用户名: 密码: 验证码:
基于凸优化的分层控制系统性能评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着过程工业生产规模的不断扩大化和被控对象的复杂化,直接控制层加约束控制层的分层控制方案以其灵活的组态结构和更强的鲁棒性等优势在过程工业中广泛应用,保障了过程运行中安全、平稳、高效等不同层面的需求。分层控制策略中把扰动抑制、设定值跟踪、经济性能优化等各个方面的控制任务分配给各层次的子系统来完成。由于控制目标相互关联,所以该系统各方面控制性能的实现程度相互影响且难以被直观评判。如何实时、准确、全面地评估分层控制系统的控制性能具有十分重要的意义。为了解决分层控制系统的性能评价问题,本文基于凸优化理论提出了一整套关于控制性能基准建模、评估与优化的研究框架。位于直接控制层的PID控制器受到结构限制,给控制性能优化问题引入了非凸约束,给问题求解带来较大困难。在充分考虑控制器结构约束的基础上,本文将关于控制器参数的最优可达性能基准非凸优化问题重新描述为更清晰的数学结构形式,设法将带有非凸约束的优化问题近似为易于求解的凸优化问题,降低了求解算法的复杂度。本文的主要工作包括以下方面:
     1.针对直接控制层中由PID(Proportional-Integral-Derivative)控制的单变量线性时不变系统,在设定值恒定时,提出一种以最小可达输出方差为调节性能基准的性能评价框架。单变量线性时不变PID控制系统最小可达输出方差的估计问题被归结为一个带有非凸约束的凸优化问题。为求解该问题,将非凸约束线性化,采用罚函数法处理,并设计出一种全新的低计算复杂度的迭代凸规划求解算法。从而建立起PID控制回路的调节性能基准。该方法适用于受PID控制的连续过程调节性能评估。
     2.针对直接控制层中由PID控制的单变量线性时不变系统,在设定值受约束控制层影响出现跳变时,提出一种以最小可达调节误差方差为调节性能评估基准,以最小绝对跟踪误差积分为跟踪性能评估基准,并以调节/跟踪性能折中曲线作为均衡性能基准的性能评估框架。将线性时不变系统PID控制器的最小可达调节误差方差估计问题重新归结为一个带有双线性矩阵不等式约束的二次型规划问题,将最小绝对跟踪误差积分估计问题归结为一个带有双线性矩阵不等式约束的线性凸规划问题,再通过目标函数加权和的形式,把调节/跟踪性能均衡最优化问题构造为一个关于PID参数的带有双线性矩阵不等式约束的二次型优化问题。采用通用的序列二次规划算法求解上述问题,建立起受单一PID控制的多目标性能基准。该方法适用于直接控制层的调节/跟踪综合性能评估。
     3.针对由PID控制的单变量线性时变间歇过程,考虑一个完整批次包含多个运行阶段,提出一种基于最小可达结构化残差的性能基准建模与求解方法。为了简化线性时变系统的分析与综合,使基于线性时不变系统PID控制性能评估的方法可移植到线性时变系统中,建立了线性时变系统的时变脉冲响应矩阵模型。根据设定值的动态特性将一个批次划分为调节与跟踪阶段,通过阶段的权重矩阵辅助建立关于各运行阶段和完整批次的结构化残差,线性时变系统PID控制的最小可达结构化残差方差的估计问题被归结为一个非凸优化问题。分析了引入的结构化矩阵对该优化问题求解的影响,分别针对相应的带有秩一约束的凸优化问题和带有双线性矩阵不等式约束的二次型规划问题设计了相应的求解算法。仿真实验表明该优化问题变型大幅提高了求解效率。该方法适用于受PID控制的间歇过程综合性能评估。
     4.针对分层控制系统中约束控制层的经济性能评估问题,提出了一种基于最优-最差经济性能区间的评估方法。通过分析分层控制的直接控制、约束控制和实时优化三层垂直结构的信息交互方式,阐述了基本控制性能与总体经济性能的关联关系。通过计算该控制系统的最优-最差经济性能区间,给出了一种面向经济性能的评估基准。提出一种根据过程开环模型和直接层控制器参数计算约束控制层中模型预测控制(Model Predictive Control, MPC)广义对象模型的方法,有效减少模型与真实对象失配引起的控制性能下降。给出了实时监测和评估分层控制系统经济效益的步骤方法,对Shell重油分馏塔模型的仿真结果表明了该方法的有效性。
With the emerging growth of the scale of industrial processes and the complexity of the plant in recent years, traditional centralized control strategies are gradually replaced by the newly devel-oped hierarchical control systems due to its advantages of flexible configuration and robustness. A Hierarchical control system including direct control layer and constraint control layer is a prospec-tive scheme in processes control practice, which could guarantee control demands in different aspects, including the safety, stability, reliability and efficiency of the plant operation. In hierarchi-cal control system, control tasks are composed of disturbances depression, set-point tracking, and economic performance optimization. And they are assigned to three individual subsystem layers to fulfill. Because there exists mutual influences between the realization degree of these tasks, and also interactions of control layers, it is not convenient for control engineers to determine how well the performance of local controllers and the plantwide system are. It is important and of practical significance to comprehensively evaluate the overall performance of a hierarchical con-trol system. To assess performance of direct control layer and constraint control layer, the most important components in a hierarchical control system, we proposed in this thesis a framework of benchmarking, assessing and optimizing the direct control and economic performance based on convex optimization technology. Especially, the non-convexity brought in by PID structure of the minimum achievable error variance problem in assessing direct control performance is refor-mulated as a new non-convex constraint with more explicit mathematical structure with respect to PID parameters.The original nonconvex optimization problem is then approximated by a convex optimization which can be easily solved with low-complexity algorithms. The main contributions of this thesis are as following:
     1. Minimum achievable output variance (MAOV) is a common benchmark for control per-formance assessment. Finding the MAOV of proportional-integral-derivative (PID) control systems is computationally expensive due to the inherent non-convexity of the associated optimization problem. We present a new method for computing the MAOV of PID control systems. The problem of estimating the MAOV of a PID control system is novelly for-mulated as a convex program with an additional non-convex constraint. The non-convex constraint is linearized and handled by the penalty approach. Based on this, a customized low-complexity algorithm, which relies on the iterative convex programming technique, is developed to solve the MAOV problem. The new algorithm is proved to be convergent. We show via numerical examples that the new approach yields close-to-optimal solutions that are better than (or as good as) the solutions generated by the existing methods.
     2. Considering the set-point of direct control layer is often affected by upper constraint control layer, a novel comprehensive performance assessment framework is proposed. Minimum achievable regulatory error variance (MAREV) is used as regulatory performance bench-mark, and minimum integrated absolute tracking error (MIATE) is established as benchmark of tracking performance. A regulatory/tracking performance trade-off curve is obtained to evaluate how balance the total control effect is. The problem of estimating the MAREV of a PID control system is formulated as a quadratic programming (QP) with a bilinear ma-trix inequality (BMI) constraint, and the problem of estimating the MIATE is formulated as a linear programming (LP) with a BMI constraint. Accordingly the problem of searching the balanced tracking/regulatory performance benchmark is formulated as a QP with BMI constraints with respect to PID parameters. These optimization problems are dealt with a standard sequential quadratic programming (SQP) algorithm. Thus facing multiple tasks in direct control layer, a flexible control performance benchmark suited for PID controllers is obtained. We show via numerical examples that compared to commercial software PENBMI which is specially designed for solving BMI problems, the approach we presented yields the same optimal solutions with less time consumption.
     3. Batch processes usually have strong nonlinearity or time-varying property, and are often operated in multiple phases. For those batch processes which can be described as linear time varying (LTV) systems, we suggest a new control performance benchmark which is based on the minimum achievable structured residual variance (MASRV). Firstly, for the ease of elaboration, a model called time-varying impulse response matrix is established to describe the LTV systems, which makes the LTV systems own similar formation with LTI systems. Secondly, a duration time of a batch is divided into regulatory and tracking stages according to set-point dynamics, then a structured residual is defined based on the weight matrix of the stage. The problem of estimating the MASRV of LTV system with PID controller is formulated as a non-convex optimization. The fact that the introduced structured matrix is whether invertible or not affects the choice of optimization algorithm. Iterative semidefinit programming (SDP) is selected to handle the convex optimization with a rank one constraint if structured matrix is invertible, otherwise, sequential quadratic programming (SQP) method is used to solve the QP problem with BMI constraints. Numerical simulations study prove that the reformulation of the problem improves the efficiency of optimization.
     4. In order to ensure multivariable industrial processes operating in a safe and economic mode, a method for control performance assessment of hierarchical control systems was proposed. The three-layer structure of a hierarchical control system:direct control layer, constraint con-trol layer and real-time optimization layer, was analyzed to formulate the control objective functions of three aspects:suppressing disturbances, keeping constraints and maximizing process profits, respectively. A control performance assessment benchmark called "best to worst performance range" was established to monitor the economic performance of industrial processes, and to evaluate how much potential would be improved. To avoid the degrada-tion of control performance due to model-plant mismatch, a method to compute generalized object model through open loop model and regulatory parameters was presented. The relia-bility and efficacy of the proposed performance assessment technique is demonstrated on a case study on Shell heavy oil fractionator control problem.
引文
[1]F. Shahni, G. M. Malwatkar. Assessment minimum output variance with PID controllers[J]. Journal of Process Control,2011,21(4):678-681.
    [2]M. Veronesi, A. Visioli. Global minimum-variance PID control. In Proc. of the 18th IFAC World Congress. Milano, Italy,2011, volume 18,7891-7896.
    [3]A. Y. Sendjaja, V. Kariwala. Achievable PID performance using sums of squares programming[J]. Journal of Process Control,2009,19(6):1061-1065.
    [4]柴天佑.生产制造全流程优化控制对控制与优化理论方法的挑战[J].自动化学报,2009,35(6):641-649.
    [5]S. Riccardo. Architectures for distributed and hierarchical model predictive control-a review[J]. Journal of Process Control,2009,19(5):723-731.
    [6]P. Tatjewski. Advanced control and on-line process optimization in multilayer structures[J]. Annual Reviews in Control,2008,32(1):71-85.
    [7]P. Tatjewski. Advanced control of industrial processes:structures and algorithms[M]. Springer,2007.
    18] Y. Shardt, Y. Zhao, F. Qi, K. Lee, X. Yu, B. Huang, S. L. Shah. Determining the state of a process control system:Current trends and future challenges[J]. The Canadian Journal of Chemical Engineering,2012, 90(2):217-245.
    [9]A. W. Ordys, D. Uduehi, M. A. Johnson. Process control performance assessment: from theory to imple-mentation[M]. London, UK:Springer,2007.
    [10]M. Jelali. An overview of control performance assessment technology and industrial applications[J]. Control Engineering Practice,2006,14(5):441-466.
    [11]T.J. Harris, C.T. Seppala, L.D. Desborough. A review of performance monitoring and assessment tech-niques for univariate and multivariate control systems[J]. Journal of Process Control,1999,9(1):1-17.
    [12]K. J. Astrom. Introduction to Stochastic Control Theory[M]. Acdemic Press, New York and London, 1970.
    [13]T. J. Harris. Assessment of control loop performance[J]. The Canadian Journal of Chemical Engineering, 1989,67(5):856-861.
    [14]S. J. Qin. Control performance monitoring-a review and assessment[J]. Computers & Chemical Engi-
    neering,1998,23(2):173-186.
    [15]S. J. Qin, J. Yu. Recent developments in multivariable controller performance monitoring[J]. Journal of Process Control,2007,17(3):221-227.
    116] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S. N. Kavuri. A review of process fault detection and diagnosis:Part I:Quantitative model-based methods[J]. Computers & Chemical Engineering,2003, 27(3):293-311.
    [17]V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri. A review of process fault detection and diagnosis: Part II:Qualitative models and search strategies[J]. Computers & Chemical Engineering,2003,27(3):313-326.
    [18]V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, K. Yin. A review of process fault detection and diagnosis:Part III:Process history based methods[J]. Computers & Chemical Engineering,2003, 27(3):327-346.
    [19]B. Huang, S. L. Shah. Performance Assessment of Control Loops:Theory and Applications[M]. New York, USA:Springer-Verlag,1999.
    [20]B. Huang, R. Kadali. Dynamic Modeling, Predictive Control and Performance Monitoring:A Data-driven Subspace Approach[M]. London, England, UK:Springer-Verlag,2008.
    [21]B. Huang, S. L. Shah, F. K. Kwok. Good, bad or optimal? performance assessment of multivariable processes[J]. Automatica,1997,33(6):1175-1183.
    [22]T.J. Harris, F. Boudreau, J. F. Macgregor. Performance assessment of multivariable feedback controller-s[J]. Automatica,1996,32(11):1505-1518.
    [23]B. Huang, S. L. Shah, H. Fujii. The unitary interactor matrix and its estimation using closed-loop data[J]. Journal of Process Control,1997,7(3):195-207.
    [24]B. Huang, S. X. Ding, N. Thornhill. Practical solutions to multivariate feedback control performance assessment problem:reduced a priori knowledge of interactor matrices[J]. Journal of Process Control, 2005,15(5):573-583.
    [25]B.-S. Ko, T. F. Edgar. Performance assessment of multivariable feedback control systems[J]. Automatica, 2001,37(6):899-905.
    [26]C. A. McNabb, S. J. Qin. Projection based MIMO control performance monitoring:I-covariance moni-toring in state space[J]. Journal of Process Control,2003,13(8):739-757.
    [27]B. Huang, S. X. Ding, N. Thornhill. Alternative solutions to multi-variate control performance assessment problems[J]. Journal of Process Control,2006,16(5):457-471.
    [28]H. Xia, P. Majecki, A. Ordys, M. Grimble. Performance assessment of MIMO systems based on I/O delay information[J].Journal of Process Control,2006,16(4):373-383.
    [29]J.Yu, S. J. Qin. MIMO control performance monitoring using left/right diagonal interactors[J]. Journal
    of Process Control,2009,19(8):1267-1276.
    [30]L. Desborough, T. Harris. Performance assessment measures for univariate feedforward/feedback con-trol[J]. The Canadian Journal of Chemical Engineering,1993,71(4):605-616.
    [31]N. Stanfelj, T. E. Marlin, J. F.MacGregor. Monitoring and diagnosing process control performance:the single-loop case[J]. Industrial and Engineering Chemistry Research,1993,32(2):301-314.
    [32]B. Huang, S. L. Shah, R. Miller. Feedforward plus feedback controller performance assessment of MIMO systems[J]. IEEE Transactions on Control Systems Technology,2000,8(3):580-587.
    [33]B.-S. Ko, T. F. Edgar. Performance assessment of cascade control loops[J]. AIChE Journal,2000, 46(2):281-291.
    [34]M. L. Tyler, M. Morari. Performance assessment for unstable and nonminimum-phase systems. In In Preprints IFAC workshop on-line fault detection supervision chemical process industries. Newcastle-upon-Tyne, UK,1995,200-205.
    [35]M. L. Tyler, M. Morari. Performance monitoring of control systems using likelihood methods[J]. Auto-matica,1996,32(8):1145-1162.
    [36]N. F. Thornhill, B. Huang, S. L. Shah. Controller performance assessment in set point tracking and regulatory control[J]. International Journal of Adaptive Control and Signal Processing,2003,17(7-9):709-727.
    [37]B.Huang. Performance assessment of processes with abrupt changes of disturbances[J]. The Canadian Journal of Chemical Engineering,1999,77(5):1044-1054.
    [38]B. Huang. Minimum variance control and performance assessment of time-variant processes[J]. Journal of Process Control,2002,12(6):707-719.
    [39]F. B. Olaleye, B. Huang, E. Tamayo. Feedforward and feedback controller performance assessment of linear time-variant processes[J]. Industrial & Engineering Chemistry Research,2004,43(2):589-596.
    [40]F. Olaleye, B. Huang, E. Tamayo. Performance assessment of control loops with time-variant disturbance dynamics[J]. Journal of Process Control,2004,14(8):867-877.
    [41]F. Xu, B. Huang. Performance monitoring of SISO control loops subject to ltv disturbance dynamics:An improved lti benchmark[J]. Journal of Process Control,2006,16(6):567-579.
    [42]F. Xu, B. Huang, E. C. Tamayo. Performance assessment of MIMO control systems with time-variant disturbance dynamics[J]. Computers & Chemical Engineering,2008,32(9):2144-2154.
    [43]T. J. Harris, W. Yu. Controller assessment for a class of non-linear systems[J]. Journal of Process Control, 2007,17(7):607-619.
    [44]W. Yu, D.I. Wilson, B.R. Young. Control performance assessment for nonlinear systems[J]. Journal of Process Control,2010,20(10):1235-1242.
    [45]B.-S. Ko, T. F. Edgar. Assessment of achievable PI control performance for linear processes with dead time. In Proceedings of the 1998 American Control Conference,1998.1998, volume 3,1548-1552 vol.3.
    [46]B.-S. Ko, T. F. Edgar. PID control performance assessment:The single-loop case[J]. AlChE Journal, 2004,50(6):1211-1218.
    [47]J. Hanna, S.R. Upreti, A. Lohi, F. Ein-Mozaffari. Constrained minimum variance control using hybrid genetic algorithm-an industrial experience[J]. Journal of Process Control,2008,18(1):36-44.
    [48]B. Huang. A pragmatic approach towards assessment of control loop performance[J]. International Journal of Adaptive Control and Signal Processing,2003, 17(7-9):589-608.
    [49]R. Kadali, B. Huang. Controller performance analysis with LQG benchmark obtained under closed loop conditions[J]. ISA Transactions,2002,41(4):521-537.
    [50]S. P. Boyd, C. H. Barratt. Linear controller design:limits of performance[M]. Upper Saddle River, NJ, USA:Prentice-Hall, Inc.,1991.
    [51]T. J. Harris, J. F. Macgregor. Design of multivariable linear-quadratic controllers using transfer function-s[J]. AIChE Journal,1987,33(9):1481-1495.
    [52]N. Danesh Pour, B. Huang, S.L. Shah. Consistency of noise covariance estimation in joint input-output closed-loop subspace identification with application in lqg benchmarking[J]. Journal of Process Control, 2009,19(10):1649-1657.
    [53]S. Bennett. The past of PID controllers[J]. Annual Reviews in Control,2001,25(0):43-53.
    [54]黄友锐,曲立国.PID控制器参数整定与实现[M].北京,中国:科学出版社,2010.
    [55]P. Agrawal, S. Lakshminarayanan. Tuning proportional-integral-derivative controllers using achievable performance indices[J]. Industrial & Engineering Chemistry Research,2003,42(22):5576-5582.
    [56]V. Kariwala. Fundamental limitation on achievable decentralized performance[J]. Automatica,2007, 43(10):1849-1854.
    [57]R. Fu, L. Xie, Z. Song, Y. Cheng. PID control performance assessment using iterative convex program-ming[J]. Journal of Process Control,2012,22(9):1793-1799.
    [58]M. Veronesi, A. Visioli. Performance assessment and retuning of PID controllers[J]. Industrial & Engi-neering Chemistry Research,2009,48(5):2616-2623.
    [59]B. S. Ko, T. F. Edgar. Performance assessment of constrained model predictive control systems[J]. AIChE Journal,2001,47(6):1363-1371.
    [60]C. A. Harrison, S. J. Qin. Minimum variance performance map for constrained model predictive control[J]. Journal of Process Control,2009,19(7):1199-1204.
    [61]R. H. Julien, M. W. Foley, W. R. Cluett. Performance assessment using a model predictive control bench-mark[J]. Journal of Process Control,2004,14(4):441-456.
    [62]Q. Zhang, S. Li. Enhanced performance assessment of subspace model-based predictive controller with parameters tuning[J]. The Canadian Journal of Chemical Engineering,2007,85(4):537-548.
    [63]R. A. Ghraizi, E. Martinez, C. de Prada, F. Cifuentes, J. Martinez. Performance monitoring of industrial controllers based on the predictability of controller behavior[J]. Computers & Chemical Engineering, 2007,31(5):477-486.
    [64]X. Tian, G. Chen, S. Chen. A data-based approach for multivariate model predictive control performance monitoring[J]. Neurocomputing,2011,74(4):588-597.
    [65]Y. Wang, X. Wang. Performance assessment and monitoring of MPC with mismatch based on covariance benchmark. In Intelligent Control and Automation (WCICA),2010 8th World Congress on.2010,3795-3800.
    [66]Y. Zhao, J. Chu, H. Su, B. Huang. Multi-step prediction error approach for controller performance moni-toring[J].Control Engineering Practice,2010,18(1):1-12.
    [67]刘詟.多层结构预测控制系统经济性能评估与优化设计[D].[博士学位论文],杭州,浙江大学,2012.
    [68]Zhe Liu, Yong Gu, Lei Xie. An improved LQG benchmark for MPC economic performance assess-ment and optimisation in process industry[J]. The Canadian Journal of Chemical Engineering,2012, 90(6):1434-1441.
    [69]F. Xu, B. Huang, S. Akande. Performance assessment of model pedictive control for variability and constraint tuning[J]. Industrial & Engineering Chemistry Research,2007,46(4):1208-1219.
    [70]K. H. Lee, B. Huang, E. C. Tamayo. Sensitivity analysis for selective constraint and variability tuning in performance assessment of industrial MPC[J]. Control Engineering Practice,2008,16(10):1195-1215.
    [71]N. Agarwal, B. Huang, E. C. Tamayo. Assessing model prediction control (MPC) performance.1. probabilistic approach for constraint analysis[J]. Industrial & Engineering Chemistry Research,2007, 46(24):8101-8111.
    [72]N. Agarwal, B. Huang, E. C. Tamayo. Assessing model prediction control (MPC) performance. 2. bayesian approach for constraint tuning[J]. Industrial & Engineering Chemistry Research,2007, 46(24):8112-8119.
    [73]S. Akande, B. Huang, K. H. Lee. MPC constraint analysis-bayesian approach via a continuous-valued profit functional. Industrial & Engineering Chemistry Research,2009,48(8):3944-3954.
    [74]C. ZHAO, H. SU, Y. GU, J. CHU. A pragmatic approach for assessing the economic performance of model predictive control systems and its industrial application[J]. Chinese Journal of Chemical Engineering, 2009,17(2):241-250.
    [75]C. Zhao, Y. Zhao, H. Su, B. Huang. Economic performance assessment of advanced process control with LQG benchmarking[J]. Journal of Process Control,2009,19(4):557-569.
    [76]B. Huang, S. L. Shah. Practical issues in multivariable feedback control performance assessment[J].
    Journal of Process Control,1998,8(5-6):421-430.
    [77]A. Horch, A. J. Isaksson. A modified index for control performance assessment[J]. Journal of Process Control,1999,9(6):475-483.
    [78]J. Gao, R. Patwardhan, K. Akamatsu, Y. Hashimoto, G. Emoto, S. L. Shah, B. Huang. Performance evaluation of two industrial MPC controllers[J]. Control Engineering Practice,2003,11(12):1371-1387.
    [79]R. S. Patwardhan, S. L. Shah, K. Z. Qi. Assessing the performance of model predictive controllers[J]. The Canadian Journal of Chemical Engineering,2002,80(5):954-966.
    [80]L. Desborough, T. J. Harris. Performance assessment measures for univariate feedback control[J]. The Canadian Journal of Chemical Engineering,1992,70(6):1186-1197.
    [81]N. F. Thornhill, M. Oettinger, P. Fedencz.uk. Refinery-wide control loop performance assessment[J]. Journal of Process Control,1999,9(2):109-124.
    [82]S. Bezergianni, C. Georgakis. Evaluation of controller performance use of models derived by subspace identi(ication[J]. International Journal of Adaptive Control and Signal Processing,2003,17(7-9):527-552.
    [83]F. Venkataramanan, V. Shukla, R. Sainiand R. R. Rhinehart. An automated online monitor of control system performance. In American Control Conference,1997. Proceedings of the 1997.1997, volume 3, 1355-1359.
    [84]赵宇.基于预报误差方法的控制回路性能评估与监控策略研究[D].[博士学位论文],杭州,浙江大学,2011.
    [85]Z. Yu, J. Wang, B. Huang, Z. Bi. Performance assessment of pid control loops subject to setpoint changes[J]. Journal of Process Control,2011,21(8):1164-1171.
    [86]M. Veronesi, A. Visioli. Performance assessment and retuning of PID controllers for load disturbance rejection. In Proc. of the IFAC Conference on Advances in PID Control. Brescia, Italy,2012.
    [87]Z. Yu, J. Wang. Assessment of proportional-integral control loop performance for input load disturbance rejection[J]. Industrial & Engineering Chemistry Research,2012,51(36):11744-11752.
    [88]T.J. Harris, W. Yu. Variance decompositions of nonlinear-dynamic stochastic systems[J]. Journal of Process Control,2010,20(2):195-205.
    [89]W. Yu, D. I. Wilson, B. R. Young. A comparison of nonlinear control performance assessment techniques for nonlinear processes[J]. The Canadian Journal of Chemical Engineering,2012, n/a-n/a.
    [90]Y. Zhou, F. Wan. A neural network approach to control performance assessment[J]. International Journal of Intelligent Computing and Cybernetics,2008,1(4):617-633.
    [911 P. Majecki, M. J. Grimble. Controller performance design and assessment using nonlinear generalized minimum variance benchmark:Scalar case. In Control 2004, University of Bath, UK. Proceedings of. 2004,ID-232.
    [92]F. Olaleye, B. Huang, E. Tamayo. Industrial applications of a feedback controller performance assessment of time-variant processes[J]. Industrial & Engineering Chemistry Research,2004,43(2):597-607.
    [93]C.-Y. Liu, B. Huang, Q. Wang. Assessment of control system performance with ltv disturbance dynamics: Siso case. In Decision and Control,2009 held jointly with the 2009 28th Chinese Control Conference, Proceedings of the 48th IEEE Conference on.2009,1872-1877.
    [94]Z. Li, R. J. Evans, B. Wittenmark. Minimum variance prediction for linear time-varying systems[J]. Automatica,1997,33(4):607-618.
    [95]Z. Li, R. J. Evans. Generalised minimum variance control of linear time-varying systems[J]. IEE Pro-ceedings-Control Theory and Applications,,2002,149(1):111-116.
    [96]Y. Zhao, B. Huang, H. Su, J. Chu. Prediction error method for identification of LPV modcls[J]. Journal of Process Control,2011,22:180-193.
    [97]C. Undey, S. Frtunc, A. Cinar. Online batch/fed-batch process performance monitoring, quality prediction, and variable-contribution analysis for diagnosis[J]. Industrial & Engineering Chemistry Research,2003, 42(20):4645-4658.
    [98]J. Chen, C.-K. Kong. Performance assessment for iterative learning control of batch units[J], Journal of Process Control,2009,19(6):1043-1053.
    [99]A.V. Prabhu, T. F. Edgar. Performance assessment of run-to-run EWMA controllers[J]. Semiconductor Manufacturing, IEEE Transactions on,2007,20(4):381-385.
    [100]L. Chen, M. Ma, S.-S. Jang, D. S.-H. Wang, S. Wang. Performance assessment of run-to-run control in semiconductor manufacturing based on IMC framework[J]. International Journal of Production Research, 2009,47(15):4173-4199.
    [101]Y. Cai, M. Zhou, T. Zou, L. Xia. Controller performance assessment of batch processes based on dynamic time warping. In Proceedings of the World Congress on Intelligent Control and Automation (WCICA). 2010,4165-4168.
    [102]E. Farasat, B. Huang. Deterministic vs. stochastic performance assessment of iterative learning control for batch processes[J]. AIChE Journal,2012, n/a-n/a.
    [103]D. P. Bertsekas. Nonlinear programming[M]. Athena Scientific,1999,2nd edition.
    [104]S. P. Boyd, L. Vandenberghe. Convex Optimization[M]. Cambridge University Press,2009.
    [105]D. P. Palomar, M. Chiang. A tutorial on decomposition methods for network utility maximization[J]. IEEE Journal on Selected Areas in Communications,2006,24(8):1439-1451.
    [106]D. P. Palomar, M. Chiang. Alternative distributed algorithms for network utility maximization:Framework and applications[J]. IEEE Transactions on Automatic Control,2007,52(12):2254-2269.
    [107]Y. Nesterov. Introductory lectures on convex optimization:a basic course[M]. Kluwer Academic Pub-lishers,2004.
    [108]R. Freund. Nonlinear programming, Spring 2004.
    [109]J. G. VanAntwerp, R. D. Braatz. A tutorial on linear and bilinear matrix inequalities[J]. Journal of Process Control,2000,10(4):363-385.
    [110]D. Henrion, S. Tarbouriech, M. Sebek. Rank-one LMI approach to simultaneous stabilization of linear systems[J]. Systems & Control Letters,1999,38(2):79-89.
    [111]A. V. Fiacco, G. P. McCormick. Nonlinear programming:Sequential unconstrained minimization tech-niques[M]. New York:John Wiley and Sons,1968.
    [112]P. A. Jensen, J. F. Bard. Operations Research Models and Methods[M]. United States of America:John Wiley and Sons,2003.
    [113]J. Nocedal, S. J. Wright. Numerical Optimization,2nd Ed.[M]. Springer,2006.
    [114]R. H.W. Hoppe. Optimization and Variational Methods[M]. [Online] http://www.math.uh.edu/-rohop/Fall_1/index.html,2011.
    [115]王宏禹,邱天爽.线性时变离散系统[M].国防工业出版社,2008.
    [116]J. O. Smith. Spectral Audio Signal Processing[M]. [online]:http://ccrma.stanford.edu/-jos/sasp/,2012.
    [117]陈怀琛.数字信号处理教程:MATLAB释义与实现[M].电子工业出版社,2008,2nd edition.
    [118]S. P. Boyd. Introduction to Signals and Systems[M]. [online]: http://www.stanford.edu/-boyd/ee102/tf.pdf,2012.
    [119]A. Visioli. Practical PID control[M]. London, UK:Springer-Verlag,2006.
    [120]J. J. DiStefano Ⅲ, A. R. Stubberud, I. J. Williams. Feedback and control systems[M]. United States: McGraw-Hill,1995.
    [121]M. Brookes. The Matrix Reference Manual:Hadamard (or Schur) Product[M]. [online]: http://www.ee.imperial.ac.uk/hp/staff/dmb/matrix/intro.html,2011.
    [122]A. d'Aspremont, S. P. Boyd. Relaxations and Randomized Methods for Nonconvex QCQPs, Stanford University[M]. [online] http://www.stanford.edu/class/ee392o/relaxations.pdf,2003.
    [123]A. H. Phan, H. D. Tuan, H. H. Kha, H. H. Nguyen. Nonsmooth optimization-based beamforming in mul-tiuser wireless relay networks. In 4th International Conference on Signal Processing and Communication Systems (ICSPCS),2010.2010,1-4.
    [124]A. H. Phan, H. D. Tuan, H. H. Kha, D. T. Ngo. Nonsmooth optimization for efficient beamforming in cognitive radio multicast transmission[J]. Signal Processing, IEEE Transactions on,2012,60(6):2941-2951.
    [125]W. F. Trench. Introduction to Real Analysis, Trinity University[M]. [online] http://ramanujan.math.trinity.edu/wtrench/texts/,2011.
    1126] M. Grant, S. Boyd. CVX:Matlab software for disciplined convex programming, version 2.0 beta,2011.
    [127]J. F. Sturm. Using sedumi 1.02, a MATLAB toolbox for optimization over symmetric cones[J]. Optimiza-tion Methods and Software,1999,11(1):625-653.
    [128]C. A. McNabb, S. J. Qin. Projection based MIMO control performance monitoring:Ⅱ- measured distur-bances and setpoint changes[J]. Journal of Process Control,2005,15(1):89-102.
    [129]A. P. Swanda, D. E. Seborg. Controller performance assessment based on setpoint response data. In American Control Conference,1999. Proceedings of the 1999.1999, volume 6,3863-3867 vol.6.
    [130]H.-P. Huang, J.-C. Jeng. Monitoring and assessment of control performance for single loop systems[J]. Industrial & Engineering Chemistry Research,2002,41(5):1297-1309.
    [131]M. Veronesi, A. Visioli. An industrial application of a performance assessment and retuning technique for PI controllers[J]. ISA Transactions,2010,49(2):244-248.
    [132]M. Veronesi, A. Visioli. Performance assessment and retuning of PID controllers for integral processes[J]. Journal of Process Control,2010,20(3):261-269.
    [133]C. T. Seppala, T. J. Harris, D. W. Bacon. Time series methods for dynamic analysis of multiple controlled variables[J]. Journal of Process Control,2002,12(2):257-276.
    [134]W. Tan, J. Liu, T. Chen, H. J. Marquez. Comparison of some well-known PID tuning formulas[J]. Com-puters & Chemical Engineering,2006,30(9):1416-1423.
    [135]M. Kocvara, M. Stingl. PENBMI User's Guide (Version 2.1), PENOPT GbR[M]. [online]: http://www.penopt.com/doc/penbmi2_1.pdf,2006.
    [136]M. Kocvara, M. Stingl. PENNON:A code for convex nonlinear and semidefinite programming[J]. Opti-mization Methods and Software,2003,18(3):317-333.
    [137]J. Lofberg. Yalmip:A toolbox for modeling and optimization in MATLAB. In Proceedings of the CACSD Conference. Taipei, Taiwan,2004.
    [138]MathWorks. User's guide of optimization toolbox,2012.
    [139]F. Caccavale, M. Iamarino, F. Pierri, V. Tufano. Control and Monitoring of Chemical Batch Reactors[M]. Springer,2011.
    [140]K. S. Tsakalis, P. A. Ioannou. Linear time-varying systems:control and adaptation[M]. Upper Saddle River, NJ, USA:Prentice-Hall, Inc.,1993.
    [141]D.E. Seborg, T. F. Edgar, D. A. Mellichamp. Process Dynamics and Control[M]. New York:Wiley,2010, 3rd edition.
    [142]周猛飞.延迟焦化工业过程先进控制与性能评估[D].[博士学位论文],杭州,浙江大学,2010.
    [143]L. Ljung. System Identification,2nd Edition[M]. Prentice Hall,1998.
    [144]C.-K. Kong. Performance assessment of iterative learning control of batch units[D].[硕士学位论文],台湾,私立中原大学,2007.
    [145]赵超.过程控制系统经济性能评估算法的研究[D].[博士学位论文],杭州,浙江大学,2009.
    [146]M.J. Grimble, D. Uduehi. Process control loop benchmarking and revenue optimization.In Proceedings of the 2001 American Control Conference,2001.2001, volume 6,4313-4327.
    [147]E. F. Camacho, C. Bordons. Model Predictive Control[M]. Springer,1999.
    [14-8]P. J. Campo, T. R. Holcomb, M. S. Gelormino. Decentralized control system design for a heavy oil fractionator:the shell control problem. In The Second Shell Process Control Workshop:solutions to the Shell standard control problem.1990,315-365.
    [149]叶凌箭,宋执环.多变量控制系统的一种变量配对方法[J].控制与决策,2009,24(12):1795-1800.
    [150]D. M. Prett, M. Morari. The Shell Process Control Workshop[M]. Boston:Butterworths,1987.
    [151]M. Kettunen, P. Zhang, S.-L. Jamsa-Jounela. An embedded fault detection, isolation and accommodation system in a model predictive controller for an industrial benchmark process[J]. Computers & Chemical Engineering,2008,32(12):2966-2985.
    [152]C. Vlachos, D. Williams, J. B. Gomm. Solution to the Shell standard control problem using genetically tuned PID controllers[J]. Control Engineering Practice,2002,10(2):151-163.
    [153] C.-M. Ying, B. Joseph. Performance and stability analysis of LP-MPC and QP-MPC cascade control systems[J]. AIChE Journal,1999,45(7):1521-1534.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700