用户名: 密码: 验证码:
离子通道模型的静电势计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子通道(Ion-Channel)是生物体在生命活动中表现出的各种电现象的基础,它与细胞分化,肌肉运动,神经递质释放等多项生命活动密切相关,并且对于维持细胞内环境稳定有着重要的作用。离子通道研究在探索和理解生物现象及其发生机制方面有着重要意义。当前对离子通道的研究已经形成了一套初步的理论体系,相应的实验技术和数值模拟方法也在逐步地完善。分子动力学模拟作为研究离子通道的一类有效数值模拟手段,不仅可以给出被模拟体系的结构和热力学性质,还可以提供原子运动中的各种微观细节以供分析研究,是对理论和实验的有力补充。静电相互作用的计算效率和精度是影响分子动力学模拟实用性的主要因素,本文主要研究混合溶剂模型下,离子通道中静电相互作用的计算方法。
     离子通道的混合溶剂模型选取包含通道蛋白的有限长的圆柱,圆柱内部的溶质和溶液分子采用具体的原子表示,圆柱外部的细胞膜和离子溶液分别看成均一的连续介质,其对圆柱内部原子的影响由Poisson-Boltzmann理论下的极化反应场给出。本文的第一部分工作给出了离子通道混合溶剂模型中静电势求解的一类新型边界积分方法。在离子通道的混合溶剂模型中,由于有限长圆柱表面的特殊性(法向导数具有不连续性),直接推导和给出有限长圆柱表面上的边界积分方程及其具有较高计算精度的计算方法是一件困难的事情。为了克服这一困难,本文引入与圆柱光滑相接的虚拟半球(形成一个“胶囊体”),并在胶囊体内外利用不同的分层格林函数精确地处理体系的边界条件,推导给出了原问题在胶囊体表面上的新型边界积分方程。基于该新型边界积分方程及其在胶囊体表面的贴体曲边三角形网格上的有限元离散,本文给出了离子通道混合溶剂模型中静电势计算的边界积分方法,它避开了有限长圆柱表面角点(法向导数不连续的点)带来的计算困难和误差。数值算例检验了该边界积分方法的精度和有效性。本文的第二部分工作给出了分层介质构型和离子通道混合溶剂模型的镜像电荷方法。在分层介质构型下,本文运用傅立叶变换导出了体系静电势的解析表达式,并在此基础上给出静电势计算的镜像电荷方法。在推导镜像电荷公式时,本文分别运用了最小二乘和Prony拟合方法确定镜像电荷信息(电量和位置)与源电荷(电量和位置)间的关系式。在离子通道的混合溶剂模型中,由于体系结构(有限长圆柱)的复杂性,不仅体系静电势的解析表达式难以给出,而且有限长圆柱构型下的镜像电荷(电量和位置)也很难确定。为此,本文将有限长圆柱近似地看成分层介质和无限长圆柱的耦合,把原问题转化成分层介质和无限长圆柱两种构型下的镜像电荷问题后分别处理,再综合给出了离子通道混合溶剂模型的镜像电荷公式。数值算例及分析表明,本文提出的镜像电荷方法也具有好的数值精度。由于镜像电荷方法给出的静电势写成一些点电荷的库伦势之和的形式,因而在模拟大规模体系时,它可以和快速多极子法相结合以加速计算。边界积分方法和镜像电荷方法在静电势的计算效率和精度上具有各自的优越性,实际应用中可根据模拟体系对计算的要求适当选取。
Ionic channels are protein molecules that conduct ions through a narrow tunnel offixed charge formed by the amino acid residues of the protein. Ion channels are respon-sible for many important functions like signaling in the nervous system, coordination ofmuscle contraction, transport in all tissues and so on, corresponding research has signif-icant meaning in exploring and understanding biological phenomenon and underlyingmechanism. Research on ion channel has developed a primary theory system, dazzlingexperimental techniques and effective numerical simulation methods. Molecular dy-namics simulation is a widely used numerical technique for ion channel research, as astrong compensation for theory and experiment, it is able to give the system structureinformation, thermodynamic properties and detailed information of atom’s movementtrace. Currently, the efficiency and accuracy of the computation of electrostatic poten-tial is a key factor in the utility of molecular dynamics simulation.
     In this paper, we will investigate the numerical accuracy and efficiency in com-puting the electrostatic potential for hybrid solvation model of ion channel, in which afinite-height cylinder including the channel proteins is embedded in a layered dielectricmedium representing the biological membrane and ionic solvents. Inside the cylindercavity, the ion channel protein and ions are given as explicit atomistic representations,while outside the cylinder cavity, the surrounding mediums are considered as continu-ous dielectric. Two numerical techniques, a specially designed boundary integral equa-tion method and image charge method, will be investigated and compared in terms ofaccuracy and efficiency for computing the electrostatic potential.
     The main issue of applying boundary integral equation method to the hybrid sol-vation model of ion channel arises from the corner/edge singularities of the finite-height cylinder surface. It is because the solution of boundary integral equation onfinite-height cylinder surface will be introduced serious error due to the corner/edgesingularities. In order to avoid such difficulty, an artificially constructed smooth sur-face round-top cylinder, which is formed by two virtual semi-spheres attaching to thefinite-height cylinder, and the layered Green’s functions, which are used to deal the boundary/interface condition exactly, are introduced to deduce a new boundary integralequation hold on the smooth round-top cylinder surface. Base on the new boundaryintegral equation and its body-fitted curved-line triangular finite element discretization,the proposed new boundary integral equation method effectively avoid the error pollu-tion from the geometry irregularities in computing the electrostatic potential for hybridion channel model. The numerical examples support the result with high efficiency andaccuracy.
     Image charge method is a semi-analytical method, which calculates the electro-static potential by approximating the analytical form of the electrostatic potential asa sum of point charges’ Coulomb potential. While for the hybrid solvation model ofion channel, due to the complexity of system configuration (the finite-height cylinder),the analytical form of electrostatic potential is hard to be obtained. To solve this is-sue, we simplify the problem by decomposing the finite-height cylinder configurationinto a layered structure and an infinite-height cylinder, and then consider the imagecharge method under these two configurations separately. For the layered structure, theFourier expansion is introduced to deduce an analytical form of the electrostatic poten-tial, in addition the least square method and the Prony fitting method are used to fixthe relation formula of image charges’ information and the source charges’ informa-tion. Combining the image charge method for layered structure and the image chargemethod for infinite-height cylinder developed in [75], we propose the image chargemethod for hybrid solvation model, it is found to give reasonable accuracy meanwhilebeing highly efficient and viable for using the fast multipole method for interactions ofa large number of charges in the atomistic region of the hybrid solvation model.
     The proposed boundary integral equation method and image charge method forhybrid solvation model have their own advantages in terms of accuracy and efficiency,thus can be selected for molecular dynamic simulation according to specific computingrequirement.
引文
[1]韩厚德,巫孝南.人工边界方法.清华大学出版社,2009.
    [2]祝家麟.椭圆边值问题的边界元分析.科学出版社,1991.
    [3]余德浩.自然边界元方法的数学理论.科学出版社,1993.
    [4]祝家麟.边界元分析.科学出版社,2009.
    [5] R. Abagyan and M. Totrov. Biased probability monte carlo conformationalsearches and electrostatic calculations for peptides and proteins. J. Mol. Biol.,235:983–1002,1994.
    [6] M. Abramowitz. Handbook of Mathematical Functions: with Formulas, Graphs,and Mathematical Tables. Courier Dover Publications,1964.
    [7] A. Anand, J. Ovall, and C. Turc. Well conditioned boundary integral equationsfor two-dimensional sound-hard scattering problems in domains with corners. J.Differ. Equ. Appl.,24:321–358,2011.
    [8] N.A. Baker. Improving implicit solvent simulations: a Poisson-centric view. Curr.Opin. Struct. Biol.,15:137–143,2005.
    [9] D. Bashford and D.A. Case. Generalized born models of macromolecular solva-tion effects. Ann. Rev. Phys. Chem.,51:129–152,2000.
    [10] M. Born. Volumen und hydratationswa¨rme der ionen. Phys. Zeitschr.,1:45–48,1920.
    [11] J. Bremer. On the nystro¨m discretization of integral equations on planar curveswith corners. Appl. Comput. Harmon. Anal.,32:45–64,2012.
    [12] J. Bremer and V. Rokhlin. Efficient discretization of laplace boundary integralequations on polygonal domains. J. Comput. Phys.,229:2507–2525,2010.
    [13] W. Cai. Computational Methods for Electromagnetic Phenomena: Electrostaticsin Solvations, Scattering, and Electron Transport. Cambridge University Press,2013.
    [14] W. Cai, S. Deng, and D. Jacobs. Extending the fast multipole method to chargesinside or outside a dielectric sphere. J. Comput. Phys.,223:846–864,2007.
    [15] D.L. Chapman. A contribution to the theory of electrocapillarity. Phil. Mag.,25:475–481,1913.
    [16] L. Chen, M.J. Holst, and J.C. Xu. The finite element approximation of the non-linear Poisson-Boltzmann equation. SIAM J. Numer. Anal.,45:2298–2320,2007.
    [17] S.W. Cowan, T. Schirmer, G. Rummel, M. Steiert, R. Ghosh, R.A. Pauptit, J.N.Jansonius, and J.P. Rosenbusch. Crystal structures explain functional propertiesof two E. coli porins. Nature,358:727–733,1992.
    [18] T. Darden, D. York, and L. Pedersen. Particle mesh Ewald: An Nlog(N) methodfor ewald sums in large systems. J. Chem. Phys.,98:10089,1993.
    [19] P. Debye and E. Hu¨ckel. De la theorie des electrolytes. I. abaissement du point decongelation et phenomenes associes. Phys. Zeitschr.,24:185–206,1923.
    [20] B.V. Derjaguin. Theory of the stability of strongly charged lyophobic sols and theadhesion of strongly charged particles in solutions of electrolytes. Acta Physic-ochim.(USSR),14:633–662,1941.
    [21] M. Deserno and C. Holm. How to mesh up Ewald sums. I. A theoretical and nu-merical comparison of various particle mesh routines. J. Chem. Phys.,109:7678,1998.
    [22] D. A. Doyle, J. M. Cabral, R. A Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B.T. Chait, and R. MacKinnon. The structure of the potassium channel: molecularbasis of k+conduction and selectivity. Science,280:69–77,1998.
    [23] B. Eisenberg. Ionic channels in biological membranes: natural nanotubes. Acc.Chem. Res.,31:117–124,1998.
    [24] B. Eisenberg, Y. K. Hyon, and C. Liu. Energy variational analysis of ions in waterand channels: Field theory for primitive models of complex ionic fluids. J. Chem.Phys.,133:104104,2010.
    [25] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen. Asmooth particle mesh Ewald method. J. Chem. Phys.,103:8577–8593,1995.
    [26] P.P. Ewald. Die berechnung optischer und elektrostatischer gitterpotentiale. An-nalen der Physik,369:253–287,2006.
    [27] M. Feig and C. L. Brooks. Recent advances in the development and applicationof implicit solvent models in biomolecule simulations. Curr. Opin. Struct. Biol.,14:217–224,2004.
    [28] M. Feig, M. Reiher, and A. Wolf. Modeling Solvent Environments. Wiley OnlineLibrary,2010.
    [29] F. Fogolari, A. Brigo, and H. Molinari. The Poisson–Boltzmann equation forbiomolecular electrostatics: a tool for structural biology. J. Mol. Recognit.,15:377–392,2002.
    [30] R.H. Fowler and E. A. Guggenheim. Statistical Thermodynamics: A Version ofStatistical Mechanics for Students of Physics and Chemistry. Macmillan,1939.
    [31] D. Fraenkel. Simplified electrostatic model for the thermodynamic excess poten-tials of binary strong electrolyte solutions with size-dissimilar ions. Mol. Phys.,108:1435–1466,2010.
    [32] D. Frenkel and B. Smit. Understanding Molecular Simulation: From Algorithmsto Applications. Academic Press,2001.
    [33] H.L. Friedman. Image approximation to the reaction field. Mol. Phys.,29:1533–1543,1975.
    [34] G. Gouy. Constitution of the electric charge at the surface of an electrolyte. J.Phys.,9:457–467,1910.
    [35] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput.Phys.,73:325–348,1987.
    [36] J. Helsing and R. Ojala. Corner singularities for elliptic problems: Integral equa-tions, graded meshes, quadrature, and compressed inverse preconditioning. J.Comput. Phys.,227:8820–8840,2008.
    [37] B. Hille. Ionic Channels of Excitable Membranes. Sinauer Associates Sunderland,MA,1984.
    [38] R.W. Hockney and J.W. Eastwood. Computer Simulation Using Particles. Taylor&Francis Group,1988.
    [39] B. Honig and A. Nicholls. Classical electrostatics in biology and chemistry. Sci-ence,268:1144–1149,1995.
    [40] W. Im, D. Beglov, and B. Roux. Continuum solvation model: computation ofelectrostatic forces from numerical solutions to the Poisson-Boltzmann equation.Comp. Phys. Commun.,111:59–75,1998.
    [41] J.D. Jackson and R.F. Fox. Classical Electrodynamics. Wiley Online Library,1998.
    [42] B. Jayaram, K.A. Sharp, and B. Honig. The electrostatic potential of B-DNA.Biopolymers,28:975–993,1989.
    [43] J. E. Jones. On the determination of molecular fields. II. from the equation of stateof a gas. Proc. R. Soc. London, Ser. A.,106:463–477,1924.
    [44] M.A. Kastenholz and P.H. Hu¨nenberger. Influence of artificial periodicity andionic strength in molecular dynamics simulations of charged biomolecules em-ploying lattice-sum methods. J. Phys. Chem. B,108:774–788,2004.
    [45] J.G. Kirkwood. Theory of solutions of molecules containing widely separatedcharges with special application to zwitterions. J. Cheml.Phys.,2:351–361,1934.
    [46] R. Kjellander and S. Marceˇlja. Correlation and image charge effects in electricdouble layers. Chem. Phys. Lett.,112:49–53,1984.
    [47] I. Klapper, R. Hagstrom, R. Fine, K. Sharp, and B. Honig. Focusing of electricfields in the active site of Cu-Zn superoxide dismutase: effects of ionic strengthand amino-acid modification. Proteins,1:47–59,1986.
    [48] R. Kress. A nystro¨m method for boundary integral equations in domains withcorners. Numer. Math.,58:145–161,1990.
    [49] Y. Levin. Electrostatic correlations: from plasma to biology. Rep. Prog. Phys.,65:1577–1639,2002.
    [50] B. Li. Minimization of electrostatic free energy and the Poisson-Boltzmann equa-tion for molecular solvation with implicit solvent. SIAM J. Math. Anal.,40:2536–2566,2009.
    [51] Y.C. Lin, A. Baumketner, S.Z. Deng, Z.L. Xu, D. Jacobs, and W. Cai. An image-based reaction field method for electrostatic interactions in molecular dynamicssimulations of aqueous solutions. J. Chem. Phys.,131:154103,2009.
    [52] Y.C. Lin, A. Baumketner, W. Song, S.Z. Deng, D. Jacobs, and W. Cai. Ionic solva-tion studied by image-charge reaction field method. J. Chem. Phys.,134:044105,2011.
    [53] I.V. Lindell. Electrostatic image theory for the dielectric sphere. Radio. Sci.,27:1–8,1992.
    [54] B.Z. Lu, Y.C. Zhou, M.J. Holst, and J.A. McCammon. Recent progress in nu-merical methods for the Poisson-Boltzmann equation in biophysical applications.Commun. Comput. Phys.,3:973–1009,2008.
    [55] S. Miertusˇ, E. Scrocco, and J. Tomasi. Electrostatic interaction of a solute with acontinuum. A direct utilizaion of AB initio molecular potentials for the previsionof solvent effects. Chem. Phys.,55:117–129,1981.
    [56] E. Neher and B. Sakmann. Noise analysis of drug induced voltage clamp currentsin denervated frog muscle fibres. J. Phys.,258:705–729,1976.
    [57] A. Okur and C. Simmerling. Hybrid explicit/implicit solvation methods. Ann.Rep. Comput. Chem.,2:97–109,2006.
    [58] L. Onsager. Theories of concentrated electrolytes. Chem. Rev.,13:73–89,1933.
    [59] L. Onsager. Electric moments of molecules in liquids. J. Am. Chem. Soc.,58:1486–1493,1936.
    [60] P.K. Pathria. Statistical Mechanics. Butterworth–Heinemann, Oxford,1996.
    [61] J.W. Perram, H.G. Petersen, and S.W. De Leeuw. An algorithm for the simulationof condensed matter which grows as the3/2power of the number of particles.Mol. Phys.,65:875–893,1988.
    [62] P. Qin, Z.L. Xu, W. Cai, and D. Jacobs. Image charge methods for a three-dielectric-layer hybrid solvation model of biomolecules. Commun. Comput.Phys.,6:955–977,2009.
    [63] D.C. Rapaport. The Art of Molecular Dynamics Simulation. Cambridge Univer-sity Press,2004.
    [64] T. Schlick. Molecular Modeling and Simulation: An Interdisciplinary Guide.Springer,2010.
    [65] M. Soejima and A. Noma. Mode of regulation of the ach-sensitive k-channelby the muscarinic receptor in rabbit atrial cells. Pflu¨gers. Archiv.,400:424–431,1984.
    [66] A. Sommerfeld. Partial Differential Equations in Physics. Academic Press,1949.
    [67] G. Stell and C.G. Joslin. The donnan equilibrium: a theoretical study of the effectsof interionic forces. Biophys. J.,50:855–859,1986.
    [68] C. Tanford and J. G. Kirkwood. Theory of protein titration curves. I. Generalequations for impenetrable spheres. J. Amer. Chem. Soc.,79:5333–5339,1957.
    [69] G.M. Torrie and J.P. Valleau. Electrical double layers.4. limitations of the gouy-chapman theory. J. Phys. Chem.,86:3251–3257,1982.
    [70] W. Trautwein, J. Taniguchi, and A. Noma. The effect of intracellular cyclic nu-cleotides and calcium on the action potential and acetylcholine response of iso-lated cardiac cells. Pflu¨gers. Archiv.,392:307–314,1982.
    [71] E.J.W. Verwey and J.T.G. Overbeek. Theory of the Stability of Lyophobic Col-loids. Dover Publications,1999.
    [72] J. Warwicker. Continuum dielectric modelling of the protein-solvent system, andcalculation of the long-range electrostatic field of the enzyme phosphoglyceratemutase. J. Theor. Biol.,121:199–210,1986.
    [73] Z.L. Xu and W. Cai. Fast analytical methods for macroscopic electrostatic modelsin biomolecular simulations. SIAM. Rev.,53:683–720,2011.
    [74] Z.L. Xu, W. Cai, and X.L. Cheng. Image charge method for reaction fields in ahybrid ion-channel model. Commun. Comput. Phys.,9:1056,2011.
    [75] Z.L. Xu, S.Z. Deng, and W. Cai. Image charge approximations of reaction fieldsin solvents with arbitrary ionic strength. J. Comput. Phys.,228:2092–2099,2009.
    [76] P.K. Yang, S.H. Liaw, and C. Lim. Representing an infinite solvent system with arectangular finite system using image charges. J. Phys. Chem. B.,106:2973–2982,2002.
    [77] T.J. You and S.C. Harvey. Finite element approach to the electrostatics of macro-molecules with arbitrary geometries. J. Comput. Chem.,14:484–501,1993.
    [78] R.J. Zauhar and R.S. Morgan. A new method for computing the macromolecularelectric potential. J. Mol. Biol.,186:815–820,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700