用户名: 密码: 验证码:
基于自适应滤波的基因调控网络研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因调控网络是生物网络中一类重要的复杂网络。基因表达之间的调控是相互联系,相互制约的,孤立地研究单个基因及其表达并不能确切地反映生命现象本身和内在规律,因此,必须从系统的观点研究基因之间的调控网络。众所周知,时滞现象普遍存在于自然系统中,比如生物系统、化学系统、电力系统以及物理系统等等。时滞的存在可以导致系统不稳定,从而产生持续震荡、分岔甚至是混沌等现象发生。因此,时滞是基因调控网络的研究中必须要考虑的一方面。同时,基因调控网络在实现其功能的过程中,不可避免地会有噪声因素的影响,因此,噪声也是基因调控网络的研究中必须要考虑的一方面。
     人们还未对生物体的运行机制了解透彻,比如基因是如何在正确的时间、正确的位点、用合适的浓度来激活或抑制基因表达的。生命机理的研究离不开高通量的数据采集和数据分析。受技术条件所限,研究者们并不能获得所需的全部信息。因此,理论生物学家们致力于从获得的数据中探究生命活动中存在的未知规律。这样就产生了一个滤波问题:给定一个存在随机扰动和时变时滞的基因调控网络,如何根据网络的观测数据来对其它产物的浓度和参数进行估计。基于此,本文主要做了以下工作:
     1、对具有时变时滞的基因调控网络,在存在外部噪声扰动的情况下,采用自适应滤波的方法设计自适应律,通过构造Lyapunov函数判断系统的随机稳定性。在网络结构和节点输出状态已知的情况下,实现了网络中未知参数和未知状态的估计。
     2、基于自适应同步集,运用自适应滤波方法研究了一类信息不完全的不确定基因调控网络。提出了一类新的不确定基因调控网络模型,并考虑了网络中存在时间延迟和噪声的影响。在仅仅知道网络结构和部分节点的输出状态的情况下(假定只有部分mRNA和蛋白质浓度的值可以观测到),通过该模型对网络中的未知参数和未知状态进行了估计。
Genetic regulatory network is an important type of biological networks. The regulations among gene expressions are not independent; there are interactions and inter-constrains among them. Study on a single gene expression can not grasp the biology functions and patterns of the living system. Hence, it is necessary to study the regulatory network among gene expressions from the system point of view. It is well known that time delay is ubiquitous in biological, chemical, and electrical dynamical systems, etc. Time delays can derail the stability of the system thereby causing sustained oscillations, bifurcations, and even chaos. So, time delay is one of important aspects in the field of genetic regulatory networks. As well, noise is unavoidable in the process of genetic regulatory networks. So, noise is another important aspect that must be considered.
     Moreover, in a real genetic regulatory network, it is still not completely understood today as how the genes are expressed in the right time and right place, with the right amount throughout the development of the organism. Studying living organisms requires significant work on observing, collecting, and analyzing data. Because of the limit of technologies, researchers can not obtain all information they need. Thus, theoretical biologists attempt to estimating the missing information from the available data, which gives rise to the following filtering problem:given a genetic regulatory network, how to estimate the unknown products and parameters by using the obtained data from the network. The main results of the thesis are as follows:
     1. For genetic regulatory networks with time-varying delays and uncertain noise disturbances, some adaptive laws are derived by using adaptive filtering approach and to ensure the stochastic stability by constructing Lyapunov functional. The theoretical results estimate the unknown parameters and states requiring only the output and structure of the underlying network.
     2. Based on adaptive synchronization setting, a class of uncertain genetic regulatory networks with partial information are investigated from an adaptive filtering approach. A new uncertain model of genetic regulatory network is proposed considering the time delay and noise disturbance. Using this model, uncertain parameters and stated of the network are estimated requiring only network structure and partial output of some nodes(assuming that only some of the concentrations of mRNA and protein could be observed).
引文
1.莫里斯·克莱因,北京大学数学系数学史翻译组译.古今数学思想上海科学技术出版社.1979,第二册,p.3.
    2. Erdos P, Renyi A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci,1960, 5:17-61.
    3. Watt D J, Strogatz S H. Collective dynamics of small-world networks. Nature,1998,393: 440-442.
    4. Barabasi A L, Alber T, Emergence of scaling in random networks. Science,1999,286:509-512.
    5.杨荣武等.分子生物学.南京大学出版社,2007.
    6. 杨胜利.系统生物学研究进展.中国科学院院刊,2004,Vo119(1).
    7. M.Waldrop著,陈玲译.复杂,诞生于秩序与混沌边缘的科学.生活·读书·新知三联书店,1997.
    8. Scardoni G, Petterlini M, Laudanna C. Analyzing biological network parameters with CentiS-caPe. Bioinformatics,2009,25(21):2857-2859.
    9. Minguez P, Gotz S, Montaner D, et al. SNOW, a web-based tool for the statistical analysis of protein-protein interaction networks. Nucleic Acids Research,2009,37(1):W109-W114.
    10. Wernicke S, Rasche F. FANMOD:a tool for fast network motif detection. Bioinformatics, 2006,22(9):1152-1153.
    11. Vohradsky J. Neural network model of gene expression. FASEB J.2001, (15):846-854.
    12. Chaouiya C, Remy E, Thieffry D. Petri net modelling of biological regulatory networks[J]. Journal of Discrete Algorithms,2008,6(2):165-177.
    13. Liang S, Fuhrman S, Somogyi R. Reveal:A general reverseengineering algorithm for inference of genetic network architectures. Pacific Symposium on Biocomputing,1998,3:18-29.
    14. Aldana M, Balleza E, Kauffman S, Resendiz O. Robustness and evolvability in genetic regula-tory networks[J]. Journal of Theoretical Biology,2007,245(3):433-448.
    15. Chaves M, Albert R, Sontag E D. Robustness and fragility of Boolean models for genetic regulatory networks[J]. Journal of Theoretical Biology,2005,235(3):431-449.
    16. Chesi G, Hung Y S. Stability analysis of uncertain genetic sum regulatory networks[J]. Auto-matica,2008,44(9):2298-2305.
    17. Chen L N, Wang R Q, Kobayashi T J, Aihara K. Dynamics of gene regulatory networks with cell division cycle[J]. Physical Review E,2004,70(1).
    18. Ge H, Qian H, Qian M. Synchronized dynamics and non-equilibrium steady states in a stochas-tic yeast cell-cycle network[J]. Mathematical Biosciences,2008,211(1):132-152.
    19. Chen L, Aihara K. Stability of genetic regulatory networks with time delay[J]. Ieee Transac-tions on Circuits and Systems I-Fundamental Theory and Applications,2002,49(5):602-608.
    20. Bignone F A, Livi R, Propato M. Dynamical stability and finite amplitude perturbations in coupled genetic networks[J]. Physica D:Nonlinear Phenomena,1997,108(4):379-396.
    21. Cao J, Ren F. Exponential stability of discrete-time genetic regulatory networks with delays[J], IEEE Transactions on Neural Networks,2008,19(3):520-523.
    22. Casey R, Jong H, Gouz J L. Stability of equilibria for piecewise-linear models of genetic reg-ulatory networks [C]. in 2005 44th IEEE Conference on Decision and Control & European Control Conference,2005.
    23. Casey R, Jong H, Gouze J L. Piecewise-linear models of genetic regulatory networks:Equilib-ria and their stability[J]. Journal of Mathematical Biology,2006,52(1):27-56.
    24. Sevim V, Rikvold P A. Chaotic gene regulatory networks can be robust against mutations and noise[J], Journal of Theoretical Biology,2008,253(2):323-332.
    25. Wan A, Zou X. Hopf bifurcation analysis for a model of genetic regulatory system with de-lay[J]. Journal of Mathematical Analysis And Applications,2009,356(2):464-476.
    26. Li C, Chen L, Aihara K. Synchronization of coupled nonidentical genetic oscillators[J]. Phys-ical Biology,2006,3(1):37-44.
    27. Li C, Chen L, Aihara K. Stochastic synchronization of genetic oscillator networks[J]. BMC Systems Biology,2007,1:11.
    28. Misra J C, Mitra A. Synchronization among tumour-like cell aggregations coupled by quorum sensing:A theoretical study[J]. Computers & Mathematics With Applications, 2008,55(8):1842-1853.
    29. Wagemakers A, Buldu J M, Garcia-Ojalvo J, Sanjuan M A F. Synchronization of electronic genetic networks[J]. Chaos,2006,16(1).
    30. Wang R, Chen L. Synchronizing genetic oscillators by signaling molecules[J]. Journal Of Bi-ological Rhythms,2005,20(3):257-269.
    31. Li C, Chen L, Aihara K. Stability of genetic networks with SUM regulatory logic:Lur'e system and LMI approach[J]. IEEE Transactions on Circuits and Systems I-Regular Papers, 2006,53(11):2451-2458.
    32. Li C, Chen L, Aihara K. Stochastic stability of genetic networks with disturbance attenua-tion[J]. IEEE Transactions on Circuits and Systems II-Express Briefs,2007,54(10):892-896.
    33. Gardner T S, Cantor C R, Collins J J, Construction of a genetic toggle switch in escherichia coli. Nature,2000,403 (20):339-342.
    34. Elowitz M B, Leibler S, A synthetic oscillatory network of transcriptional regulators, Nature, 2000,403(20):335-338.
    35. Chen B S, Chen P W. Robust engineered circuit design principles for stochastic biochemical networks with parameter uncertainties and disturbances [J]. IEEE Transactions on Biomedical Circuits and Systems,2008:114-132.
    36. Chen B S, Wu W S. Robust filtering circuit design for stochastic gene networks under intrinsic and extrinsic molecular noises[J]. Mathematical Biosciences,2008,211(2):342-355.
    37. Becskei A, Serrano L. Engineering stability in gene networks by autoregulation[J]. Nature, 2000,405(6786):590-593.
    38. Guss K A. et al. A genomic regulatory network for development. Science.2002,292:1164-1167.
    39. Davidson E H, et al. A genomic regulatory network for development. Science,2002, 295:1670-1678
    40. Wang Z, Gao H, Cao J, Liu X. On delayed genetic regulatory networks with polytopic uncer-tainties:robust stability analysis, IEEE Trans. NanoBiosci., vol.7, no.2, pp.154-163, Jun. 2008.
    41. Jeong H, Mason S P, Barabasi A L, Oltvai Z N, Lethality and centrality in protein networks. Nature,2001,411(6883):41-42.
    42. http://en.wikipedia.org/wiki/Protein_interaction.
    43. http://en.wikipedia.org/wiki/Signal_transduction.
    44. Tensing L. Periodic geophysical and biological signals as Zeitgeber and exogenous inducers in animal organisms [J]. Int. J. Biometeorol,1972,(16):113-125.
    45. Helikar T, Konvalina J, Heidel J, Togers J A. Emergent decision-making in biological signal transduction networks [J]. Proc. Natl. Acad. Sci.2008,105(6):1913-1918.
    46. Li S, Assmann S, Albert R. Predicting essential components of signal transduction networks: A dynamic model of guard cell abscisic acid signaling [J]. PLos Biology,2006,4(10):1732-1748.
    47. Kachalo S, et al. NET-SYNTHESIS:a software for synthesis, inference and simplification of signal transduction networks [J]. Bioinformatics,2008,24(2):293-295.
    48. Albert R, Dasgupta B, et al. A novel method for signal transduction network inference from indirect experimental evidence [J]. Journal of computational biology,2007,14(7):927-949.
    49. http://en.wikipedia.org/wiki/metabolic_network.
    50. Francke C, Siezen R J, Teusink B. Reconstructing the metabolic network of a bacterium from its genome [J]. Trends in microbiology,2005,13(11):550-558.
    51. Papin J A, Price N D, Palsson B O. Extreme pathway lengths and reaction participation in Genome-scale metabolic networks [J]. Genome research,2002, (12):1889-1900.
    52. Schuster S, Fell D A, Dandekar T. Ageneral definition of metabolic pathways useful for sys-tematic organization and analysis of complex metabolic networks [J]. Nature biotechnology, 2000,(18):326-332.
    53. Maggio J D, Diaz Ricci J C, Diaz M S. Global sensitivity analysis in dynamic metabolic net-works. Computers & chenmical Engineering,34(5):770-781.
    54. Alber R. Networks in biology:discovery, analysis and modeling. http://www.ifr.ac.uk/netsci08/.
    55. Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles E D. Metabolic network structure deter-mines key aspects of functionality and regulation. Nature,2002, (420):190-193.
    56. Schuster S, Higetag C. On elementary flux modes in biochemical reaction systems at steady state. J. Biological Systems,1994, (2):165-182.
    57. Schilling C H. Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol.,2000, (203):229-248.
    58. Price N D, Reed J L, Papin J A, Wiback S J, Palsson B O. Network based analysis of metabolic regulation in the human red blood cell. Journal of Theoretical Biology,2003, (225):185-194.
    59. Klamt S, Stelling J. Flux Analyzer:exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. Bioinformatics,2003, (19):261-269.
    60. Larhlimi A. A new constraint-based description of the steady-state flux cone of metabolic networks. Discrete Applied Mathematics,2009,157(10):2257-2266.
    61. Papin J A, Price N D, Palsson B O. Extreme pathway lengths and reaction participation in genome-scale metabolic networks. Genome Research,2002, (12):1889-1900.
    62. Francke C, Siezen R J, Teusink B. Reconstructing the metabolic network of a bacterium from its genome. Trends in Microbiology,2005,13(11):550-558.
    63. Bascompte J. Disentangling the web of life[J]. Science,2009,325(5939):416-419.
    64. http://students.uis.edu/mleon01s/fcwebquest/foodweb.htm
    65. 刘曾荣,王瑞琦等.生物分子网络的构建和分析.科学出版社,2012.
    86. Ravasz E, Somera A L, Mongru D A, Oltvai Z N, Barabasi A-L, Hierachical organization of modularity in metabolic networks. Science Vol.297,30 August,2002.
    67. 张嗣瀛,张晓.生物网络及其一些进展.系统仿真学报.2009,Vo1.21(17),pp.1-6.
    68. Wanger A, Fell D A. The small world inside large metabolic networks. Proc. Toy Soc London Series B,2001,268:1803-1810.
    69. Fell D A, Wanger A. The small world of metabolism. Nature Biotechnology,2003,18:1121-1122.
    70. Jeong H, Mason S P, Barabasi A L. Lethality and centrality in protein networks. Nature,2001, 411:41-42.
    71. Wanger A. The yeast protein interaction network evolves rapidly and contains few redundant genes. Mol Biol Evolve,2001,18:1283-1292.
    72. Featherstone D E, Broadie K. Wrestling with pleiotropy:genomic and topological analysis of the yeast gene expression network. Bioessays 24,267-274,2002.
    73. Agrawal H. Extreme self-organization in networks constructed from gene expression data. Phys. Rev Lett.89,268702,2002.
    74. Wachty S. Scale-free behavior in protein domain networks. Mol. Bol. Evol.18,1694-1702, 2001.
    75. Apic G, Gough J, Teichmann S A. An insight into domain combination, Bioinformatics,17, s83-s89,2001.
    76. Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks. Na-ture,2000,407:651-654.
    77. Wanger A, Fell D A. The small world inside large metabolic networks. Proc. Toy Soc London Series B,2001,268:1803-1810.
    78. Wanger A. The yeast protein interaction network evolves rapidly and contains few redundant genes. Mol Biol Evolve,2001,18:1283-1292.
    79. Chung F, Lu L. The average distances in random graphs with given expected degrees. PNAS, 2002,99:15879-15882.
    80. Cohen T, Havlin S. Scale-free networks are ultra small. Phys Rev Lett,2003,90:058701.
    81. Barabasi A-L, Oltvai Z N. Network biology:understanding the cell's functional organization [J]. Nature Reviews Genetics,2004,5(2):101-113.
    82. Li S, Armstrong C M, Bertin N, et al. A map of the interaction network of the metazoan C.elegans. Science,2004,303:540-543.
    83. Giot L, Bader J S, Brouwer C, et al. A protein map of drosophila melanogaster. Sci-ence,2003,302:1727-1736.
    84. Ravase E, Barabasi A-L. Hierachical organization in complex networks. Phys Rev E,2003, 67:026112.
    85. Wall M E, Hlavacek W S, Savageau M A. Design of gene circuits:lessons from bacteria. Nature Rev Genet,2004,5:34-42.
    86. Alon U. Biological networks:The tinkerer as an engineer. Science,2003,301:1866-1867.
    87. Eisenberg E, Levanon E Y, Preferential attachment in the protein netwrok evolution. Phys Rev Lett,2003,91:138701.
    88. Yook S H, Oltvai Z N, Barabasi A-L. Functional and topological characterization of protein interaction networks. Proteomics,2004,4:929-942.
    89. Jeong H, Mason S P, Barabasi A L. Lethality and centrality in protein networks. Nature,2001, 411:41-42.
    90. Winzeler E A, Shoemaker D D, Astromoff A, et al. Functional characterization of the S.cerevisiae genome by gene deletion and parallel analysis. Science,1999,285:901-906.
    91. Gerdes S Y, Scholle M D, Campbell J W. Experimental determination and system-level analysis of essential genes in Escherichia coli MG1655. J Bacteriology,2003,185:5673-5684.
    92. 张颖清.生物全息律.自然杂志.1981,第4期
    93. 张颖清.全息生物学概论.全息生物学研究.山东大学出版社,1985
    94. Campbell, N.A等著,吴相钰等译.生物学导论.高等教育出版社,第9章,p.132,2006
    95. Maslov S, Sneppen K.Specificity and stability in topology of protein networks. Sci-ence,2002,296:378-382.
    96. Hase T, Niimura Y, Kaminuma T, et al. Non-uniform survival rate of heterodimerization links in the evolution of the Yeast protein-protein interaction network. Plos One,2008,3:e1667.
    97. R. Dulbeeeo. A turning point in cancer research:sequencing the human genome[J], Sci-ence,1986,231(4742):1055-1056.
    98. Barabasi A-L, Oltvai Z N. Network biology:understanding the cell's functional organization [J]. Nature Reviews Genetics,2004,5(2):101-113.
    99. Vidal M, Cusick M E, Barabasi A-L. Interactome networks and human disease [J]. Cell,2011,144(6):986-995
    100. Barabasi A-L, Gulbahce N, Loscalzo J. Network medicine:a network-based approach to hu-man disease [J]. Nature Reviews Genetics,2011,12(1):56-68.
    101. 陈启民,王金忠,耿运琪.分子生物学.天津:南开大学出版社,2003.
    102.杨歧生.分子生物学.杭州:浙江大学出版社,2005.
    103. Crick F. Central dogma of molecular biology. Nature,1970,227(5258):561-563.
    104. Jong H. Modeling and simulation of genetic regulatory systems:a literature review[J]. Jorunal of computing biology.2002,9(1):67-103.
    105. Cinquin O, Demongeot J. Roles of positive and negative feedback in biological systems[J]. Comptes Rendus Biologies,2002,325(11):1085-1095.
    106. Wang R, Zhou T, Chen L. Synthetic gene oscillators by negative feedback networks [C]. in Conf Proc IEEE Eng Med Biol Soc,2004.
    107. Hooshangi S, Weiss R. The effect of negative feedback on noise propagation in transcriptional gene networks[J]. Chaos,2006,16(2).
    108. http://en.wikipedia.org/wiki/Gene_regulatory_networks.
    109. Tao Y. Intrinsic and external noise in an auto-regulatory genetic network[J], Journal of Theo-retical Biology,2004,229(2):147-156.
    110. Tao Y. Intrinsic noise, gene regulation and steady-state statistics in a two-gene network[J]. Journal of Theoretical Biology,2004,231(4):563-568.
    111. McAdams H H, Arkin A. It's a noisy business! Genetic regulation at the nanomolar scale[J], Trends In Genetics,1999,15(2):65-69.
    112. Paulsson J. Summing up the noise in gene networks[J]. Nature,2004,427(6973):415-418.
    113. Becskei A, Serrano L. Engineering stability in gene networks by autoregulation[J]. Nature, 2000,405(6786):590-593.
    114. Wolf D M, Eeckman F H. On the relationship between genomic regulatory element organiza-tion and gene regulatory dynamics[J]. J. Theor. Biol.,1998,195:167-186.
    115. Dassow G, Meir E, Munro E M. The segment polarity network is a robust development mod-ule[J]. Nature,2000,406(13):188-192.
    116. Wagner A. Robustness against mutations in genetic networks of yeast[J]. Nature Genetics, 2000,24(4):355-361.
    117. Li C, Chert L, Aihara K. Stability of genetic network with SUM regulatory logic:Lur'e system and LMI approach, IEEE Trans. Circuits Syst,2006,53:2451-2458.
    118. Ren F, Cao J. Asymptotic and robust stability of genetic regulatory networks with time-varying delays. Neurocomputing,2008,71:834-842.
    119. Wu H, Liao X, Guo S, Feng W, Wang Z. Stochastic stability for uncertain genetic regula-tory networks with interval time-varying delays, Neurocomputing,2009,72:3263-3276.
    120. Wang G, Cao J. Robust exponential stability analysis for stochastic genetic networks with uncertain parameters, Commun Nonlinear Sci Numer Simulat,2009,14:3369-3378
    121. Milo R, Shen-Orr S S, Itzkovitz S, et al. Network motifs:Simple building blocks of complex networks. Science,2002,298(5594):824-827.
    122. Shen-Orr S S, Milo R, Mangan S, etal. Network motifs in the transcriptional regulation network of Escherichian Coli. Nature Genetics,2002,31(1):64-68.
    123. Thieffry D, Thomas R. Qualitative analysis of gene networks[J]. Pacific Symp.Biocomp, 1998,3:77-88.
    124. Wolf D M, Eeckman F H. On the relationship between genomic regulatory element organiza-tion and gene regulatory dynamics[J]. J. Theor. Biol.,1998,195:167-186.
    125. Martinez N J, Walhout A J. The interplay between transcription factors and microRNAs in fenome-scale regulatory networks. Bioessays,2009,31(4):435-445.
    126. Kaplan S, Bren A, Dekel E, et al. The incoherent feed-forward lip can generate nonmonotonic input functions for genes. Molecular Systems Biology,2008,4:1-9,203.
    127. Hasty J, Pradines J, Dolnik M, Collins J J. Noise-Based Switches and Amplifiers for Gene Expression [C]. in Proc Natl Acad Sci USA,2000.
    128. Tian T, Burrage K. Bistability and switching in the lysis/lysogeny genetic regulatory network of bacteriophage lambda[J]. Journal of Theoretical Biology,2004,227(2):229-237.
    129. http://www.dsi.unifi.it/ai4bio/PPT/Serral_files/frame.htm
    130. Ranadip P. Robust approaches for genetic regulatory network modeling and intervention:A review of recent advances. IEEE signal processing, vol29(1):66-76.
    131. T. Chen, H.L, He, G. M. Church. Modeling gene expression with differential equations[J]. Pacific Symposium on Biocomputing,1999:29-40.
    132. D. Tominaga, N. Koga, M. Okamoto. Efficient nuerical optimization algorithm based on ge-netic algorithm for inverse problem [C]. in Proceedings of Genetic and Evolutionalry Compu-tation Conference,2000.
    133. Chen T, He H L, Church G M. Modelling gene expression with differential equations. Pacific symposium on biocomputiong,1999,Vol4:29-40.
    134. Landahl H D. Some conditions for sustained oscillations in biochemical chains. Bulletion of Mathematical Biophysics,1969,31:775-787.
    135. Richelle J. Comparative analysis of negative loops by continuous, boolean and stochastic ap-proaches. Lecture Notes in Biomathematics,1979, V6l29,281-325.
    136. Smolen P, Baxter D A, Byrne J H. Modeling transcriptional control in gene networks:Methods, recent result, and future directions. Bulletion of Mathematical Biology,2000,62:247-292.
    137. Voit E O. Computational analysis of biochemical systems:a practical guide for biochemists and molecular biologists. Cambridge university press, Cambridge,2000.
    138. Heinrich T, Schuster S. The regulation of cellular systems. Chapman & Hall, New York,1996.
    139. Cornish-Bowden A. Fundamentals of enzyme kinetics. Portland press, revised edition,1995.
    140. Tyson J J, Othmer H G. The dynamics of feedback control circuits in biochemical pathways. Progress in theoretical biology,1978,5:1-62.
    141. Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets[J]. Journal of Theoretical Biology,1969,22:437-467.
    142. Yuh C H, Bolouri H.Davidson EH. Genomic cis-regulatory logic:experimental and computa-tional analysis of a sea urchin gene, Science,1998,279(5358):1896-1902.
    143. Shmulevich I, Gluhovsky 1, Hashimoto R F, Dougherty E R, Zhang W. Steady-state analysis of genetic regulatory networks modelled by probabilistic Boolean networks[J]. Comparative and Functional Genomics,2003,4:601-608.
    144. Zhang M Q. Large scale gene expression data analysis:a new challenge to computational biologists[J]. Genome Research,1999,9:681-688.
    145. Somogyi T, Fuhrman S, Askenazi M, Wuensche A. The gene expression matrix:towards the extraction of genetic networks architectures. Nonlinear analysis[A]. Proc. of second world cong. of nonlinear analysis[C].1997,1815-1824.
    146. Arkin A, Ross J, McAdams H H. Stochastic kinetic analysis of developmental pathway bifur-cation in phage A-infected Escherichia coli cells. Genetics,1998,149:1633-1648.
    147. McAdams H H, Arkin A. Stochastic mechanisms in gene expression. Proceedings of the na-tional academy of sciences of the USA,1997,94:814-819.
    148. Nicolis G, Mathematical aspects of biological regulatory processes. In Thomas R, editor, Ki-netic logic:A Boolean approach to the analysis of complex regulatory systems, volume 29 of Lecture notes in Biomathematics. Springer-Verlag,1979,178-211.
    149. Rigney D R. Stochastic models of cellular variability.ln Thomas R, editor, Kinetic logic:A Boolean approach to the analysis of complex regulatory systems, volume 29 of Lecture notes in Biomathematics. Springer-Verlag,1979,237-280.
    150. Tomohiro M. A System to Find Genetic Networks Using Weighted Network Model[J]. In Genome Informatics,1999,10:185-195.
    151. Gillepie D T. Exact stochastic simulation of coupled chemical reactions. Journal of physical chemistry,1977,81(25):2340-2361.
    152. Yoshizawa T. Stability Theory by Liapunov's Second Method,Mathematical Society of Japan,Japan,Tokyo,1966.
    153. Thomton K W, Mulholland R J. Lagrange stability and ecological sys-tems, J. Theor. Biol.1974,45:473-485.
    154. Rekasius Z V. Lagrange stability of nonlinear feedback systems, IEEE Trans. Automat. Control,1963,8(2):160-163.
    155. Passino K M, Burgess K L. Lagrange stability and boundedness of discrete event sys-tems. Discrete Event Dyn. syst:Theory Appl.1995,5:383-403.
    156. Van Kampen N G. Stochastic processes in physics and chemistry[M]. Elsevier, Amsterdam, revised edition,1997.
    157. Gibson M, Bruck J. An efficient algorithm for generating trajectories of stochastic gene rag-ulation reactions[R]. Thenical report ETR026, Parallel and distributed computing group, Cal tech, Pasadena, CA,1998.
    158. Gillespie D T. Approximate accelerated stochastic simulation of chemically reacting sys-tems, J. Chem. Phys.,2001,115:1716-1734.
    159. Cooper G E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning,1992,9(2):309-347.
    160. Heckerman D, Geiger D, and Chickering D. Learning bayesian networks:The combination of knowledge and statistical data. Machine Learning,1995,20(2):197-243.
    161. Friedman N. Probabilistic models for identifying regulation networks. Bioinformatics,42 2003,19(Suppl 2):57
    162. Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. In Proceedings of the Fourth Annual International Conference on Computational Molec-ular Biology, RECOMB 2000, New York, N.Y.,2000.
    163. Pearl J. Probabilistic reasoning in intelligent systems. Morggan Kaufmann, San Francisco, CA, 1988.
    164. Wei G, Wang Z, Shu H, Fraser K, Liu X. Robust filtering for gene expression time series data with variance constraints, Int. J. Comput. Math., vol.84, no.5, pp.619-633, May 2007.
    165. Elowitz M B, Leibler S. A synthetic oscillatory network of transcriptional regulators, Nature, vol.403, pp.335-338,2000.
    166. Chen L, Aihara K. Stability of genetic regulatory networks with time delay, IEEE Trans. Cir-cuits Syst. Ⅰ, vol.49, no.5, pp.602-608, May 2002.
    167. 王镇岭,张嗣瀛.基于自适应滤波方法的时变时滞基因调控网络的参数估计.渤海大学学报.vo1.33,no.1,pp.67-73,2012.
    168. Zhenling Wang, Wenwu Yu, Guanrong Chen, Siying Zhang. An Adaptive Filtering to Estimate Uncertain Delayed Genetic Regulatory Networks Using Partially Available Information. ICIC Express Letters, Vol.6, No.l, pp:1860-1863,2012.
    169. Li C, Chen L. Aihara K, Stability of genetic networks with SUM regulatory logic:Lur'e Sys-tem and LMI approach, IEEE Trans. Circuits Syst. Ⅰ, vol.53, no.11, pp.2451-2458, Nov. 2006.
    170. Ren F, Cao J. Asymptotic and robust stability of genetic regulatory networks with time-varying delays, Neurocomputing, vol.71, pp.834-842,2008.
    171. Li C, Chen L, Aihara K. Stochastic stability of genetic networks with disturbance attenuation, IEEE Trans. Circuits Syst. II, vol.54, no.10, pp.892-896, Oct.2007.
    172. Li C, Chen L, Aihara K. Stochastic synchronization of genetic oscillator networks, BMC Syst. Biol. vol.1, no.6, Jan.2007 [Online]. Available:http://arxiv.org/abs/q-bio/0702025.
    173. Cao J, Ren F. Exponential stability of discrete-time genetic regulatory networks with delays, IEEE Trans. Neural Networks, vol.19, no.3, pp.520-523, May 2008.
    174. Xu B, Tao Y. External noise and feedback regulation:steadystate statistics of auto-regulatory genetic network, J. Theoret. Biol., vol.243, pp.214-221,2006.
    175. Huang S. Gene expression profilling, genetic networks, and cellular states:an integrating con-cept for tumorigenesis and drug discovery, J. Molecular Med., vol.77, pp.469-480,1999.
    176. Yu W, Lu J, Chen G, Duan Z, Zhou Q. Estimating uncertain delayed genetic regulatory net-works:an adaptive filtering approach, IEEE Trans. Autom. Control, vol.54, no.4, pp.892-897, Apr.2009.
    177. Yu W, Cao J, Chen G. Stability and Hopf bifurcation of a general delayed recurrent neural network, IEEE Trans. Neural Networks, vol.19, no.5, pp.845-854, Sep.2008.
    178. Yu W, Chen G, Cao J, Lu J, Parlitz U. Parameter identification of dynamical systems from time series, Phy. Rev. E, vol.75, no.6,067201,2007.
    179. Yu W, Cao J. Synchronization control of stochastic delayed neural networks, Physica A, vol. 373, pp.252-260,2007.
    180. Geard N. Modelling gene regulatory networks:systems biology to complex system,2004. [Online] Available:http://www.itee.uq.edu.au/-nic/_accs-grn/modelling-grns.pdf.
    181. Rao C V,Wolf D M, Arkin A P. Control, exploitation and tolerance of intracellular noise. Na-ture, vol.420, pp.231-237,2002.
    182. Geard N, Willadsen K. Dynamical approaches to modeling developmental gene regulatory networks, Birth Defects Res., Part C:Embryo Today:Rev. vol.87, pp.131-142,2009.
    183. Ozbudak E M, Thattai M, Kurster I, Grossman A D, Oudenaarden A. Regulation of noise in the expression of a single gene. Nature Genetics, vol.31, pp.69-73,2002.
    184. McAdams H H, Arkin A. Stochastic mechanisms in gene expression. Proceedings of the Na-tional Academy of Science, USA, vol.94, pp.814-819,1997.
    185. Yuh C H,Bolouri H, Davidson E H. Gcnomic cis-regulatory logic:experimental and computa-tional analysis of a sea urchin gene, Science, vol.279, pp.1896-1902,1998.
    186. Kalir S, Mangan S, Alon U. A coherent feed-forward loop with a SUM input function prolongs flagella expression in Escherichia coli, Molecular Syst. Biol. no.2005.0006, Mar.2005.
    187. Boyd S, Ghaoui L E, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and Con-trol Theory, Society for Industrial Mathematics,1994.
    188. Krstic M, Deng H. Stabilization of nonlinear uncertain systems. London:Springer,1998.
    189. Spooner J, Maggiore M. Stable adaptive control and estimation for nonlinear systems. New York:Wiley,2002.
    190. Sastry S, Bodson M. Adaptive Control:Stability, Convergence, and Robustness, Prentice-Hall, Englewood Cliffs, NJ,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700