC site were higher than on the other two sites. The VC site did not differ with the SC site in the vegetational traits, albeit low soil fertility. It is suggested that application of vegetation carpet can be an alternative to introduction of topsoil for treatment of tailings dam with fine-structured substrate of ore sands. However, combination of topsoil treatment and application of vegetation carpet greatly increases vegetation coverage and plant biodiversity, and is therefore a much better approach for assisting vegetation establishment on the tailings dam of strip-mining operations.
     (2) The vegetation on the tailings dam sites treated during1997-2011was compared with undisturbed vegetation around the mining operation area. Species in the Poaceae, Legume and Compositae dominated the plant communities across all treatment sites, accounting for58%of total number of plant species. The plant abundance was greatest after one year of site treatment, and species richness was greatest after two years of site treatments, respectively. The value of Shannon-wiener index decreased with time after treatments on the tailings dam, but was not significantly different from the undisturbed vegetation nearby. Value pf Pielou index increased with site after site treatments until reaching maximu in the8th year after site treatments. The aboveground biomass decreased initially and then increased following site treatments. The belowground biomass consistently decreased with time following site treatments. Ground-surface litter mass increased with time following site treatments until reaching maximum and comparable level as the undisturbed sites surrounding in the6th year. These results indicate that the SC+VC treatment is most effective for facilitating vegetation establishment on tailings dam, resulting in rapid development of biodiversity and plant productivity comparable to the nearby undisturbed vegetation.
     (3) The seasonal variations of N and P in foliage and fine roots were studied in three dominant composites, including Artemisia scoparia Waldst. et Kit., A. annua L. and A. capillaries Thunb. The N and P concentrations of foliage and roots fluctuated seasonally in all the three composite plants. The foliar N and P concentrations increased in initial stage and then decreased until end of growth seasonl; whereas N and P concentrations in fine roots displayed opposite trend as of foliar N and P concentrations. Seasonal variations in foliar N:P ratio also contradicted that of foliar N and P concentrations, i.e. initial decrease followed by a trend of increase after the peak growth. Variations of N:P ratio in fine roots followed the trend of foliar N:P ratio except during the initial stage. Foliar N and P concentrations were significantly and positively related; whereas foliar P concentration and foliar N:P ratio were negatively related.
     (4) At community level, N and P concentrations in foliage and fine roots fluctuated across sites differing in the years of site treatments. The foliar N concentration decreased and then increased whereas P concentration increased and then decreased with years of site treatments. Foliar C:N ratio, C:P ratio and N:P ratio all increased with duration of restoration. Fine root N:P ratio varied greatly during the first four years after site treatmemt and then remained relatively steady thereafter.
引文
1. 白中科,赵景逵,朱荫湄.试论矿区生态重建[J].自然资源学报,1999,14(1):36-42.
    2. 包维楷,刘照光,刘庆.生态恢复重建研究与发展现状及存在的主要问题[J].世界科技研究与发展,2001,23(1):44-48.
    3. 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005.
    4. 卞正富,张国良.矿山土复垦利用试验[J].中国环境科学,1999,19(1):81-84.
    5. 蔡胜,辜彬,杨晓亮,等.浙江省废弃采石矿区植被重建后物种多样性研究[J].水土保持通报,2009,29(5):201-205.
    6. 蔡锡安,夏汉平.采矿地的生态恢复技术[J].应用生态学报,2002,13(11):1471-1477.
    7. 蔡兴华,何丙辉,李旭光,等.矿山渣场植物与植被现状调查研究[J].西南大学学报,2010,32(7):101-106.
    8. 陈法扬.城市化过程中的废弃采石场治理技术探讨[J].中国水土保持,2002,(5):39-40.
    9. 陈芳清,卢斌,王祥荣.樟村坪磷矿废弃地植物群落的形成与演替[J].生态学报,2001,21(8):1347-1353.
    10.陈芳清,卢斌,潘家荣.樟村坪磷矿废弃地植被状况[J].武汉植物学研,2000,18(1):77-80.
    11.陈芳清,张丽萍,卢斌.隔河岩水电站废弃地植被的初始生态恢复[J].三峡大学学报,2003,25(2):180-184.
    12.陈芳孝.北京市矿山生态治理主要技术与典型模式[J].中国水土保持,2007,2(7):25-26.
    13.程滨,赵永军,张文广,等.生态化学计量学研究进展[J].生态学报,2010,30(6):1628-1637.
    14.程积民,程杰,杨晓梅.黄土高原草地植被与土壤固碳量研究[J].自然资源学报,2011,26(3):401-411.
    15.戴莉萍.矿山开采对生态环境的影响及矿区生态修复-以煤矿为例[J].经济研究.2010,2(18):109-110.
    16.戴全厚,刘国彬,薛莲,等.不同植被恢复模式对黄土丘陵区土壤碳库及其管理指数的影响[J].水土保持研究,2008,15(3):61-64.
    17.丁青坡,王秋兵,魏忠义,等.抚顺矿山不同复垦年限土壤的养分及有机碳特性研究[J].土壤通报,2007,38(2):262-267.
    18.方精云,王襄平,沈泽吴,等.植物群落清查的主要内容、方法和技术规范[J].生物多样性,2009,17(6):533-548.
    19.高国雄,高保山,周心澄,等.国外工矿区土地复垦动态研究[J].水土保持研究,2001,8(1):98-103.
    20.高三平,李俊祥,徐明策,等.天童常绿阔叶林不同演替阶段常见种叶片N、P化学计量学特征[J].生态学报,2007,27(3):947-952.
    21.耿燕,吴漪,贺金生.内蒙古草地叶片磷含量与土壤有效磷的关系[J].植物生态学报,2011,35(1):1-8.
    22.郭逍宇,张金屯,宫辉力,等.安太堡矿区复垦地植被恢复过程多样性变化.生态学报,2005,25(4):763-770.
    23.郭逍宇,张金屯,宫辉力,等.安太堡矿区植被恢复过程主要种生态位梯度变化研究[J].西北植物学报,2004,24(12):2329-2334.
    24.郝建华,刘倩倩,强胜.菊科入侵植物三叶鬼针草的繁殖特征及其与入侵性的关系[J].植物学报,2009,44(6):656-665.
    25.郝蓉,白中科,赵景逵,等.黄土区大型露天煤矿废弃地恢复过程中的植被动态[J].生态学报,2003,23(8):1470-1476.
    26.何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,29(2):61-69.
    27.贺金生,韩兴国.生态化学计量学:探索从个体到生态系统的统一化理论[J].植物生态学报,2010,34(1):2-6.
    28.胡振琪,张光灿,魏忠义,等.煤矸石山的植物种群生长及其对土壤理化特性的影响[J].中国矿业大学学报,2003,(4):491-496.
    29.胡振琪.中国土地复垦与生态重建20年:回顾与展望[J].科技导报,2009,(17):25-29
    30.黄建军,王希华.浙江天童32种常绿阔叶树叶片的营养及结构特征[J].华东师范大学学报,2003,6(1):92-97.
    31.贾庆宇,周广胜,周莉,等.湿地芦苇植株氮素分布动态特征分析[J].植物生态学报,2008,32(4):858-864.
    32.蒋承菘.完善环境地质学科促进环境地质工作[J].地质通报,2004,23(8):732-736.
    33.蒋高明.英国圣·海伦斯Bold Moss Tip煤矿废弃地恢复实验研究[J].植物学报,1993,35(12):951-962.
    34.兰平和,李新玉.北京市矿业发展研究[J].资源产业,2003,5(4):42-45.
    35.李红艳,唐世荣,郑洁敏.两种生长在铜矿渣上的菊科植物的铜含量[J].农村生态环境,2003,19(4):53-55.
    36.李江峰.北京矿山废弃地生态恢复质量评价[D].北京:北京林业大学,2010:20-48.
    37.李君浒,董永观,董志高.我国矿山环境的治理现状与前景[J].生态经济,2008,5(12):76-81.
    38.李凌浩,李鑫,白文明,等.锡林河流域一个放牧羊草群落中碳素平衡的初步估计[J].植物生态学报,2004,28(3):312-317.
    39.李明顺,唐绍清,张杏辉,等.金属矿山废弃地的生态恢复实践与对策[J].矿业安全与环保,2005,32(4):16-18.
    40.李树志,周锦华,张怀新.矿区生态破坏防治技术[M].北京:煤炭工业出版社,1998:5-12.
    41.李团胜,程水英,千年生态系统评估及我国的对策[J].水土保持通报,2003,(1):7-11.
    42.李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报,2004,24(1):95-100.
    43.林志斌,严平勇,杨智杰,等.福建万木林101种常见木本植物叶片N、P化学计量学特征[J].亚热带资源与环境学报,2011,6(1):32-38.
    44.刘国华,舒洪岚,张金池,等.南京幕府山矿山废弃地恢复模式研究[J].水土保持研究,2005,12(1):141-144.
    45.刘国华,舒洪岚.矿山废弃地生态恢复研究进展[J].江西林业科技,2003,13(3):20-25.
    46.卢振兰,刘锐敏,白莉萍,等.施用城市污泥对土壤生态系统影响的研究进展[J].生态环境学报,2012,21(1):172-179.
    47.马克平,黄建辉,于顺利,等.北京东灵山地区植物群落多样性的研究Ⅱ丰富度、均匀度和物种多样性指数[J].生态学报,1995,15(3):268-277.
    48.马世骏.现代生态学透视[M].北京:科学出版社,1990.
    49.麦少芝,徐颂军,梁志娇.矿业废弃地的特点和环境影响[J].云南地理环境,2005, 17(3):23-26.
    50.孟广涛,方向京,柴勇,等.矿区植被恢复措施对土壤养分及物种多样性的影响[J].西北林学院学报,2011,26(3):12-16.
    51.莫测辉,蔡全英,全江海.城市污泥在矿山废弃地复垦的应用探讨[J].生态学杂志,2001,20(2):44-47.
    52.聂湘平,蓝崇钰,张志权.铜对大叶相思-根瘤菌共生固氮体系的影响[J].应用生态学报,2002a,13(2):137-140.
    53.聂湘平,蓝崇钰,张志权.锌对大叶相思-根瘤菌共生固氮体系的影响[J].植物生态学报,2002b,26(3):264-268.
    54.牛得草,董晓玉,傅华.长芒草不同季节碳氮磷生态化学计量特征[J].草业科学,2011,28(6):915-920.
    55.彭建,蒋一军,吴健生,等.我国矿山开采的生态环境效应及土地复垦典型技术[J].地理科学进展,2005,24(2):38-48.
    56.彭少麟.恢复生态学与植被重建[J].生态科学,1996,15(2):26-31.
    57.彭少麟.恢复生态学与退化生态系统的恢复[J].中国科学院院刊,2000,2(3):188-192.
    58.彭少麟.中国热带亚热带恢复生态学研究与实践[M].北京:科学出版社,2003.
    59.彭少麟,赵平.以创新理论深入推进恢复生态学的自然与社会实践-2000年恢复生态学会国际大会综述[J].应用生态学报,2000,11(5):799-800.
    60.朴世龙,方精云,贺金生,等.中国草地植被生物量及其空间分布格局[J].植物生态学报,2004,28(4):491-498.
    61.秦建桥,夏北成,胡萌,等.广东大宝山矿区尾矿库植被演替分析[J].农业环境科学学报,2009,28(10):2085-2091.
    62.曲刊湘,吴玉树,王焕校,等.植物生态学(第二版)[M].北京:高等教育出版社,1983:22-40.
    63.任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2001:1-21.
    64.任书杰,于贵瑞,姜春明,等.中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征[J].应用生态学报,2012,23(3):581-586.
    65.任书杰,于贵瑞,陶波,等.中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J].环境科学,2007,28(12):2666-2674.
    66.任晓旭,蔡体久,王笑峰.不同植被恢复模式对矿区废弃地土壤养分的影响[J].北京林业大学学报,2010,32(4):151-154.
    67.时红.山西煤矿的生态环境问题及其对策[J].重庆环境科学,2002,24(2):11-13.
    68.束文圣,蓝崇钰,张志权.凡口铅锌尾矿影响植物定居的主要因素分析[J].应用生态学报,1997,8(3):314-318.
    69.束文圣,张志权,蓝崇钰.中国矿业废弃地的复垦对策研究[J].生态科学,2000,19(2):24-29.
    70.宋彦涛,周道玮,李强,等.松嫩平原80种植物叶片氮磷化学计量学特征[J].植物生态学报,2012,36(3):222-230.
    71.苏光全,何书金,郭焕成.矿山废弃土地资源适宜性评价[J].地理科学进展,1998,17(4):39-45.
    72.孙书存,陈灵芝.东灵山地区辽东栎叶养分的季节动态与回收效率[J].植物生态学报,2001,25(1):76-82.
    73.唐文杰,李明顺.广西锰矿区废弃地优势植物重金属含量及富集特征[J].农业环境科学学 报,2008,27(5):1757-1763
    74.田娜,王义祥,翁伯琦.土壤碳储量估算研究进展[J].亚热带农业研究,2010,6(3):193-198.
    75.王宏镔,文传浩,谭晓勇,等.云南会泽铅锌矿矿渣废弃地植被重建初探[J].云南环境科学,1998,17(2):43-46.
    76.王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征[J].生态学报,2008,28(8):3937-3947.
    77.魏树和,杨传杰,周启星.三叶鬼针草等7种常见菊科杂草植物对重金属的超富集特征[J].环境科学,2008,29(10):2912-2918.
    78.吴统贵,吴明,刘丽,等.杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化[J].植物生态学报,2010,34(1):23-28.
    79.吴彦琼,胡劲松,胡南,等.铀尾矿库区的植物组成与多样性.生态学杂志,2010,29(7):1314-1318.
    80.武雄,韩兵,管清花,等.北京市固体矿山生态环境现状及修复对策[J].地学前缘,2008,15(5):324-329.
    81.夏汉平,蔡锡安.采矿地的生态恢复技术[J].应用生态学报,2002,13(11):1471-1477.
    82.徐冰,程雨曦,甘慧洁,等.内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联.植物生态学报,2010,34(1):29-38.
    83.徐友宁.矿山地质环境调查研究现状及展望[J].地质通报,2008,27(8):1235-1244.
    84.闫德民,赵方莹,孙建新.铁矿采矿迹地不同恢复年限的植被特征[J].生态学杂志,2013,32(1):1-6.
    85.闫恩荣,王希华,周武.天童常绿阔叶林演替系列植物群落的N:P化学计量特征[J].植物生态学报,2008,32(1):13-22.
    86.闫芊,陆健健,何文珊,崇明东滩湿地高等植被演替特征[J].应用生态学报,2007,18(5):1099-1103.
    87.阳承胜,蓝崇钰,束文圣.矿业废弃地生态恢复的土壤生物肥力[J].生态科学,2000,19(3):73-78.
    88.杨阔,黄建辉,董丹,等.青藏高原草地植物群落冠层叶片氮磷化学计量学分析[J].植物生态学报,2010,34(1):17-22.
    89.杨胜香,李明顺,赖燕平,等.广西锰矿废弃地优势植物及其土壤重金属含量[J].广西师范大学学报,2007,25(1):108-112.
    90.杨晓梅,程积民,孟蕾,韩娟娟.不同林地土壤有机碳储量及垂直分布特征[J].中国农学通报,2010,26(9):132-135.
    91.杨修,高林.德兴铜矿山废弃地恢复与重建研究[J].生态学报,2001,21(11):1932-1940.
    92.殷士学.土壤微生物量及其与养分循环关系的研究进展:现状和展望[J].土壤学进展,1993,21(4):1-8.
    93.银晓瑞,梁存柱,王立新,等.内蒙古典型草原不同恢复演替阶段植物养分化学计量学[J].植物生态学报,2010,34(1):39-47.
    94.于君宝,刘景双,王金达,等.矿山复垦土壤典型元素时空变化研究[J].中国环境科学,2001,21(3):235-239.
    95.余作岳,彭少麟.热带亚热带退化生态系统植被恢复生态学研究[M].广州:广东科技出版社.1996.
    96.曾德慧,陈广生.生态化学计量学:复杂生命系统奥秘的探索[J].植物生态学报,2005,29(6):141-153.
    97.张成梁,Li BL美国煤矿废弃地的生态修复[J].生态学报,2011,31(1):276-285
    98.张光灿,刘霞,王燕.煤矿山生态重建过程中风化矸石山植被生长及土壤水文效应[J].水土保持学报,2002,16(5):20-23.
    99.张鸿龄,孙丽娜,孙铁珩,等.矿山废弃地生态修复过程中基质改良与植被重建研究进展.生态学杂志,2012,31(2):460-467.
    100.张建彪,闫美芳,上官铁梁.山西采煤的主要生态问题及恢复和重建对策[J].安徽农业科学,2008,36(24):10668-10670.
    101.张莉.北京市生态涵养发展区的功能类型划分及发展对策[J].经济地理,2009,29(6):989-994.
    102.张丽芳,濮励杰,涂小松,废弃地的内涵、分类及成因探析[J].长江流域资源与环境,2010,(2):180-185
    103.张林,罗天祥.植物叶寿命及其相关叶性状的生态学研究进展[J].植物生态学报,2004,28(6):844-852.
    104.张文彦,樊江文,钟华平,等.中国典型草原优势植物功能群氮磷化学计量学特征研究[J].草地学报,2010,18(4):503-510.
    105.张志权,束文圣,蓝崇钰,等.引入土壤种子库对铅锌尾矿废弃地植被恢复的作用.植物生态学报,2000,24(5):601-607.
    106.张志权,束文圣,蓝崇钰,等.土壤种子库与矿业废弃地恢复研究:定居植物对重金属的吸收和再分配[J].植物生态学报,2001,25(3):306-311.
    107.张志权,束文圣,廖文波,等.豆科植物与矿业废弃地恢复[J].生态学杂志,2002,21(2):47-52.
    108.赵方莹.铁矿废弃地植被恢复技术与效应研究[M].北京:中国林业出版社,2009.
    109.赵方莹.矿山废弃地拟自然植被恢复技术研究[D].北京:北京林业大学,2011.
    110.赵方莹,蒋延玲.矿山废弃地灌草植被不同层次的水土保持效应[J].水土保持通报,2010,30(4):56-59.
    111.赵方莹,李江锋,程小琴.北京首云铁矿沙厂矿区自然恢复植物种群的生态位特征.中国水土保持科学,2009,7(6):80-84.
    112.赵方莹,赵廷宁,丁国栋,等.中国专利生态植被毯,2006.01.
    113.赵方莹,徐邦敬,周连兄,等.采石边坡生态修复技术组合模式研究[J].中国水土保持,2006,3(5):24-26.
    114.赵平.退化生态系统植被恢复的生理生态学研究进展[J].应用生态学报,2003,14(11):2031-2036.
    115.郑淑霞,上官周平.黄土高原地区植物叶片养分组成的空间分布格局[J].自然科学进展,2006,16(8):965-973.
    116.周鹏,耿燕,马文红,等.温带草地主要优势植物不同器官间功能性状的关联[J].植物生态学报,2010,34(1):7-16.
    117.周国模,姜培坤.不同植被恢复对侵蚀型红壤活性碳库的影响[J].水土保持学报,2004,18(6):68-83.
    118.邬建国,李凤民.现代生态学讲座-宏观生态学与可持续性科学[M].北京:高等教育出版社, 2011:361-380.
    119.周莹,贺晓,徐军,等.半干旱区采煤沉陷对地表植被组成及多样性的影响[J].生态学报,2009,29(8):4517-4525.
    120. Aerts R, Chapin FS Ⅲ. The mineral nutrition of wild plants revisited:a re-evaluation of processes and patterns. Advances in Ecological Research,2000,30(1):1-67.
    121. Alday JG, Pallavicini Y, Marrs RH, et al. Functional groups and dispersal strategies as guides for predicting vegetation dynamics on reclaimed mines. Plant Ecology,2011, 212(11):1759-1775.
    122. Allen EB, Covington WW, Falk DA. Developing the conceptual basis for restoration ecology. Restoration Ecology,1997,5(4):275-276.
    123. Anderson TR, Boersma M, Raubenheimer D. Stoichiometry:linking elements to biochemicals. Ecology,2004,85(5):1193-1202.
    124. Anderson TR, Elser JJ, Hessen DO. Stoichiometry and population dynamics. Ecology Letters, 2004,7(9):884-900.
    125. Bai YF, Han XG, Wu JG, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature,2004,431(9):181-184.
    126. Bakker J, Berendse F. Constraints in the restoration of ecological diversity in grassland and heathland communities. Tree,1999,14(2):63-68.
    127. Baldwin DS, Rees GN, Mitchell AM, et al. The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands,2006,26(2):455-464.
    128. Bell LC. Establishment of native ecosystems after mining-Australian experience across diverse biogeographic zones. Ecological Engineering,2001,17(2):179-86.
    129. Bradshaw AD. The use of natural processes in reclamation-advantages and difficulties. Landscape and Urban Planning,2000,51(1):89-100.
    130. Bradshaw AD, Chadwick MJ. The restoration of land:The ecology and reclamation of derelict and degraded land. Blackwell Scientific Publication, Oxford,1980:38-46.
    131. Bradshaw AD, Huttl RF. Future minesite restoration involves a broader approach. Ecological Engineering,2001,17(1):87-90.
    132. Bradshaw AD. The reconstruction of ecosystems. Journal of Applied Ecology,1983,20(1):1-17.
    133. Bradshaw AD. Restoration of mined lands-using natural processes. Ecological Engineering, 1997,8(3):255-269.
    134. Bryan LF, Cheryl AM, Kane RK, et al. Restoration of prairie community structure and ecosystem function in an abandoned hayfield:A sowing experiment. Restoration Ecology,2007, 15(4):652-661.
    135. Burke A. Recovery in Naturally Dynamic Environments:A Case Study from the Sperrgebiet, Southern African Arid Succulent Karoo. Environmental Management,2007,40(4):635-648.
    136. Burton CM, Burton PJ, Hebda R, et al. Determining the optimal sowing density for a mixture of native plants used to revegetate degraded ecosystems. Restoration Ecology,2006, 14(3):379-390.
    137. Cains J. The status of the theoretical and applied science of restoration ecology. The Environmental Professional,1991,13(2):186-194.
    138. Cairns J, James RP. Ecological restoration through behavioral change. Restoration ecology, 1995,3(1):51-53.
    139. Chapin FS Ⅲ, Matson PA, Mooney HA. Principles of terrestrial ecosystem ecology. Springer-Verlag, New York,2002:5-12.
    140. Chapin FS Ⅲ, Schulze ED, Mooney HA. The ecology and economics of storage in plants. Annual Review of Ecology and Systematics,1990,21(3):423-447.
    141. Chapin FS Ⅲ. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 1980, 11(2):233-260.
    142. Comas LH, Eissenstat DM. Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Functional Ecology,2004,18(3):388-397.
    143. Cooke JA, Johnson MS. Ecological restoration of land with particular reference to the mining of metals and industrial minerals:A review of theory and practice. Environmental Reviews, 2002,10(1):41-71.
    144. Correll O, Isselstein J, Pavlu V. Studying spatial and temporal dynamics of sward structure at low stocking densities:the use of an extended rising-plate-meter method. Grass and Forage Science,2003,58(3):450-454.
    145. Cullen WR, Wheater CP, Dunleavy PJ. Establishment of species-rich vegetation on reclaimed limestone quarry faces in Derbyshire, UK. Biological Conservation,1998,84(1):25-33.
    146. Curtis JT. The vegetation of Wisconsin, An ordination of plant communites. University of Wisconsin Press, Madison,1959:22-38.
    147. Damigos D, Kaliampakos D. Assessing the benefits of reclaiming urban quarries:a CVM analysis. Landscape and Urban Planning,2003,64(2):249-258.
    148. Dickman EM, Newell JM, Gonzalez MJ, et al. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. Proceedings of the National Academy of Sciences,2008,105(47):18408-18412.
    149. Dobson, AP, Bradshaw AD, Baker AJM. Hopes for the future:Restoration ecology and conservation biology. Science,1997,277(25):515-522.
    150. Dodds WK, Marti E, Tank JL, et al. Carbon and nitrogen stoichiometry and nitrogen cycling rates in streams. Oecologia,2004,140(3):458-467.
    151. Duque JF, Matin J, Pedraza A et al. A geomorphological design for the rehabilitation of an abandoned sand quarry in central Spain. Landscape and Urban Planning,1998,42(1):1-14.
    152. Eissenstat DM, Wells CE, Yanai RD, et al. Building roots in a changing environment: implications for root longevity. New Phytologist,2000,147(1):33-42.
    153. Elser JJ, Acharya K, Kyle M, et al. Growth rate-stoichiometry couplings in diverse biota. Ecology Letters,2003,6(10):936-943.
    154. Elser JJ, Bracken MES, Cleland EE, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters,2007,10(12):1135-1142.
    155. Elser JJ, Dobberfuhl DR, MacKay NA, et al. Organism size, life history, and N:P stoichiometry. Bioscience,1996,46(9):674-684.
    156. Elser JJ, Fagan WF, Denno RF, et al. Nutritional constraints in terrestrial and freshwater food webs. Nature,2000,408(30):578-580.
    157. Elser JJ, Sterner RW, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems. Ecology Letters,2000,3(4):540-550.
    158. Falk DA, Palmer MA, Zedler JB. Foundations of restoration ecology. Island press. Washington, 2006:42-56.
    159. Foley JA, Defries R, Asner GP, et al. Global consequences of land use. Science,2005, 309(4):570-574.
    160. Forman RT. Some general principles of landscape and regional ecology. Landscape and Ecology,1995,10(3):133-142.
    161. Frost PC, Evans-White MA, Finkel ZV, et al. Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos,2005,109(1):18-28.
    162. Garcia-Palacios P, Maestre FT, Gallardo A. Soil nutrient heterogeneity modulates ecosystem responses to changes in the identity and richness of plant functional groups. Journal of Ecology, 2011,99(4):551-562.
    163.Gentili R, Sgorbati S, Baroni C. Plant Species Patterns and Restoration Perspectives in the Highly Disturbed Environment of the Carrara Marble Quarries (Apuan Alps, Italy). Restoration Ecology,2011,19(101):32-42.
    164. Grant CD, Campbell CJ, Charnock NR. Selection of species suitable for derelict mine site rehabilitation in New South Wales, Australia. Water, Air,& Soil Pollution,2002, 139(2):215-235.
    165. Guo DL, Mitchell RJ, Hendricks JJ. Fine root branch orders respond differentially to carbon source sink manipulations in a longleaf pine forest. Oecologia,2004,140(3):450-457.
    166. Guo HC, Wu DR, Zhu HX. Land restoration in China. Journal of Applied Ecology,1989, 26(4):787-792.
    167. Gusewell S, Koerselman M. Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology Evolution and Systematics,2002,5(1):37-61.
    168. Gusewell S. N:P ratios in terrestrial plants:variation and functional significance. New Phytologist,2004,164(2):243-266.
    169. Han WX, Fang JY, Guo DL et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist,2005,168(3):377-385.
    170. Harris G. Ecological stoichiometry:biology of elements from molecules to the biosphere. Journal o f Plankton Research,2003,25(11):1183
    171. He JS, Fang JY, Wang ZH, et al. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia,2006,149(1):115-122.
    172. He JS, Wang L, Flynn DFB, et al. Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia,2008,155(2):301-310.
    173. Hessen DO, Agren GI, Anderson TR, et al. Carbon sequestration in ecosystems:the role of stoichiometry. Ecology,2004,85(5):1179-1192.
    174. Hobbs RJ, Norton DA. Towards a conceptual framework for restoration ecology. Restoration Ecology,1996,4(1):93-110.
    175. Hodacova D, Prach K. Spoil Heaps From Brown Coal Mining:Technical Reclamation Versus Spontaneous Revegetation. Restoration Ecology,2003,11(3):385-391.
    176. Hofmann M, Kowarsch N, Bonn S, et al. Management for biodiversity and consequences for grassland productivity. Grassland Science in Europe,2001,6(1):113-116.
    177. Holl KD. Long-term vegetation recovery on reclaimed coal surface mines in the eastern USA. Journal of Applied Ecology,2002,39(6):960-970.
    178. Holmes PM. Shrubland restoration following woody alien invasion and mining:effects of topsoil depth, seed source, and fertilizer addition. Restoration Ecology,2001,9(1):71-84.
    179. Huttl RF, Weber E. Forest ecosystem development in post-mining landscapes:a case study of the Lusatian lignite district. Naturwissenschaften,2001,88(8):322-329.
    180. Jackson RB, Mooney HA, Schulze ED. A global budget for fine root biomass, surface area and nutrient contents. Proceedings of the National Academy of Science of the United States of America,1997,94(14):7362-7366.
    181. Jasper DA. Bioremediation of agricultural and forestry soils with symbiotic microorganisms. Australian Journal of Soil Research,1994,32(6):1301-1319.
    182. Jiao JY, Zhang ZG, Bai WJ, et al. Assessing the ecological success of restoration by afforestation on the Chinese Loess Plateau. Restoration Ecology,2012,20(2):240-249.
    183. Jones HP, Schmitz OJ. Rapid recovery of damaged ecosystems. PLoS One,2009,4(1):1-6
    184. Jordan WR, Gilpin ME, Aber, JD. Restoration ecology:Ecological restoration as a technique for basic research. Cambridge:Cambridge University,1987:12-19.
    185.Kerkhoff AJ, Enquist BJ. Ecosystem allometry:the scaling of nutrient stocks and primary productivity across plant communities. Ecology Letters,2006,9(4):419-427.
    186. Kiikkila O, Perkiomaki J, Barnette M, et al. In situ bioremediation through mulching of soil polluted by a copper-nickel smelter. Journal of Environmental Quanlity,2001,30(4):1134-1144
    187. Kimmerer RW. Vegetation development on a dated series of abandoned lead and zinc mines in Southwestern Wisconsin. American Midland Naturalist,1984,111(3):332-341.
    188. Koerselman W, Meuleman AFM. The vegetation N:P ratio:a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology,1996,33(12):1441-1450.
    189. Kormondy EJ. Concept of Ecology.4th ed. Upper Saddle River:Prentice Hall, Inc,1996:1-6.
    190. Kullu B, Behera N. Vegetational succession on different age series sponge iron solid waste dumps with respect to top soil application. Research Journal of Environmental and Earth Sciences,2011,3(1):38-45.
    191.Kundu NK, Ghosh MK. Studies on, the topsoil of an underground coal-mining project. Environmental Conservation,1994,21(1):126-132.
    192. Lerman A, Mackenzie FT, Ver LMB. Nitrogen and phosphorous controls of the carbon cycle. Journal of Conference Abstracts,2000,5(4):638.
    193. Li MS. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China:A review of research and practice. Science of the Total Environment,2006, 357(1):38-53.
    194. Lin GCS, Ho SPS. China's resources and land-use change:insights from the 1996 land survey. Land Use Policy,2003,20(1):87-107.
    195. Lin YM, Sternberg Lda. Nitrogen and phosphorus dynamics and nutrient resorption of Rhizophora mangle leaves in south Florida, USA. Bulletin of Marine Science,2007, 80(1):159-169.
    196. Lu XT, Kong DL, Pan QM, et al. Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland. Oecologia,2012,168(2):301-310.
    197. Lubke RA, Avis AM. A review of the concepts and application of rehabilitation following heavy mineral dune mining. Marine Pollution Bulletin,1999,37(8):546-557.
    198. Makino W, Cotner JB, Sterner RW, et al. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Functional Ecology,2003, 17(1)121-130.
    199. Marriott CA, Bolton GR. Changes in species composition of ungrazed, unfertilised swards after imposing seasonal cutting treatments. Grassland Science,1998,3(3):465-468.
    200. Marriott CA, Bolton GR, Fisher JM. Changes in species composition of abandoned sown sward after imposing seasonal cutting treatments. Grass and Forage Science,2003,58(1):37-49.
    201. Martinez-Ruiz C, Fernandez-Santos B. Effect of substrate coarseness and exposure on plant succession in uranium-mining wastes. Plant Ecology,2001,155(1):79-89.
    202. Martinez-ruiz C, Fernandez-santos B. Natural revegetation on topsoiled mining-spoils according to the exposure. Acta Oecologica,2005,28(2):231-238.
    203. McGroddy ME, Daufresne T, Hedin LO. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology,2004,85(9):2390-2401.
    204. Melanie AN, John MK, Carl DG, et al. Vegetation succession:after bauxite mining in Western Australia. Restoration Ecology,2006,14(2):278-288.
    205. Miao Z, Marrs R. Ecological restoration and land reclamation in open-cast mines in Shanxi Province, China. Journal of Environmental Management,2000,59(2):205-215.
    206. Michaels AF. The ratios of life. Science,2003,300(9):906-907.
    207. Moe SJ, Stelzer RS, Forman MR, et al. Recent advances in ecological stoichiometry:insights for population and community ecology. Oikos,2005,109(1):29-39.
    208. Moen RA, Pastor J, Cohen Y. Antler growth and extinction of Irish elk. Evolutionary Ecology Research,1999,1(2):235-249.
    209. Norby RJ, Jackson RB. Root dynamics and global change:seeking an ecosystem perspective. New Phytologist,2000,147(1):3-12.
    210. Ntshotsho P, Reyers B, Esler KJ. Assessing the Evidence Base for Restoration in South Africa. Restoration Ecology,2011,19(5):578-586.
    211.Pandey S, Maiti T. Physicochemical and biological characterization of slag disposal site at Burnpur, West Bengal. Pollution Research,2008,27(3):345-348.
    212. Pavlu V, Hejcman M, Pavlu L, et al. Vegetation changes after cessation of grazing management in the Jizerske Mountains. Annales Botanici Fennici,2005,42(3):343-349.
    213. Pensa M, Sellin A, Luud A, et al. An analysis of vegetation restoration on opencast oil shale mines in Estonia. Restoration Ecology,2004,12(2):200-206.
    214. Perrow MR, Davy AJ. Handbook of ecological restoration.1:Principles of restoration. Cambridge:Cambridge University Press,2002:1-8.
    215. Petursdottir T, Aradottir AL, Benediktsson K. An evaluation of the short-term progress of restoration combining ecological assessment and public perception. Restoration Ecology,2013, 21(1):75-85.
    216. Pielou EC. Ecological Diversity. New York:John Wiley Press,1975:34-46.
    217. Prach K, Pysek P. Using spontaneous succession for restoration of human-disturbed habitats: experience from central Europe. Ecology Engineering,2001,17(1):55-62.
    218. Prach K, Walker LR. Four opportunities for studies of ecological succession. Trends in Ecology and Evolution,2011,26(1):119-123.
    219. Rao AV, Tak R. Growth of different tree species and their nutrient uptake in limestone mine spoil as influenced by arbuscular mycorrhizal (AM)-fungi in Indian arid zone. Journal of Arid Environments,2002,51(1):113-119.
    220. Raubenheimer D, Simpson SJ. Nutrient transfer functions:the site of integration between feeding behaviour and nutritional physiology. Chemoecology,1998,8(1):61-68.
    221. Reich PB, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(30):11001-11006.
    222. Reich PB, Walters MB, Ellsworth DS. From tropics to tundra:global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 1997,94(25):13730-13734.
    223. Reiners WA. Complementary models for ecosystems. American Naturalist,1986,127(1):59-73.
    224. Roy A, Basu SK, Singh KP. Modeling ecosystem development on blast furnace slag dumps in a tropical region. Simulation,2002,78(4):531-542.
    225. Ruiz-Jaen MC, Aide TM. Restoration success:how is it being measured? Restoration Ecology, 2005,13(3):569-577.
    226. Schindler DW. Balancing planets and molecules. Nature,2003,423(5):225-226.
    227. Shannon CE, Weiner W. The mathematical theory of communication. Unknown Distance Function. Urbana:Illinois Press,1949:22-34.
    228. Shu WS, Ye ZH, Lan CY, et al. Acidification of lead/zinc mine tailings and its effect on heavy metal mobility. Environment International,2001,26(5-6):389-394.
    229. Sterner RW, Elser JJ, Hessen DO. Stoichiometric relationships among producers, consumers, and nutrient cycling in pelagic ecosystems. Biogeochemistry,1992,17(l):49-67.
    230. Sterner RW, Elser JJ. Ecological Stoichiometry:the Biology of Elements From Molecules to Biosphere. Princeton:Princeton University Press,2002:55-72.
    231. Sterner RW, Hessen DO. Algal nutrient limitation and the nutrition of aquatic herbivores. Annual Review of Ecology and Systematic,1994,25(1):1-29.
    232. Sydnor ME, Redente EF. Reclamation of high-elevation, acidic mine waste with organic amendments and topsoil. Journal of environmental quality,2002,31 (5):1528-1537.
    233. Ter Braak CJF, Smilauer P. CANOCO release 4. Reference manual and user's guide to Canoco for Windows:Software for Canonical Community Ordination. Ithaca:Microcomputer Power, 1998:65-78.
    234. The SER International primer on ecological restoration Version 2. Society for Ecological Restoration International. Society for Ecological Restoration International Science & Policy Working Group. Tucson:Arizona,2004:1-8.
    235. Thompson K, Parkinson JA, Band SR, et al. A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytologist,1997,136(4):679-689.
    236. Tordoff GM, Baker AJ, Willis AJ. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere,2000,41(2):219-228.
    237. Townsend A R, Cleveland C C, Asner G P, et al. Controls over foliar N:P ratios in tropical forests. Ecology,2007,88(1):107-118.
    238. Urabe J, Elser JJ, Kyle MM, Sekino T, Kawabata Z. Herbivorous animals can mitigate unfavourable ratios of energy and material supplies by enhancing nutrient recycling. Ecology Letters,2002,5(2):177-185.
    239. Urabe J, Kyle M, Makino W, et al. Reduced light increases herbivore production due to stoichiometric effects of light:nutrient balance. Ecology,2002,83(3):619-627.
    240. Urabe J, Sterner RW. Regulation of herbivore growth by the balance of light and nutrients. Proceedings of the National Academy of Sciences of the United States of America,1996, 93(16):8465-8469.
    241. Vanni MJ, Flecker AS, Hood JM, Headworth JL. Stoichiometry of nutrient recycling by vertebrates in a tropical stream:linking species identity and ecosystem processes. ecology Letters,2002,5(2):285-293.
    242. Vitousek PM, Howarth RW. Nitrogen limitation on land and in the sea:How can it occur? Biogeochemistry,1991,13(1):87-115.
    243. Vitousek PM. Nutrient cycling and nutrient use efficiency. The American Naturalist,1982, 119(4):553-572.
    244. Vrede T, Dobberfuhl DR, Kooijman S, Elser JJ. Fundamental connections among organism C:N:P stoichiometry, macromolecular composition, and growth. Ecology,2004, 85(5):1217-1229.
    245. Wardle DA, Walker LR, Bardgett RD. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science,2004,305(5683):509-513.
    246. Wong MH. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere,2003,50(4):775-780.
    247. Yu Q, Chen Q, Elser JJ, et al. Linking stoichiometric homeostasis with ecosystem structure, functioning and stability. Ecology Letters,2010,13(11):1390-1399.
    248. Zedler JB. Success An unclear, subjective descriptor of restoration outcomes. Ecological Restoration,2007,25(3):162-169.
    249. Zhang LX, Bai YF, Han XG Application of N:P stoichiometry to ecology studies. Acta Botanica Sinica,2003,45(9):1009-1018.
    250. Zhang LX, Bai YF, Han XG. Differential responses of N:P stoichiometry of Leymus chinensis and Carexkorshinskyi to N additions in a steppe ecosystem in Nei Mongol. Acta Botanica Sinica,2004,46(2):259-270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700