用户名: 密码: 验证码:
多层结构预测控制系统经济性能评估与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着模型预测控制技术在石油、化工、造纸、制药等流程工业的迅速发展和广泛应用,企业的安全生产得到了保障,经济效益有了明显提高。由于预测控制的实施需要增加企业投资成本,能否在项目实施前给出详细准确的投运成本和经济收益分析,是企业关心的一个重要问题。根据工程实施经验,预测控制系统在投运初期能够达到预期的控制性能目标,然而,随着时间的推移,原料供给、产品规格、生产环境、设备性能、操作条件等都发生了变化,预测控制器逐渐偏离预先设定的操作状态,导致控制性能下降,无法达到预期收益。因此,预测控制系统的经济性能评估具有十分重要的意义。目前应用最为广泛的性能评估策略基于最小方差控制(Minimum Variance Control, MVC)基准。然而,由于MVC基准只涉及到过程输出的方差信息,并没有考虑执行器的约束和可操作性,因而在工业应用中只能作为一种理想化的操作指导而通常无法实现。针对这一问题,本论文基于线性二次型高斯(Linear Quadratic Gaussian, LQG)基准进行多层结构预测控制系统经济性能评估与优化的研究,在充分考虑了执行器约束的情况下给出实际可行的最优控制策略。本论文具体研究内容如下:
     1.针对流程工业中的多变量预测控制器,采用多变量LQG经济性能稳态优化与MPC动态控制结合的双层优化控制结构,通过求解多变量LQG性能基准,确定了多变量控制方差与输出方差非线性约束关系的多维Pareto曲面,从而对控制过程进行经济性能评估和稳态优化求解,给出与经济效益直接相关的多变量MPC最优设定值和最优卡边控制退避值,进一步指导MPC控制器设计以实现最优控制性能和最大化经济效益。
     2.针对传统LQG最优性能基准点上部密集,下部稀疏的不均衡分布导致的拟合效果偏差和计算量过大的问题,提出了一种均匀分布LQG性能评估策略。分别采用数值寻优算法、递归寻优算法和解析求解算法三种策略求解LQG最优离散点集,并对该点集进行拟合,从而提高了LQG性能曲线的拟合精度,降低了计算量。对于多变量控制系统,采用LQG性能基准对变量之间的制约关系进行灵敏度分析,能够指导控制及评估变量的选取,提高调节效率和简化评估流程。
     3.针对工业过程中由于原料批次变化、生产环境影响、牌号切换、操作员调整等因素导致的多模型工况,根据多模型过程产生的原因将其区分为扰动多模型和过程多模型分别展开讨论,介绍了MVC评估基准对于多模型问题的解决策略,并分别对扰动多模型和过程多模型工况采用LQG基准进行性能评估和稳态优化设计
     4.针对多层结构预测控制系统中各层之间变量处理相对独立而导致的约束不一致、最优设定值无法执行、控制性能降低的问题,分别对LQGO—PFC—PFC、LQGO—PFC—PID、LQGO—QMPC—PID三种典型的串级控制回路和传导控制回路进行分析,在多层结构协调运算过程中采用回退计算策略将下层控制器约束传递至上层,并对约束传递过程中的单调性做了证明,从而保证各层之间约束的一致性,提高控制效果。通过液位控制系统的设计验证了该方法的有效性。
     5.针对目前经济性能评估大多基于稳态过程而未考虑动态特性的问题,采用LQG稳态优化与MPC动态控制相结合的双层MPC优化控制结构,将过程关键变量作为上下层之间的关联,从而保证了上层最优经济性能下的设定值切实可行。采用提出的多变量LQG性能基准和均匀分布LQG性能基准分别对国内某大型石化企业延迟焦化加热炉出口氧含量控制回路和加热炉出口温度控制回路进行了经济性能评估和优化设计,给出了加热炉控制系统的经济性能提升空间,并指导MPC控制器设计。
As the most typical Advanced Process Control (APC) technology, Model Predictive Control (MPC) can enhance enterprises economic benefits effectively and has found wide applications in process industry, including petroleum industry, chemical industry, papermaking, pharmaceutical industry, etc. Since the implementation of MPC control system needs additional investment which generally involves a large cost, the benefit and cost ratio is one of the most important factors to be considerated by enterprises. Generally, most MPC controllers operate reasonably well at the early stage. However, their performance may deteriorate after a certain period due to the variation of operating conditions and producion environments. In the worst case, the process might even become uncontrollable and the MPC controllers have to be switched off. resulting in a large waste of investment and loss of economic benefits. Therefore, the economic performance assessment of MPC is important and has attract a lot of interest by academia and industry. Currently, the most common assessment method is the Minimum Variance Control (MVC) benchmark. By comparing the actual variance of the process with the MVC benchmark, the performance improvement potential is provided. However, MVC only deals with process output variance without considering the actuator constraints, so this benchmark is usually deemed as an ideal performance assessing guideline but seldom-implemented in industrial applications. Instead, to implement the economic performance assessment and optimization for multi-layer MPC structure, the LQG benchmark which considers both the manipulated variables variance and the controlled variables variance with a quadratic dynamic index is adopted in this thesis. The research topics include:
     1.The economic performance assessment is considered for multi-variable controllers in petrochemical processes, an integrated two-layer structure of LQG economic performance steady state optimization and MPC dynamic optimization is given, the relationship between the controlled variables variance and the manipulated variables variance is calculated and accordingly its optimal Pareto surface function is obtained by regression method, and a pragmatic economic performance assessment and optimization strategy for multi-variable process is introduced. Hence the optimal setpoints for MPC and optimial back-off values can be determined.
     2. An equigrid LQG benchmark is introduced to improve the traditional LQG benchmark which was determined from an asymmetrically distributed discrete points set with unnecessary computation and unsatisfied regression effect. Three approaches consisting of numerical equigrid algorithm, recursive equigrid algorithm and analytical equigrid algorithm for calculating the equigrid LQG benchmark are introduced based on the ARMAX model processes, hence the regression effect is improved and the computing cost is reduced. Based on the LQG benchmark, the sensitivity analysis strategy for each pair of manipulated variable and controlled variable is introduced.
     3. The LQG benchmark for multi-model processes is introduced to deal with the multiple operation situations caused by materials varying, environment fluctuation, product switching, operator change and so on. According to different causations, the multi-model situations include multiple disturbance models and multiple process models. Based on the analysis of MVC benchmark, the LQG performance assessment and optimization for multi-model processes are introduced.
     4. To avoid the problem that the calculated optimization setpoints from upper layer are not available in lower-layer because of actuator physical limits, which will lead to control performance deterioration, and to ensure the constraints consistency in multi-layer MPC control and optimization structure, the back-calculation from basic control layer to upper layer is introduced, the consistency of constraints in different layers is proved. The constraints consistency of three typical cascade control loop or transparent control loop of LQGO—PFC—PFC, LQGO-PFC-PID, LQGO-QMPC—PID are analyzed. Based on the above consideration, a cascade level control system is designed and the control results show the effectiveness of the proposed approach.
     5. The integrated structure of LQG based steady state optimization and MPC dynamic control is used for economic performance assessment, to replace the current strategies for which the steady state optimization and dynamic control are separated. The crucial variables are selected as the connections between the two layers, to ensure the calculated optimal setpoints from upper layer are always practical in lower layer. The economic performance assessment and optimization for the outlet Oxygen content control loop and the outlet temperature control loop of delayed coking furnace in a large petrochemical enterprise of China are implemented, hence the profit margin in delayed coking furnace is analyzed and the parameters designing rules of MPC controller are given.
引文
[1]Anderson B. D. O., Dehghani A. (2008). Challenges of adaptive control-past, permanent and future. Annual Reviews in Control,32:123-135.
    [2]Ang K. H., Chong G., Li Y. (2005). PID Control System Analysis, Design, and Technology. IEEE Transactions on Control Systems Technology,13(4): 559-576.
    [3]Armstrong H. B., Dupont P., Canudas de Wit C. (1994). A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica,30(7):1083-1138.
    [4]Astrom K. J. (1976). State of the art and needs in process identification. In Process of AIChE Symposium Series:184-194.
    [5]Astrom K. J. (1970). Introduction to Stochastic Control Theory. San Diego, California:Academic Press.
    [6]Babri P. A., Bandoni J. A., Barton G. W., Romagnoli J. A. (1995). Back-off calculations in optimizing control:a dynamic approach. Computers and Chemical Engineering,19:699-708.
    [7]Basseville M., Nikiforov I. V. (1993). Detection of Abrupt Changes:Theory and Application. New Jersey, USA:Prentice-Hall Englewood Cliffs.
    [8]Bauer M., Craig I. K. (2006). Economic performance assessment of APC projects-a review and framework. In:Trierweiler J.O.(Ed.), Workshop on Solving Industrial Control and Optimization Problems, vol.1, Gramado, Brazil.
    [9]Bauer M, Craig I. (2007). A profit index for assessing the benefits of process control. Industrial & Engineering Chemistry Research,46:2133-2145.
    [10]Bauer M., Craig I. K. (2008). Economic assessment of advanced process control-A survey and framework. Journal of Process Control,18(1):2-18.
    [11]Boyd S, Barratt C. (1991). Linear Control Design:Limits of Performance. Englewood Cliffs, New Jersy:Prentice-Hall.
    [12]Camacho E. F., Bordons C. (2003). Model Predictive Control (2nd edition). London:Springer.
    [13]Camacho J., Pico J., Ferrer A. (2007). Self-tuning run to run optimization of fed-batch processes using unfold-PLS. AIChE Journal,53(7):1789-1804.
    [14]Canney W. M. (2003). The future of advanced process control promises more benefits and sustained value. Oil & Gas Journal,101 (16):48-54.
    [15]Canney W. M. (2005). Are you getting the full benefits from your advanced process control systems? Hydrocarbon Processing,84(6):55-58.
    [16]Canudas de Wit C, Olsson H., Astrom K. J., Lischinsky P. (1995).A new model for control of systems with friction. IEEE Transactions on Automatic Control,40(3):419-425.
    [17]Cao Y. Y., Sun Y. X. (1998). Robust stabilization of uncertain systems with time-varying multistate delay. IEEE Transactions on Automatic Control, 43(10):1484-1488.
    [18]Chen J. H., Liu J. L. (2000). Using mixture principal component analysis networks to extract fuzzy rules from data. Industrial & Engineering Chemistry Research,39(7):2355-2367.
    [19]Chen Q., Kruger U.,Leung A. T. (2004). Regularised kernel density estimation for clustered process data. Control Engineering Practice,12(3):267-274.
    [20]Chesi G., Garulli A., Tesi A., Vicino A. (2005). Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems:an LMI approach. IEEE Transactions on Automatic Control,50(3): 365-370.
    [21]Chiang L. H., Braatz R. D., Braatz R. D. (2001). Fault detection and diagnosis in industrial systems. Great Britain:Springer-Verlag London limited.
    [22]Choudhury M. A. A. S., Thornhill N. F., Shah S. L. (2005). Modelling valve stiction. Control Engineering Practice,13(5):641-658.
    [23]Choudhury M. A. A. S., Shah S. L., Thornhill N.F., Shook D. S. (2006). Automatic detection and quantification of stiction in control valves. Control Engineering Practice,14(12):1395-1412.
    [24]Choudhury M. A. A. S., Jain M., Shah S. L. (2008). Stiction-definition, modelling, detection and quantification. Journal of Process Control,18(3-4): 232-243.
    [25]Desborough, L., Harris T. J. (1992). Performance assessment measures for univariate feedback control. The Canadian Journal of Chemical Engineering, 70:1186-1197.
    [26]Desborough L., Harris T. J. (1993). Performance assessment measures for univariate feedforward/feedback control. The Canadian Journal of Chemical Engineering,71(4):605-616.
    [27]Desborough L., Miller R. (2002). Increasing Customer Value of Industrial Control Performance Monitor-Honeywell's Experience. In Sixth International Conference on Chemical Process Control:172-192.
    [28]Dunia R., Qin S. J. (1998). Subspace approach to multidimensional fault identification and reconstruction. AIChE Journal,44(8):1813-1831.
    [29]Edgar T. F., Himmelblau D. M., Lasdon L. S. (2001). Optimization of Chemical Process. New York:McGraw-Hill,18-26.
    [30]Edgar T. F. (2004). Control and operations:when does controllability equal profitability. Computers & Chemical Engineering,29(1):41-49.
    [31]Figueroa J. L., Babri P. A., Bandoni J. A., Romagnoli J. A. (1996). Economic impact of disturbance and uncertain parameters in chemical process-a dynamic back-off analysis. Computers and Chemical Engineering,20(4): 453-461.
    [32]Forbes M. G., Guay M., Forbes J. F. (2004). Control design for first-order processes:shaping the probability density of the process state. Journal of Process Control,14(4):399-410.
    [33]Franco A. L. D., Bourles H., De Pieri E. R., Guillard H. (2006). Robust nonlinear control associating robust feedback linearization and Hoo control. IEEE Transactions on Automatic Control,51(7):1200-1207.
    [34]Gahinet P.,Apkarian P., Chilali M. (1996). Affine parameter-dependent Lyapunov functions and real parametric uncertainty. IEEE Transactions on Automatic Control,41 (3):436-442.
    [35]Gao J., Patwardhan R. S., Akamatsu K., Hashimoto Y., Emoto G., Shah S. L. (2003). Performance evaluation of two industrial MPC controllers. Control Engineering Practice,11:1371-1387.
    [36]Garcia C. (2008). Comparison of friction models applied to a control valve. Control Engineering Practice,16(10):1231-1243.
    [37]Geromel J. C., Korogui R. H. (2006). Analysis and Synthesis of Robust Control Systems Using Linear Parameter Dependent Lyapunov Functions. IEEE Transactions on Automatic Control,51(12):1984-1989.
    [38]Gerry J. P. (2002). Prioritizing and optimizing problem loops using a loop monitoring. In Proceedings of the ISA, Chicago, USA.
    [39]Gertler J., Cao J. (2005). Design of optimal structured residuals from partial principal component models for fault diagnosis in linear systems. Journal of Process Control,15(5):585-603.
    [40]Goodwin G., Sin K. (1984). Adaptive filtering prediction and control. USA, Engle-wood Cliffs:Prentice-Hall.
    [41]Hagglund T. (1995). A control-loop performance monitor. Control Engineering Practice,3(11):1543-1551.
    [42]Harris T. J. (1989). Assessment of control loop performance. The Canadian Journal of Chemical Engineering,67(5):856-861.
    [43]Harris T. J., Boudreau F., Macgregor J. F. (1996). Performance assessment of multivariable feedback controllers. Automatica,32(11):1505-1518.
    [44]Harris T. J., Seppala C.T., Desborough L. D. (1999). A review of performance monitoring and assessment techniques for univariate and multivariate control systems. Journal of Process Control,9:1-17.
    [45]He Q. P., Wang J., Pottmann M., Qin S. J. (2007). A curve fitting method for detection valve stiction in oscillating control loops. Industrial & Engineering Chemistry Research,46(13):4549-4560.
    [46]Hendricks E., Jannerup O., S(?)rensen P. H. (2008). Linear Systems Control, Deterministic and Stochastic Methods. Berlin Heidelberg:Springer.
    [47]Horch A. (1999). A simple method for detection of stiction in control valves. Control Engineering Practice,7(10):1221-1231.
    [48]Horch A. (2000). Condition monitoring of control loops. Ph. D thesis, Royal Institute of Technology, Stockholm, Sweden.
    [49]Huang B., Shah S. L., Fujii H. (1997). The unitary interactor matrix and its estimation from closed-loop data. Journal of Process Control,7:195-207.
    [50]Huang B., Shah S. L. (1998). Practical issues in multivariable feedback control performance assessment. Journal of Process Control,8:421-430.
    [51]Huang B. (1999a). Performance Assessment of Processes with Abrupt Changes of Disturbances. The Canadian Journal of Chemical Engineering,77(10): 1044-1054.
    [52]Huang B., Shah S. L. (1999b). Performance Assessment of Control Loops: Theory and Applications. New York:Springer.
    [53]Huang B. (2002). Minimum variance control and performance assessment of time-variant processes. Journal of Process Control,12(6):707-719.
    [54]Huang B. (2003). A pragmatic approach towards assessment of control loop performance. International Journal of Adaptive Control and Signal Processing, 17(7-9):589-608.
    [55]Huang B., Ding S. X., Thornhill N. (2005). Practical solutions to multivariate feedback control performance assessment problem:reduced a priori knowledge of interactor matrices. Journal of Process Control,15(5):573-583.
    [56]Huang B., Kadali R. (2008). Dynamic Modeling, Predictive Control and Performance Monitoring:A Data-driven Subspace Approach. Verlag, London: Springier.
    [57]Jain M., Choundhury M. A. A. S., Shah S. L. (2006). Quantification of valve stiction.In Proceedings of ADC HEM 2006:1157-1162.
    [58]Jelali M. (2006). An overview of control performance assessment technology and industrial applications. Control Engineering Practice,14(5):441-466.
    [59]Jelali M. (2008). Estimation of valve stiction in control loops using separable least-squares and global search algorithms. Journal of Process Control,18(7-8): 632-642.
    [60]Julien R. H.,Foley M. W.. Cluett W. R. (2004). Performance assessment using a model predictive control benchmark. Journal of Process Control,14: 441-456.
    [61]Kadali R., Huang B. (2002). Controller performance analysis with LQG benchmark obtained under closed loop conditions. ISA Transactions,41(4): 521-537.
    [62]Kano M.,Tanaka S., Hasebe S., Hashimoto I., Ohno H. (2003). Monitoring independent components for fault detection. AIChE Journal,49(4):969-976.
    [63]Kano M., Hasebe S., Hashimoto I.. Ohno H. (2004). Evolution of multivariate statistical process control:application of independent component analysis and external analysis. Computers& Chemical Engineering,28(6-7):1157-1166.
    [64]Kase W., Mutoh Y., Teranishi M. (1999). A simple derivation of interactor matrix and its applications. Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, Arizona, USA:493-498.
    [65]Kendra S. J., Cinar A. (1997). Control Controller performance assessment by frequency domain techniques. Journal of Process Control,7(3):181-194.
    [66]Kesavan P., Lee J. H. (1997). Diagnostic Tools for Multivariable Model-Based Control Systems. Industrial & Engineering Chemistry Research,36(7): 2725-2738.
    [67]Kim D. S., Yoo C. K., Kim Y. I., Jung J. H., Lee I. B. (2005). Calibration, prediction and process monitoring model based on factor analysis for incomplete process data. Journal of Chemical Engineering of Japan,38(12): 1025-1034.
    [68]Ko B. S., Edgar T. F. (2000). Performance assessment of cascade control loops. AIChE Journal,46(2):281-291.
    [69]Ko B. S., Edgar T. F. (2001). Performance assessment of multivariable feedback control systems. Automatica,37(6):899-905.
    [70]Kramer M. A. (1991). Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal,37(2):233-243.
    [71]Kwakernaak H., Sivan R. (1972). Linear Optimal Control System. New York: Wiley.
    [72]Lababidi H. M. S., Kotob S., Yousuf B. (2002). Refinery advanced process control planning system. Computers and Chemical Engineering,26(9): 1303-1319.
    [73]Lancaster P., Tismenetsky M. (1985). The Theory of Matrices (2nd edition). San Diego:Academic Press,406-411.
    [74]Landau I. D. (1999). From robust control to adaptive control. Control Engineering Practice,7:1113-1124.
    [75]Latour P. R. (1996). Process control:CLIFFTENT shows it's more profitable than expected. Hydrocarbon Processing,75:75-80.
    [76]Latour P. R. (1976). The hidden benefits from better process control. Technical Papers of ISA,528:49-59.
    [77]Lee D. S., Lee M. W., Woo S. H., Kim Y. J.,Park J. M. (2006). Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant. Process Biochemistry,41(9):2050-2057.
    [78]Lee J. M., Yoo C. K., Lee I. B. (2004a). Statistical process monitoring with independent component analysis. Journal of Process Control,14(5):467-485.
    [79]Lee J. M., Yoo C. K., Lee I. B. (2004b). Statistical monitoring of dynamic processes based on dynamic independent component analysis. Chemical Engineering Science,59(14):2995-3006.
    [80]Lee J. M., Yoo C. K., Choi S. W., Vanrolleghem P. A., Lee I. B. (2004c). Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science,59(1):223-234.
    [81]Lee J. M., Qin S. J., Lee I. B. (2006). Fault detection and diagnosis based on modified independent component analysis. AIChE Journal,52(10):3501-3514.
    [82]Lee J. M., Qin S. J.. Lee 1. B. (2007). Fault detection of non-linear processes using kernel independent component analysis. The Canadian Journal of Chemical Engineering,85(4):526-536.
    [83]Li R. F.,Wang X. Z. (2002). Dimension reduction of process dynamic trends using independent component analysis. Computers & Chemical Engineering, 26(3):467-473.
    [84]Li R. Y., Rong G. (2006). Fault isolation by partial dynamic principal component analysis in dynamic process. Chinese Journal of Chemical Engineering,14(4):486-493.
    [85]Lieftuche D., Kruger U.,Irwin G. W. (2006). Improved reliability in diagnosing faults using multivariate statistics. Computers & Chemical Engineering,30(5):901-912.
    [86]Liu Z., Gu Y., Xie L. (2011). MPC Economic Performance Assessment Based on Equal-grid LQG Benchmark. In Proceedings of the 2011 4th International Symposium on Advanced Control of Industrial Processes:632-637.
    [87]Ljung L. (1998). System identification(2ed). Englewood Cliffs, NJ: Prentice-Hall.
    [88]Loeblein C, Perkins J. D.. Sriniasan B., Bonvin D. (1999). Economic performance analysis in the design of on-line batch optimization systems. Journal of Process Control,9(1):61-78.
    [89]Lovera M., Mercere G. (2007). Identification for gain-scheduling:a balanced subspace approach. Proc. of the American Control Conf, New York City, USA: 858-863.
    [90]Marino R. (1997). Adaptive Control of Nonlinear Systems:Basic Results and Applications. Annual Reviews in Control,21:55-66.
    [91]Martin E. B., Morris A. J. (1996). Non-parametric confidence bounds for process performance monitoring charts. Journal of Process Control,6(6): 349-358.
    [92]Martin E. B., Morris A. J. (2002). Enhanced bio-manufacturing through advanced multivariate statistical technology. Journal of Biotechnology,99(3): 223-235.
    [93]Martin G., Turpin L., Cline R. (1991). Estimating control function benefits. Hydrocarbon Process,69:68-73.
    [94]Matsuda T., Mori T. (2009). Stability Feeler:a tool for parametric robust stability analysis and its applications. Control Theory and Application,3(12): 1625-1633.
    [95]McNabb C. A., Qin S. J. (2003). Projection based MIMO control performance monitoring:I—covariance monitoring in state space. Journal of Process Control,13(8):739-757.
    [96]Miao T., Seborg D. E. (1999). Automatic Detection of Excessively Oscillatory Feedback Control Loops. In International Conference on Control Applications: 22-27.
    [97]Miao T., Seborg D. E. (1999). Automatic detection of excessively oscillatory feedback control loops. In Control Applications,1999. Proceedings of the 1999 IEEE International Conference:359-364.
    [98]Miller D. E. (2003). A new approach to adaptive control:no nonlinearities. Systems & Control Letters,49:67-79.
    [99]Miller P., Swanson R. E., Heckler C. F. (1998). Contribution plots:the missing link in multivariate quality control.. Applied Mathematics and Computer Science,8(4):775-792.
    [100]Moheimani S. O. R., Savkin A. V., Petersen I. R. (1998). Robust Filtering, Prediction, Smoothing, and Observability of Uncertain Systems. IEEE Transactions on Circuits and Systems,45(4):446-457.
    [101]Muske K. R., Finnegan C. S. (2002). Analysis of a class of statistical techniques for estimating the economic benefit from improved process control. In Proceedings ofCPC Ⅵ, volume 326 ofAIChE Symposium Series:98-105.
    [102]Muske K. R. (2003). Estimating the economic benefit from improved process control. Industrial and Engineering Chemistry Research,42(20):4535-4544.
    [103]Nguyen N. T. (2012). Optimal control modification for robust adaptive control with large adaptive gain. Systems & Control Letters,61:485-494.
    [104]Nikandrov A., Swartz C. L. (2009). Sensitivity analysis of LP-MPC cascade control systems. Journal of Process Control,19(1):16-24.
    [105]Olaleye F. B. (2002). Controller performance assessment of time variant processes. Master thesis, University of Alberta, Edmonton, Canada.
    [106]Olaleye F. B.,Huang B.,Tamayo E. (2004a). Industrial Applications of a Feedback Controller Performance Assessment of Time-Variant Processes. Industrial & Engineering Chemistry Research,43(2):597-607.
    [107]Olaleye F. B., Huang B., Tamayo E. (2004b). Performance assessment of control loops with time-variant disturbance dynamics. Journal of Process Control,14(8):867-877.
    [108]Olaleye F. B., Huang B., Tamayo E. (2004c). Feedforward and Feedback Controller Performance Assessment of Linear Time-Variant Processes. Industrial & Engineering Chemistry Research,43(2):589-596.
    [109]Ordys A. W., Uduehi D., Johnson M. A. (2007). Process control performance assessment:from theory to implementation. New York:Springer.
    [110]Ouyang H., Wang J., Huang L. (2003). Robust output feedback stabilisation for uncertain systems. Control Theory and Application,150(5):477-482.
    [111]Patton R. J., Frank P. M., Clarke R. N. (1989). Fault Diagnosis in Dynamic System:theory and application. Cambridge, Britian:Prentice-Hall.
    [112]Patwardhan R. S., Shah S. L., Emoto G., Fujii H. (1998). Performance analysis of model based predictive controllers:An industrial study. In Proceedings of the AIChE, Miami, USA.
    [113]Patwardhan R. S., Shah S. L., Qi K. Z. (2002a). Assessing the Performance of Model Predictive Controllers. The Canadian Journal of Chemical Engineering, 80(5):954-966.
    [114]Patwardhan, R. S., Shah S. L. (2002b). Issues in performance diagnostics of model-based controllers. Journal of Process Control,12(3),413-427.
    [115]Pour N. D. (2002). Control Loop Performance Assessment with Closed-loop Subspace Identification. Master thesis. University of Alberta, Edmonton, Canada.
    [116]Pour N. D.. Huang B., Shah S. L. (2009). Consistency of noise covariance estimation in joint input-output closed-loop subspace identification with application in LQG benchmarking. Journal of Process Control,19:1649-1657.
    [117]Qin S. J. (1998). Control performance monitoring-a review and assessment. Computers & Chemical Engineering,23(2):173-186.
    [118]Qin S. J., Li W. (1999). Detection, identification and reconstruction of faulty sensors with maximized sensitivity. AIChE Journal,45(9):1963-1976.
    [119]Qin S. J., Li W. (2001). Detection and identification of faulty sensors in dynamic processes. AIChE Journal,47(7):1581-1593.
    [120]Qin S. J., Badgwell T. A. (2003). A survey of industrial model predictive control technology. Control Engineering Practice,11(7):733-764.
    [121]Qin S. J., Yu J. (2007). Recent developments in multivariable controller performance monitoring. Journal of Process Control,17(3):221-227.
    [122]Richalet J., Rault A., Testud J. L., Papon J. (1978). Model predictive heuristic control:Application to industrial processes. Automatica,14(2):413-428.
    [123]Richalet J. (1993). Industrial Appliction of Model Based Predictive Control. Automatia,29(5):1251-1274.
    [124]Richalet J., O'Donovan D., Astrom K. E. (2009). Predictive Functional Control: Principles and Industrial Applications. London:Springer.
    [125]Rugh W. J., Shamma.1. S. (2000). Research on gain scheduling. Automatica, 36(10):1401-1425.
    [126]Schafer J., Cinar A. (2004). Multivariable MPC system performance assessment, monitoring, and diagnosis. Journal of Process Control,14(2): 113-129.
    [127]Shah S. L., Iwai Z., Mizumoto I., Deng M. (1997). Simple adaptive control of processes with time-delay. Journal of Process Control,7(6):439-449.
    [128]Shardt Y., Zhao Y.. Qi F., Lee K., Yu X.. Huang B.. Shah S. L. (2011). Determining The State of a Process Control System:Current Trends and Future Challenges. The Canadian Journal of Chemical Engineering.9999:1-29.
    [129]Srinivasan R., Rengaswamy R. (2008a). Approaches for efficient stiction compensation in process control valves. Computers & Chemical Engineering. 32(1-2):218-229.
    [130]Srinivasan R., Rengaswamy R.,Nallasivam U., Rajavelu V. (2008b). Issues in modeling stiction in process control valves. In American Control Conference: 3374-3379.
    [131]Stanfelj N., Marlin T. E., MacGregor J. F. (1993). Monitoring and diagnosing process control performance:the single-loop case. Industrial and Engineering Chemistry Research,32(2):301-314.
    [132]Stout T. M., Cline R. P. (1976). Control system justification. Instrumentation Technology,9:51-58.
    [133]Sun J., Olbrot A. W., Polis M. P. (1994). Robust Stabilization and Robust Performance Using Model Reference Control and Modeling Error Compensation. IEEE Transactions on Automatic Control,39(3):630-635.
    [134]Sznaier M., Mazzaro C., Inanc T. (2000). An LMI approach to control oriented identification of LPV systems. Proc. of the American Control Conf, Chicago, Illinois, USA:3682-3686.
    [135]Taha O., Dumont G. A., Davies M. S. (1996). Detection and Diagnosis of Oscillation in Control loops. In Conference on Decision and Control: 2432-2437.
    [136]Thornhill N. F., Hagglund T. (1997). Detection and diagnosis of oscillation in control loops. Control Engineering Practice.5(10):1343-1354.
    [137]Thornhill N. F., Oettinger M., Fedenczuk M. S. (1999). Refinery-wide control loop performance assessment. Journal of Process Control,9:109-124.
    [138]Thornhill N. F. (2005). Finding the source of nonlinearity in a process with plant-wide oscillation. Control Systems Technology, IEEE Transactions,13(3): 434-443.
    [139]Thornhill N. F.. Horch A. (2007). Advances and new directions in plant-wide disturbance detection and diagnosis. Control Engineering Practice,15(10): 1196-1206.
    [140]Thornhill N. F., Patwardhan S. C., Shah S. L. (2008). A continuous stirred tank heater simulation model with applications. Journal of Process Control,18(3-4): 347-360.
    [141]Tyler M. L., Morari M. (1995). Performance assessment for unstable and nonminimum-phase systems. IFAC On-line Fault Detection and Supervision in the Chemical Process Industries, Newcastle upon Tyne, UK:187-192.
    [142]Venkatasubramanian V., Rengaswamy R., Kavuri S. N., Yin K. (2003a). A review of process fault detection and diagnosis Part Ⅰ:Quantitative model-based methods. Computers & Chemical Engineering,27(3):293-311.
    [143]Venkatasubramanian V., Rengaswamy R., Kavuri S. N., Yin K. (2003b). A review of process fault detection and diagnosis Part II:Qualitative models and search strategies. Computers & Chemical Engineering,27(3):313-326;
    [144]Venkatasubramanian V., Rengaswamy R., Kavuri S. N., Yin K. (2003c). A review of process fault detection and diagnosis Part III:Process history based methods. Computers & Chemical Engineering,27(3):327-346.
    [145]Wang L.Y., Zhan W. (1996). Robust Disturbance Attenuation with Stability for Linear Systems with Norm-Bounded Nonlinear Uncertainties. IEEE Transactions on Automatic Control,41(6):886-888.
    [146]Wei D. H., Craig I. K., Bauer M. (2007). Multivariate economic performance assessment of an MPC controlled electric arc furnace. ISA Transactions,46(3): 429-436.
    [147]Wei D. H. (2009). Development of Performance Functions for Economic Performance Assessment of Control Systems. Ph. D thesis, University of Pretoria, Pretoria, South Africa.
    [148]Whidborne J. F., Postlethwaite I., Gu D. W. (1994). Robust controller design using H∞ loop-shaping and the method of inequalities. IEEE Transactions on Control Systems Techinology,2(4):455-461.
    [149]Xu F. W., Huang B. (2006a). Performance monitoring of SISO control loops subject to LTV disturbance dynamics:An improved LTI benchmark. Journal of Process Control,16(6):567-579.
    [150]Xu F. W.. Huang B.. Tamayo E. C. (2006b). Performance assessment of MIMO control systems with time-variant disturbance dynamics. Computers & Chemical Engineering,32(9):2144-2154.
    [151]Xu F. W., Huang B., Akande S. (2007a). Performance assessment of model predictive control for variability and constraint tuning. Industrial and Engineering Chemistry Research,46(6):1208-1219.
    [152]Xu F. W. (2007b). Assessment of Control system performance:the effects of disturbances. Ph. D thesis, University of Alberta. Edmonton, Canada.
    [153]Yamashita Y. (2006). An automatic method for detection of valve stiction in process control loops. Control Engineering Practice,14(5):503-510.
    [154]Zhao C., Su H. Y., Gu Y., Chu J. (2009a). A pragmatic approach for assessing the economic performance of Model Predictive Control systems and its industrial application. Chinese Journal of Chemical Engineering,17(2): 241-250.
    [155]Zhao C. Zhao Y., Su H. Y., Huang B. (2009b). Economic performance assessment of advanced process control with LQG benchmarking. Journal of Process Control,19(4):557-569.
    [156]Zhao Y.. Chu J., Su H. Y., Huang B. (2010). Multi-step Prediction Error Approach for Controller Performance Monitoring. Control Engineering Practice,18:1-12.
    [157]Zhou Y., Forbes J. F. (2003). Determining controller benefits via probabilistic optimization. International Journal of Adaptive Control and Signal Processing, 17(7-9):553-568.
    [158]丁宝苍.(2008).预测控制的理论与方法.北京,机械工业出版社.
    [159]葛志强.(2009).复杂工况过程统计监测方法研究.杭州,浙江大学博士学位论文.
    [160]金以慧.(1993).过程控制.北京,清华大学出版社.
    [161]钱积新,赵均,徐祖华.(2007).预测控制.北京,化学工业出版社.
    [162]苏宏业;沈清泓;肖力墉;王思斯.中华人民共和国国家标准:GB/T20720.3-2010,企业控制系统集成第3部分:制造运行管理的活动模型.
    [163]王树青,金晓明等.(2001).先进控制技术及应用.北京,化学工业出版社.
    [164]王树青等.(2003).工业过程控制工程.北京,化学工业出版社.
    [165]张泉灵.(2000).预测函数控制及应用研究.杭州,浙江大学博士学位论文.
    [166]赵超.(2009).过程控制系统经济性能评估算法的研究.杭州,浙江大学博士学位论文.
    [167]赵宇.(2011).基于预报误差方法的控制回路性能评估与监控策略研究.杭州,浙江大学博士学位论文.
    [168]周猛飞.(2010a).延迟焦化工业过程先进控制与性能评估.杭州,浙江大学博士学位论文.
    [169]周猛飞,王树青,金晓明(2010b).加热炉先进控制系统经济性能评估.计算机与应用化学.27(1):82-86.
    [170]诸静.(2002).智能预测控制及其应用.杭州,浙江大学出版社.
    [171]邹涛,丁宝苍,张端.(2010).模型预测控制工程应用导论.北京,化学工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700