用户名: 密码: 验证码:
大肠癌KRAS基因遗传变异的研究及靶向治疗预后评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     大肠癌在世界上发病率第三,死亡率第二,每年增加一百二十万患者。在中国,大肠癌已经一跃成为第三位肿瘤导致死亡的疾病。大肠癌的治疗是以手术为主的综合治疗,选择手术可以切除病灶,解除肿瘤造成的梗阻症状。手术后化疗近年来发展迅速,辅以基因靶向治疗、免疫制剂治疗、中医中草药治疗,近年兴起的靶向治疗发展迅速。大肠癌的发生是细胞在多种复杂环境、多步骤、多种癌基因及抑癌基因共同作用的结果。全身化疗会提高晚期大肠癌的预后,但患者对化疗药物耐受的情况经常发生,转移性大肠癌如果出现对化疗药物耐药的不良事件后,预后生存期会明显缩短。在针对大肠癌发生阶段进行研究,行基因遗传变异的检测,找到适合转移性大肠癌个体化治疗方案将提高转移性大肠癌的预后、最大限度的减少耐药不良事件的发生,为晚期大肠癌的个体化治疗提供新方案。研究发现原癌基因KRAS是EGFR下游信号通路中重要的分子,KRAS基因2号外显子的突变可以诱导肿瘤细胞的无限制增殖,从而摆脱正常EGFR信号通路的调控。KRAS基因的突变会影响EGFR抑制剂的效果。目前NCCN指南已经推荐西妥昔单抗联合化疗用于晚期大肠癌KRAS基因野生型患者的一线治疗,同时也推荐KRAS基因突变型晚期大肠癌一线治疗应用贝伐单抗联合化疗。大肠癌KRAS基因遗传变异特点、靶向治疗药物西妥昔单抗及贝伐单抗治疗转移性大肠癌患者的安全性及疗效数据多来源于西方文献报道,国内研究甚少。
     目的:
     大肠癌患者行KRAS基因遗传突变检测,明确大肠癌KRAS基因遗传变异特点、KRAS基因遗传变异与大肠癌临床病理学因素之间的关系,KRAS基因遗传突变与大肠癌预后关系、不同突变亚型之间预后的关系。为转移性大肠癌的治疗提供理论依据。为了比较分析靶向药物西妥昔单抗、贝伐单抗两种药物联合化疗治疗转移性晚期大肠癌患者的安全性及疗效情况,排除KRAS基因突变型、野生型对患者预后生存分析的干扰,全部选取KRAS基因野生型患者进行靶向治疗。分别比较西妥昔单抗一线、非一线治疗的疗效;贝伐单抗一线、非一线治疗的疗效。比较西妥昔单抗、贝伐单抗治疗晚期大肠癌的疗效性及安全性。
     材料与方法:
     第一部分:78例大肠癌石蜡包埋标本,通过HE染色挑选癌组织丰富的蜡块,用PCR-SSCP方法对大肠癌标本进行KRAS基因2号外显子上的12、13号密码子遗传突变检测。应用SPSS19.0软件,确切概率法检验进行统计学分析,分析临床病理学因素与KRAS基因突变之间的关系,应用Kaplan-meier、Log-rank法分析KRAS基因遗传变异与预后的关系、KRAS基因不同突变亚型与预后之间的关系。应用Cox回归分析影响患者预后的因素。第二部分:回顾性分析本院72例KRAS基因野生型晚期大肠癌患者应用靶向药物西妥昔单抗、贝伐单抗联合化疗治疗情况。探讨两种药物各自用于一线治疗与非一线线治疗之间的疗效情况,同时比较西妥昔单抗、贝伐单抗药物近期疗效、远期疗效。应用SPSS19.0统计软件进行统计学分析,确切概率法检验比较组间差异。Kaplan–meier生存曲线是评价晚期大肠癌患者生存期之间的关系。显著性检验采用Log-rank检验分析,Cox回归模型进行多变量生存数据分析,研究各种因素对大肠癌预后影响。P<0.05定义为有统计学意义。
     结果:
     第一部分:78例结直肠癌患者中,KRAS基因2号外显子12、13密码子突变共有26例,突变率33.3%(26/78)。KRAS基因突变均为单个碱基的点突变,未检测出两个或两个以上的碱基突变或者其他形式的突变。G-A突变发生频率最高,共20例(20/26,76.9%);G-T突变5例(5/26,19.2%);G-C突变仅1例(1/26,3.9%)。KRAS基因12号密码子突变19例(73.1%,19/26),共有3种突变方式:GGT-GAT突变13例(13/26,50%),甘氨酸Gly替换为天冬氨酸Asp;GGT-GTT突变5例(5/26,19.2%),甘氨酸Gly替换为缬氨酸Val;GGT-GCT突变1例(1/26,13.9%),甘氨酸Gly替换为丙氨酸Ala。13号密码子突变7例(26.9%,7/26),均为GGC-GAC突变(7/26,26.9%),甘氨酸Gly替换为天冬氨酸Asp。在氨基酸替换中,Gly替换为Asp发生频率最高,占76.9%(20/26);其次Gly替换为Val占19.2%(5/26);Gly替换为Ala发生频率仅占3.8%(1/26)。KRAS基因突变与临床病理学因素之间的关系:KRAS基因突变与结直肠癌分化程度(低分化52.6%vs中分化27.1%,P<0.05)、肝转移(肝转移46.7%vs无肝转移25%,P<0.05)有关。78例患者追踪随访发现:KRAS基因野生型患者平均生存时间35.05月,KRAS基因突变型患者平均生存时间是25.72月,有统计学意义(P<0.05)。KRAS基因12号密码子突变患者平均生存时间是25.69月,13号密码子突变患者平均生存时间是20.67月,无统计学意义(P>0.05)。单变量分析显示KRAS基因遗传变异与大肠癌患者预后不良有关(P<0.05),多变量分析则显示KRAS基因突变、肝脏转移、肿瘤低分化是大肠癌预后的独立危险因素(P<0.05, P<0.05, P<0.05)。
     第二部分:回顾性分析本院收治krs基因野生型晚期大肠癌患者72例。西妥昔单抗联合化疗治疗38例,总体有效率34.2%,疾病控制率63.2%。一线治疗的有效率50%,疾病控制率87.5%。非一线有效率为22.7%,疾病控制率45.5%。一线治疗疾病控制率优于二线治疗,有统计学意义(P<0.05)。一线治疗有效率虽高于二线治疗,无统计学意义(P>0.05)。贝伐单抗联合化疗治疗34例,总体有效率29.4%,总体疾病控制率64.7%。一线治疗有效率42.9%,疾病控制率92.8%。非一线治疗有效率为20%,疾病控制率45%。一线治疗疾病有效率优于二线,有统计学意义(P<0.05)。一线治疗疾病控制率虽高于二线治疗,无统计学意义(P>0.05)。两种靶向治疗药物在有效率及控制率上比较均无统计学意义(P>0.05, P>0.05)。西妥昔单抗组与贝伐单抗组在常见不良反应方面出现频率无明显区别。西妥昔单抗联合化疗一线治疗组的中位生存期是16月,非一线治疗的中位生存期是12月,有统计学意义(P<0.05)。贝伐单抗联合化疗一线治疗组的中位生存期是24月,非一线治疗的中位生存期是17.5月,有统计学意义(P<0.05)。西妥昔单抗联合化疗组中的中位生存期是14月,贝伐单抗联合化疗组中的中位生存期是18.5月,贝伐单抗联合化疗组的中位生存期略高于西妥昔单抗联合化疗组,但两种靶向药物治疗在预后生存时间比较无统计学意义(P>0.05)。单变量分析显示:晚期大肠癌患者肿瘤所在的部位与预后不良有关(P<0.05)。多变量分析显示晚期大肠癌患者肿瘤所在部位及是否在初诊时候一线接受靶向治疗是预后独立的危险因素(P<0.05,P<0.05)。
     结论:
     KRAS基因突变在结直肠癌患者中普遍发生,且突变频率符合目前国际报道,突变频率较高33.3%。KRAS基因突变与结直肠癌低分化、肝脏转移关系密切。多变量分析显示肝脏转移、KRAS基因突变、肿瘤低分化是预后的独立危险因素。KRAS基因遗传变异结直肠癌患者预后不良。
     转移性大肠癌患者接受靶向治疗联合化疗,一线治疗的疾病控制率、有效率及生存期均优于非一线治疗。晚期大肠癌患者肿瘤所在部位与预后不良有关。多变量分析显示肿瘤部位及是否在初诊时候一线接受靶向治疗是预后独立危险因素。两种靶向治疗药物西妥昔单抗及贝伐单抗在疗效性、安全性对比无明显差异,应用晚期结直肠癌患者安全、有效。
Colorectal cancer is the third in the worldwide incidence of cancer, thesecond in the mortality rate, about yield1.2million new patients a year. InChina, the colorectal cancer has become the third in tumor diseases of the causeof death. The direction of development of the treatment of colorectal cancer inactive and comprehensive treatment of surgery, surgery resection of the primarytumor, relieve obstructive symptoms caused by the tumor. Chemotherapy aftersurgery in recent years, combined with immunotherapy, traditional Chinesemedicine, gene therapy, especially targeted therapy for more and more clinical.The incidence of colorectal cancer is a multi-stage, multi-step involved in thecomplex process of the formation of a variety of oncogenes and tumorsuppressor gene activation or deactivation. Chemotherapy will improve survivalof advanced colorectal cancer, but some patients will be the emergence ofresistance, not more than six months once the resistance reported survival ofadvanced colorectal cancer. Therefore colorectal cancer gene mutationsdetection, expect to find for colorectal cancer targeted therapy will greatlyimprove the prognosis of advanced colorectal cancer, reduce the incidence ofresistant to adverse events, and new program individualized treatment forcolorectal cancer. The proto-oncogene KRAS important molecules in the EGFRdownstream signaling pathway, the KRAS gene mutations in the2exonunrestricted proliferation of tumor cells can be induced to get rid of the normal EGFR signaling pathway. KRAS gene mutations will affect the effect of EGFRinhibitors. NCCN will recommend cetuximab combined with chemotherapy asfirst-line treatment of advanced colorectal cancer patients with wild-type KRASgene bevacizumab combined with chemotherapy is recommended as first-linetreatment of advanced colorectal cancer (KRAS mutations). KRAS genemutation detection and cetuximab and bevacizumab in patients with advancedcolorectal cancer, the safety and efficacy of most of the data sources formforeign reports, the KRAS gene mutation of Chinese human colorectal featuresand application cetuximab single little of anti bevacizumab reported data.
     Objective:
     KRAS genetic testing of patients with colorectal cancer to identify thecharacteristics of Chinese human colorectal KRAS gene mutations, the KRASgene mutation and the clinicopathological factors between the relationshipbetween different KRAS gene mutation subtypes and prognosis. Retrospectiveobservational analysis of cetuximab combined with chemotherapy, bevacizumabin combination with chemotherapy, targeted therapy of the safety and efficacy inpatients with advanced colorectal cancer. Provide a theoretical basis for targetedtherapy of colorectal cancer.
     Method:
     Part I:78patients with colorectal cancer paraffin specimen selected by HEstaining cancer tissue paraffin blocks, followed by the application of PCR-SSCPin78cases of colorectal cancer were12,13codon on the2exon of KRAS genemutation detection. Between the analysis of the KRAS gene mutations and theclinicopathological factors. Patients were followed up, follow-up data line survival analysis to analyze the relationship between the subtypes and theprognosis of the the KRAS gene mutant and wild type prognostic differences,different mutations. Part II: Retrospective analysis cetuximab combined withchemotherapy and bevacizumab combined with chemotherapy in the treatmentof patients with advanced colorectal cancer. Explore the efficacy and safety offirst-line treatment of non-first-line-line treatment.
     Results:
     Part I:78patients with colorectal cancer, KRAS gene mutations in a totalof26cases, the mutation rate of33.3%(26/78). KRAS gene mutations aresingle base point mutations, not detected in two or more nucleotide mutations orother forms of mutations. The GA mutation frequency of the highest of20cases(20/26,76.9%); followed by GT mutations in five cases (5/26,19.2%); GCmutation in only1patient (1/26,3.9%). KRAS gene on the12th codonmutations in19cases(73.1%,19/26), a total of three different mutations way:GGT-GAT mutations in13cases (13/26,50%), glycine Gly replaced by asparticacid Asp; GGT-GTT mutation of the five cases (5/26,19.2%), glycine Glyreplaced with valine Val; GGT-GCT mutation (1/26,13.9%), Glycine Glyreplaced with alanine Ala. The13th codon mutations in7cases (26.9%,7/26),are GGC-GAC mutation (7/26,26.9%), glycine Gly replace the aspartic acidAsp. Amino acid substitutions, Gly substitute the Asp highest frequency,accounting for76.9%(20/26); followed by Gly replaced by Val accounted for19.2%(5/26); Gly with Ala the lowest frequency of only3.8%(1/26).Relationship between KRAS gene mutation and the clinicopathological factors:the degree of differentiation of the KRAS gene mutations and colorectal cancer (differentiation in poorly differentiated52.6%vs27.1%, P <0.05), livermetastases (liver metastases46.7%vs no liver Transfer to25%, P <0.05) related.78patients followed up: the KRAS gene wild type patients the average survivaltime of35.05months, the KRAS gene mutations in patients with type averagesurvival time is25.72months, there is a statistically significant (P <0.05).KRAS gene codon mutation in the12th with an average survival time was25.69months, the13th codon mutations in patients with an average survival time is20.67months, no statistically significant. Univariate analysis showed that thethe KRAS gene mutations in colorectal cancer patients with poor prognosis areclosely related (P <0.05), multivariate analysis showed that liver metastasesKRAS gene mutations, tumor poorly differentiated independent prognosticfactors (P <0.05, P <0.05, P <0.05).
     Part II: A retrospective analysis of72patients admitted to our hospital withadvanced colorectal cancer. Receiving cetuximab combined with chemotherapyin the treatment of38cases, the overall efficiency of34.2%, and the diseasecontrol rate was63.2%. First-line treatment efficiency of50%. The diseasecontrol rate was87.5%. Non-first-line response rate was22.7%, the diseasecontrol rate was45.5%. First-line treatment of the disease control rate was thesecond-line treatment, there is a statistically significant (P <0.05). The first-linetreatment efficiency was higher than the second-line treatment, no statisticallysignificant. Receive bevacizumab combined with chemotherapy in the treatmentof34cases, the overall efficiency of29.4%,64.7%of the overall disease controlrate. The first-line treatment efficiency of42.9%. The disease control rate was92.8%. The effective rate of20%non-first-line therapy, disease control rate of 45%. The first-line treatment of the disease control rate was higher than thesecond-line treatment, a significant (P<0.05). The first-line treatment of thedisease control rate was higher than the second-line treatment, but no significant(P>0.05). The cetuximab group bevacizumab group point of view no significantdifference between the frequency of occurrence of adverse reactions in thegastrointestinal tract and bone marrow suppression. Cetuximab combined withchemotherapy in first-line treatment group the median survival time was16months, non-first-line treatment, the median survival time was12months, astatistically significant (P<0.05). Bevacizumab combined with chemotherapy infirst-line treatment group, the median survival time is24months, and thefirst-line treatment median survival of17.5months, a significant (P<0.05).Cetuximab combined with chemotherapy group, the median survival time was14months, bevacizumab in combination with the chemotherapy group's mediansurvival of18.5months (P>0.05). No statistically significant. Univariateanalysis showed: the site of advanced colorectal cancer with a poor prognosisare closely related (P<0.05). Multivariate analysis revealed that tumor site inpatients with advanced colorectal cancer, and accept in newly diagnosed whenfirst-line targeted therapy is an independent prognostic risk factors (P <0.05, P<0.05).
     Conclusion:
     KRAS gene mutations in patients with colorectal cancer commonlyoccurring mutation frequency in line with the current international reports,higher mutation frequency of33.3%. KRAS gene mutation in poorlydifferentiated colorectal liver metastasis. Multivariate analysis revealed that liver metastases, the KRAS gene mutations, tumor poorly differentiated independentprognostic factors. KRAS gene mutation that prompts a poor prognosis inpatients with colorectal cancer.
     Whether to accept patients with advanced colorectal cancer with cetuximabor bevacizumab treatment, select the first-line treatment of the disease controlrate and survival period were better than the non-first-line treatment. The site ofadvanced colorectal cancer with a poor prognosis. Multivariate analysis revealedthat tumor location and whether to accept the targeted therapy in newlydiagnosed, when first-line prognosis independent risk factor. Cetuximab andbevacizumab application of advanced colorectal cancer is safe and effective.
引文
[1].何太平,严卫红,梁念慈. Ras信号转导通路[J].国外医学·临床生物化学与检验学分册,2004,25:74-76.
    [2].胡中伟. Ras癌基因与肿瘤细胞转移潜能[J].国外医学·生理学病理学与临床分册,1998,18(3):279.
    [3]. Pells S,Divjak M,Romanowski P, et. al.Developmentally-regulated expression ofmurine KRAS isoforms[J].(Oncogene,1997,15:1781-1786.
    [4]. Barletta C, Scillato F, Sega FM, Mannella E. Genetic alteration in gastrointestinalcancer. A molecular and cytogenetic study.
    [5]. Magee T, Marshall C. Cell.1999Jul9;98(1):9-12. New insights into the interaction ofRas with the plasma membrane. Anticancer Res.1993Nov-Dec;13(6A):2325-9.
    [6]. Zhao L, Lobo S, Dong X, Ault AD, Deschenes RJ.Erf4p and Erf2p form anendoplasmic reticulum-associated complex involved in the plasma membranelocalization of yeast Ras proteins. J Biol Chem.2002Dec20;277(51):49352-9. Epub2002Oct11.
    [7]. Pruitt K,Pestell RG,Der CJ.Ras inactivation of the retino-blastoma pathway by distinctmechanisms in NIH3T3fibro-blast and RIE-1epithelial cells[J].J Biol chem,1999,275:40916-40924.
    [8]. Hitomi M, Stacey Dw. Ras-dependent cell cycle commitment during G2phase[J].FESB Lett,2001,490:123-131.
    [9]. Rowinsky EK, windle JJ, Von Hoff DD. Ras protein farne-syltransfeRase: a strategictarget for anticancer therapeutic development.[J] clin oncol,1999,17:3631-3652.
    [10]. Adjei AA, Erlichman c, sloan JA, et al. A phase I trials of lSIS2503. an antisenseinhibitor of H-Ras in combination with gemcitabina in patients with adVancedcancer[J]. ProcASCO,2000,19:722.
    [11]. Szewczyk NJ, Peterson BK, Jacobson LA. Activation of Ras and the mitogen-activated protein kinase pathway promotes protein degradation in muscle cells ofCaenorhabditis elegans [J]. Mol Cell Biol Bioz,2002,22:418-4188.
    [12]. Chang F, steelman Ls, Mccubrey JA. Raf_induced cell cycle progression in humanTF-1hematopoietic cells[J]. Cell cycle,20021:220-226.
    [13]. Engel FB, Hauck L, Boehm M, Nabel EG, Dietz R, von Harsdorf R.p21(CIP1)Controls proliferating cell nuclear antigen level in adult cardiomyocytes. Mol CellBiol.2003Jan;23(2):555-65.
    [14]. McCawley LJ, Li S, Wattenberg EV, Hudson LG Sustained activation of themitogen-activated protein kinase pathway. A mechanism underlying receptor tyrosinekinase specificity for matrix metalloproteinase-9induction and cell migration. J BiolChem.1999Feb12;274(7):4347-53.
    [15]. Brader KR, Wolf JK, Chakrabarty S, Price JEEpidermal growth factor receptor (EGFR)antisense transfection reduces the expression of EGFR and suppresses the malignantphenotype of a human ovarian cancer cell line. Oncol Rep.1998Sep-Oct;5(5):1269-74.
    [16]. Rusnak DW, Affleck K, Lackey K.et al. The characterization of novel, dual ErbB-2/EGFR, tyrosine kinase inhibitors: potential therapy for cancer. Cancer Res.2001Oct1;61(19):7196-203.
    [17]. U.S. National Cancer Institute. SEER database,2002–2006.
    [18]. Morson B. President’s address: The polyp-cancer sequence in the large bowel. Proc RSoc Med.1974;67:451–7.
    [19]. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, et al.Genetic alterations during colorectal-tumor development. N Engl J Med.1988;319(9):525–32.
    [20]. Barker N, Ridgway RA, van Es JH, van den Born M, et al. Crypt stem cells as thecells-of-origin of intestinal cancer. Nature.2009;457:608–12.
    [21]. Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. NatRev Cancer.2008;8(5):378–98.
    [22]. Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, et al. Mutant p53drives invasion by promoting integrin recycling. Cell.2009;139(7):1327–41.
    [23]. Leslie A, Carey FA, Pratt NR, Steele RJC. The colorectal adenoma-carcinomasequence. Br J Surg.2002;89(7)845–60.
    [24]. Uronis JM, Herfarth HH, Rubinas TC, Bissahoyo AC, Hanlon K, Threadgill DW. Flatcolorectal cancers are genetically determined and progress to invasion without goingthrough a polypoid stage. Cancer Res.2007;67(24):11594–600.
    [25]. Smith D, Ballal M, Hodder R, Selvachandran SN, Cade D. The adenoma carcinomasequence: an indoctrinated model for tumorigenesis, but is it always clinical reality?Colorectal disease.2006;8:296–301.
    [26]. Berns A. Cancer. Improved mouse models. Nature.2001;410(6832):1043–4.
    [27]. Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, et al. The COSMIC(Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer.2004;91(2):355–8.
    [28]. Gibbs JB, Sigal IS, Poe M, Scolnick EM. Intrinsic GTPase activity distinguishesnormal and oncogenic Ras p21molecules. Proc Natl Acad Sci USA.1984;81(18):5704–8.
    [29]. Gidekel Friedlander SY, Chu GC, Snyder EL, Girnius N, Dibelius G, et al. Context-dependent transformation of adult pancreatic cells by oncogenic KRAS. Cancer Cell.2009;16:379–89.
    [30]. Allegra CJ, Jessup M, Somerfield MR, Hamilton SR, Hammond EH, Hayes DF, et al.American society of clinical oncology provisional clinical opinion: testing for KRASgene mutations in patients with metastatic colorectal carcinoma to predict response toanti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol.2009;27:2091–6.
    [31]. Loupakis F, Ruzzo A, Cremolini C, Vincenzi B, Salvatore L, Santini D, et al. KRAScodon61,146and Braf mutations predict resistance to cetuximab plus irinotecan inKRAS codon12and13wild-type metastatic colorectal cancer. Br J Cancer.2009;101(4):715–21.
    [32]. Oliveira C, Westra JL, Arango D, Ollikainen M, Domingo E, Ferreira A, et al. Distinctpatterns of KRAS mutations in colorectal carcinomas according to germline mismatchrepair defects and hMLH1methylation status. Hum Mol Genetics.2004;13(19):2303–11.
    [33]. Graziano F, Canestrari E, Loupakis F, Ruzzo A, Galluccio N, Santini D, et al.Pharmacogenomics J.2010;AOP:doi:10.1038/tpj.2010.9
    [34]. Cogoi S, Paramasivam M, Membrino A, Yokoyama K, Xodo L. The KRAS promoterresponds to myc-associated zinc finger and poly-ADP-ribose polymeRase1proteinswhich recognize a critical quadruplex-forming GA-element. J Biol Chem.2010: AOP:doi/10.1074/jbc. M110.101923.
    [35]. Brink M, de Goeij AFPM, Weijenberg MP, Roemen GMJM, Lentjes MHFM, PachenMMM. KRAS oncogene mutations in sporadic colorectal cancer in The NetherlandsCohort Study. Carcinogenesis.2003;24(4):703–10.
    [36]. Cejas P, López-Gómez M, Aguayo C, Madero R, de Castro Carpe o J, Belda-Iniesta C,et al. KRAS Mutations in Primary Colorectal Cancer Tumors and Related Metastases:A Potential Role in Prediction of Lung Metastasis. PLoSONE.2009;4(12): e8199.doi:10.1371/journal. pone.0008199
    [37]. Molinari F, Martin V, Saletti P, De Dosso S, Spitale A, Camponovo A, et al. Differingderegulation of EGFR and downstream proteins in primary colorectal cancer andrelated metastatic sites may bei clinically relevant. Br J Cancer.2009;100:1087–94.
    [38]. Artale S, Sartore-Bianchi A, Veronese SM, Gambi V, Sartnataro CS, Siena S.Mutations of KRAS and Braf in primary and matched metastatic sites of colorectalcancer. J Clin Oncol.2008;26(25):4217–9.
    [39]. Santini D, Loupakis F, Vincenzi B, Foriani I, Stasi I, Canestrari E, et al. Highconcordance of KRAS status between primary colorectal tumors and related metastaticsites: implications for clinical practice. Oncologist.2008;13(12):1270–5.
    [40]. Zauber P, Sabbath-Solitare M, Marotta SP, Bishop DT. Molecular changes in theKi-Ras and APC genes in primary colorectal carcinoma and synchronous metastasescompared with the findings in accompanying adenomas. Mol Pathol.2003;56(3):137–40.
    [41]. Etienne-Grimaldi MC, Formento JL, Francoual M, Francois E, Formento P, Renée N,et al. KRAS mutations and treatment outcome in colorectal cancer patients receivingexclusive fluoropyrimidine therapy. Clin Cancer Res.2008;14(15):4830–5.
    [42]. Suchy B, Zietz C, Rabes HM. KRAS point mutations in human colorectal carcinomas:relation to aneuploidy and metastasis. Int J Cancer.1992;52(1):30–3.
    [43]. Oliveira C, Velho S, Moutinho C, Ferreira A, Preto A, Domingo E, et al. KRAS andBraf oncogenic mutations in MSS colorectal cancer progression. Oncogene.2007;26(1):158–63.
    [44]. Bouchahada M, Karaoué A, Saffroy R, Innominato P, Gorden L, Guettier C, et al.Acquired KRAS mutations during progression of colorectal cancer metastases:possible implications for therapy and prognosis. Cancer Chemother Pharmacol.2010;DOI10.1007/s00280-010-1298-9
    [45]. Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders andcancer. Nat Rev Cancer.2007;7:295–308.
    [46]. Nash GM, Gimbel M, Shia J, Nathanson DR, Ndubuisi MI, Zeng ZS, et al. KRASmutation correlates with accelerated metastatic progression in patients with colorectalliver metastasis. Ann Surg Oncol.2009; doi:10.1245/s10434-009-0605-3.
    [47]. Guerra C, Mijimolle N, Dhawahir A, Dubus P, Barradas M, Serrano M, et al. Tumorinduction by an endogenous KRAS oncogene is highly dependent on cellular context.Cancer Cell.2003;4(2):111–20.
    [48]. Haigis KM, Kendall KR, Wang Y, Cheung A, Haigis MC, Glickman JN, et al. NatGenetics.2008;40(5):600–8.
    [49]. Sparmann A, Bar-Sagi D. Ras-induced interleukin-8expression plays a critical role intumor growth and angiogenesis. Cancer Cell.2004;6(5):447–58.
    [50]. Horsch M, Recktenwald CV, Sch dler S, Hrabé de Angelis M, Seliger B, Beckers J.Overexpressed vs mutated KRAS in murine fibroblasts: a molecular phenotypingstudy. Br J Cancer.2009;100(4):656–62.
    [51]. Tsunoda T, Takashima Y, Fujimoto T, Koyanagi M, Yoshida Y, Doi K, et al. Three-dimensionally specific inhibition of DNA repair-related genes by activated KRAS incolon crypt model. Neoplasia.2010;12(5):397–404.
    [52]. Tuveson DA, Shaw AT, Willis NA, Silver DP, Jackson EL, Chang S, et al. Endogenousoncogenic KRAS (G12D) stimulates proliferation and widespread neoplastic anddevelopmental defects. Cancer Cell.2004;5(4):375–87.
    [53]. Weichert W, Schewe C, Lehmann A, Sers C, Denkert C, Budczies J, et al. KRASgenotyping of paraffin-embedded colorectal cancer tissue in routine diagnostics. J MolDiagn.2010;12(1):35–42.
    [54]. Troncone G, Malapelle U, Cozzolino I, Palombini L. KRAS mutation analysis oncytological specimens of metastatic colorectal cancer. Diag Cytopathol.2010;0: doi:10.1002/dc
    [55]. Yen LC, Yeh YS, Chen CW, Wang HM, Tsai HL, Lu CY, et al. Detection of KRASoncogene in peripheral blood as predictor of the response to cetuximab pluschemotherapy in patients with metastatic colorectal cancer. Clin Cancer Res.2009;15(13):4508–13.
    [56]. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulatingmutant DNA to assess tumordynamics. Nat Med.2008;14(9):985–90.
    [57]. Diehl F, Schmidt K, Durkee KH, Moore KJ, Goodman SN, Shuber AP, et al. Analysisof mutations in DNA isolated from plasma and stool of colorectal cancer patients.Gastroenterology.2008;135:489–98.
    [58]. Prewett M, Rockwell P, Rockwell RF, Giorgio NA, Mendelsohn J, Scher HI, et al. Thebiologic effects of C225, a chimeric monoclonal antibody to the EGFR, on humanprostate carcinoma. J Immunother Emphasis Tumor Immunol.1996;19(6):419–27.
    [59]. Peeters M, Balfour J, Arnold D. Panitumumab–a fully human anti-EGFR monoclonalantibody for treatment of metastatic colorectal cancer. Aliment PharmacolTherapeutics.2008;28:269–81.
    [60]. Franklin WA, Haney J, Sugita M, et al: KRAS mutation: comparison of testingmethods andtissue sampling techniques in colon cancer. J Mol Diagn2010;12:43-50.
    [61]. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Dongsheng T, TebbuttNC, et al. KRAS mutations and benefit from cetuximab in advanced colorectal cancer.N Engl J Med.2008;359(17):1757–65.
    [62]. Van Cutsem E, Rougier P, K hne C. A meta-analysis of the CRYSTAL and OPUSstudies combining cetuximab with chemotherapy (CT) as1st-line treatment forpatients (pts) with metastatic colorectal cancer (mCRC): Results according to KRASand Braf mutation status. Eur J Cancer.2009;7(S345): abstr6077.
    [63]. Van Cutsem E, K hne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, et al.Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. NEngl J Med.2009;360(14):1408–17.
    [64]. Goldstein NS, Armin M: Epidermal growth factor receptor immunohistochemicalreactivity inpatients with American Joint Committee on Cancer Stage IV colonadenocarcinoma: implications for a standardized scoring system. Cancer92,1331–1346(2001).
    [65]. Stites EC, Trampont PC, Ma Z et al.: Network analysis of oncogenic Ras activation incancer. Science318,463–467(2007).
    [66]. Malumbres M, Barbacid M: RAS oncogenes: the first30years. Nat. Rev. Cancer3,7–13(2003).
    [67]. Cunningham D, Humblet Y, Siena S et al.: Cetuximab monotherapy and cetuximabplus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med.351,337–345(2004).
    [68]. Lièvre A, Bachet JB, Le Corre D et al.:KRAS mutations status is predictive ofresponse to cetuximab therapy in colorectal cancer. Cancer Res.66,3992–3995(2006).
    [69]. Lièvre A, Bachet JB, Boige V et al.: KRAS mutations as an independent prognosticfactor in patients with advanced colorectal cancer treated with cetuximab. J. Clin.Oncol.26,374–379(2008).
    [70]. Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F et al.: Oncogenic activation of theRAS/RAF signaling pathway impairs the response of metastatic colorectal cancers toanti-epidermal growth factor receptor antibody therapies. Cancer Res.67,2643–2648(2007).
    [71]. Di Fiore F, Blanchard F, Charbonnier F et al.: Clinical relevance of KRAS mutationdetection in metastatic colorectal cancer treated by cetuximab plus chemotherapy. Br. J.Cancer96,1166–1169(2007).
    [72]. De Roock W, Piessevaux H, De Schutter J et al.: KRAS wild-type state predictssurvival and is associated to early radiological response in metastatic colorectal cancertreated with cetuximab. Ann. Oncol.19(3),508–515(2007).
    [73]. Khambata-Ford S, Garrett CR, Meropol NJ et al.: Expression of epiregulin andamphiregulin and KRAS mutation statuspredict disease control in metastaticcolorectal cancer patients treated with cetuximab. J. Clin. Oncol.25,3230–3237(2007).
    [74]. Finocchiaro G, Cappuzzo F, J nne PA et al.: EGFR, HER2and KRAS as predictivefactors for cetuximab sensitivity in colorectal cancer. Proc. Am. Soc. Clin. Oncol.25,18S (2007).
    [75]. Amado RG, Wolf M, Freeman D et al.: Panitumumab (pmab) efficacy andpatientreported outcomes (PRO) in metastatic colorectal cancer (mCRC) patients (pts)with wild-type (WT) KRAS tumor status. Presented at: ASCO Gastrointestinal CancerSymposium. Orlando, FL, USA,25–27January2008(Abstract278).
    [76]. Tabernero J, Cervantes A, Ciardiello F et al.: Correlation of efficacy to KRAS status(wt vs mut) in patients (pts) with metastatic colorectal cancer (mCRC), treated withweekly (q1w) and q2w schedules of cetuximab combined with FOLFIRI. Presented at:ASCO Gastrointestinal Cancer Symposium. Orlando, FL, USA,25–27January2008(Abstract435).
    [77]. Tabernero J, Van Cutsem E, Diaz-Rubio E, Cervantes A, Humblet Y, André T, et al.Phase II trial of cetuximab in combination with fluorouracil, leucovorin, andoxaliplatin in the first-line treatment of metastatic colorectal cancer. J Clin Oncol.2007;25(33):5225–32.
    [78]. Siena S, Cassidy J, Tabernero J, Burkes ME, Barugel Y, Humblet D, et al. Randomizedphase III study of panitumumab (pmab) with FOLFOX4compared to FOLFOX4alone as first-line treatment (tx) for metastatic colorectal cancer (mCRC): PRIME trial.ASCO GI Cancers Symposium2010; Abstract283.
    [79]. Maughan TS, Adams R, Smith CG, Seymour T, Wilson RH, Meade AM, et al.Oxaliplatin and fluoropyrimidine chemotherapy plus or minus cetuximab: The effectof infusional5-FU or capecitabine on the outcomes of the MRC COIN trial inadvanced colorectal cancer. ASCO GI Cancers Symposium,2010; Abstract402.
    [80]. Roth AD, Tejpar S, Delorenzi M, Yan P, Fiocca R, Klingbiel D, et al. Prognostic roleof KRAS and Braf in Stage II and III resected colon cancer: results of the translationalstudy on the PETACC-3, EORTC40993, SAKK60-00Trial. J Clin Oncol.2010;28(3):466–74.
    [81]. Richman SD, Seymour MT, Chambers P, Elliott F, Daly CL, Meade AM, et al. KRASand Braf mutations in advanced colorectal cancer are associated with poor prognosisbut do not preclude benefit from oxaliplatin or irinotecan: results from the MRCFOCUS trial. J Clin Oncol.2009;27(35):5931–7.
    [82]. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE.RAF/RAS oncogenes and mismatch-repair status. Nature.2002;418(29):934.
    [83]. Monticone M, Biollo E, Donadini A, Storlazzi CT, et al. Gene expression deregulationby KRAS G12D and G12V in a Braf V600E context. Molecular Cancer.2008;7(92):doi:10.1186/1476-4598-7-92
    [84]. Santini D, Spoto C, Loupakis F, Vincenzi B, Silvestris N, Cremolini C, et al. Highconcordance of BRAF status between primary colorectal tumours and relatedmetastatic sites: implications for clinical practice. Ann Oncol.2010;21(7):1565.
    [85]. Di Nicolantonio F, Martini M, Molinari F, Saletti P, et al. Wild-type Braf is requiredfor response to panitumumab or cetuximab in metastatic colorectal cancer. J ClinOncol.2008;26(35):5705–12.
    [86]. Bokemeyer C, Kohne C, Rougier P, Stroh C, Schlichting M, Van Cutsem V.Cetuximab with chemotherapy (CT) as1st-line treatment for metastatic colorectalcancer (mCRC): Analysis of the CRYSTAL and OPUS studies according to KRASand Braf mutation status. J Clin Oncol.2010;28:7s(suppl; abstr3506).
    [87]. Chiu BC, Ji BT, Dai Q, et al: Dietary factors and risk of colon cancer in Shanghai,China. Cancer Epidemiol Biomarkers Prev2003;12:201-208.
    [88]. Cao KJ, Ma GS, Liu YL, et al: Incidence of colorectal cancer in Guangzhou City from2000to2002. Ai Zheng2009;28:441-444[in Chinese, English abstract].
    [89]. Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer:evidence in terms of response rate. Advanced Colorectal Cancer Meta-AnalysisProject. J Clin Oncol1992;10:896-903.
    [90]. Grothey A, Sargent D, Goldberg RM, et al. Survival of patients with advancedcolorectal cancer improves with the availability of fluorouracil–leucovorin, irinotecan,and oxaliplatin in the course of treatment. J Clin Oncol2004;22:1209-1214.
    [91]. Soulières D, Greer W, Magliocco AM, et al: KRAS mutation testing in the treatmentof metastatic colorectal cancer with anti-EGFR therapies. Curr Oncol2010;17(suppl1): S31-S40.
    [92]. National Comprehensive Cancer Network (NCCN): The NCCN Clinical PracticeGuidelines in Oncology (NCCN Guidelines): Colon Cancer, v.3.Fort Washington:NCCN,2011.
    [93]. Lubomierski N, Plotz G, Wormek M, et al: BRAF mutations in colorectal carcinomasuggest twoentities of microsatellite-unstable tumours. Cancer2005;104:952-961.
    [94]. Wood KW, Sarnecki C, Roberts TM, et al: Rasmediates nerve growth factorreceptormodulation of three signal-transducing proteinkinases: MAP kinase, Raf-1,and RSK. Cell1992;68:1041-1050.
    [95]. Wicki A, Herrmann R, Christofori G: KRAS inmetastatic colorectal cancer. SwissMed Wkly2010;140: w13112.
    [96]. Riely GJ, Marks J, Pao W: KRAS mutations in non-small cell lung cancer. ProcAmThorac Soc2009;6:201-205.
    [97]. Capella G, Cronauer-Mitra S, Pienado MA, etal: Frequency and spectrum of mutationsat codons12and13of the c-KRAS gene in human tumours. Environ Health Perspect1991;93:125-131.
    [98]. Bos JL: Ras oncogenes in human cancer: areview. Cancer Res1989;49:4682-4689.
    [99]. Barbacid M: Ras genes. Annu Rev Biochem1987;56:779-827.
    [100]. Shen H, Yuan Y, Hu HG, et al: Clinical significance of KRAS and BRAF mutationsinChinese colorectal cancer patients. World J Gastroenterol2011;17:809–816.
    [101]. Bazan V, Migliavacca M, Zanna I, et al: Specific codon13KRAS mutations arepredictive of clinical outcome in colorectal cancer patients, whereas codon12KRASmutations are associated with mucinous histotype. Ann Oncol2002;13:1438-1446.
    [102]. Conlin A, Smith G, Carey FA, et al: The prognostic significance of KRAS, p53, andAPC mutations in colorectal carcinoma. Gut2005;54:1283-1286.
    [103].[103] Andreyev HJ, Norman AR, Cunningham D, et al: Kirsten Ras mutations inpatients withcolorectal cancer: the ‘RASCAL II’ study. Br J Cancer2001;85:692-696.
    [104]. Trevisiol C, Di Fabio F, Nascimbeni R, et al: Prognostic value of circulating KRAS2gene mutations in colorectal cancer with distant metastases. Int J Biol Markers2006;21:223-228.
    [105]. Jiang Y, Kimchi ET, Staveley-O’Carroll KF, et al: Assessment of KRAS mutation: astep toward personalized medicine for patients with colorectal cancer. Cancer2009;115:3609–3617.
    [106]. Brink M, de Goeij AF, Weijenberg MP, et al: KRASoncogene mutations in sporadiccolorectalcancer in The Netherlands Cohort Study. Carcinogenesis2003;24:703–710.
    [107]. Al-Mulla F, Milner-White EJ, Going JJ, et al: Structural differences between valine-12andaspartate-12Ras proteins may modify carcinoma aggression. J Pathol1999;187:433–438.
    [108]. Hughes R, Cross AJ, Pollock JR, et al: Dose dependent effect of dietary meatonendogenous colonic N-nitrosation.Carcino genesis2001;22:199–202.
    [109]. Licar A, Cerkovnik P, Ocvirk J, et al: KRASmutations in Slovene patients withcolorectal cancer: frequency, distribution and correlation with the response totreatment. Int J Oncol2010;36:1137–1144.
    [110]. Lee WS, Baek JH, Lee JN, et al: Mutations in KRAS and epidermal growth factorreceptor expression in Korean patients with stages III and IV colorectal cancer. Int JSurg Pathol2011;19:145–151.
    [111]. Cerottini JP, Caplin S, Saraga E, et al: The type of KRAS mutation determinesprognosis incolorectal cancer. Am J Surg1998;175:198–202.
    [112]. Samowitz WS, Curtin K, Schaffer D, et al: Relationship of Ki-Ras mutations incoloncancers to tumour location, stage, and survival:a population-based study. CancerEpidemiolBiomarkers Prev2000;9:1193–1197.
    [113]. Bos JL: The Ras gene family and humancar cinogenesis. Mutat Res1988;195:255–271.
    [114]. Franklin WA, Haney J, Sugita M, et al: KRAS mutation: comparison of testingmethods andtissue sampling techniques in colon cancer. J Mol Diagn2010;12:43-50.
    [115]. Zlobec I, Bihl MP, Schwarb H, et al: Clinic opathological and protein characterizationof BRAF-and KRAS-mutated colorectal cancer and implications forprognosis. Int JCancer2010;127:367–380.
    [116]. Akkiprik M, Celikel CA, Düs ünceli F, et al:Relationship between overexpression ofRas p21oncoprotein and KRAS codon12and13mutations in Turkish colorectalcancer patients.Turk J Gastroenterol2008;19:22–27.
    [117]. Naguib A, Mitrou PN, Gay LJ, et al: Dietary, lifestyle and clinicopathological factorsassociated with BRAF and KRAS mutations arising in distinct subsets of colorectalcancersin the EPIC Norfolk study. BMC Cancer2010;10:99.
    [118]. Breivik J, Meling GI, Spurkland A, et al: KRAS mutation in colorectal cancer:relations topatient age, sex and tumour location. Br J Cancer1994;69:367–371.
    [119]. Yunxia Z, Jun C, Guanshan Z, et al: Mutationsin epidermal growth factor receptor andKRAS in Chinese patients with colorectal cancer. BMC Med Genet2010;11:34.
    [120]. Cejas P, López-Gómez M, Aguayo C, et al: KRAS mutations in primary colorectalcancer tumours and related metastases: a potential role in prediction of lung metastasis.PLoS One2009;4: e8199.
    [121]. Dix BR, Robbins P, Soong R, et al: The common molecular genetic alterations inDukes’ B and C colorectal carcinomas are not short-term prognostic indicators ofsurvival. Int J Cancer1994;59:747–751.
    [122]. Tortola S, Marcuello E, González I, et al: p53and KRAS gene mutations correlatewith tumour aggressiveness but are not of routine prognostic value in colorectal cancer.J ClinOncol1999;17:1375–1381.
    [123]. Adjei AA: Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst2001;14:1062–1074.
    [124]. Prewett M, Rockwell P, Rockwell RF, et al: Thebiologic effects of C225, a chimericmonoclonalantibody to the EGFR, on human prostate carcinoma. J ImmunotherEmphasis TumorImmunol1996;19:419–427.
    [125]. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, et al.Kinase-dead Braf and oncogenic Ras cooperate to drive tumor progression throughCRas. Cell.2010;140(2):209–21.
    [126]. Ramos FJ, Tabernero J: KRAS mutation status as a predictive biomarker in metastaticcolorectal cancer. Biomark Med2008;2:97–99.
    [127]. Forrester K, Almoguera C, Han K, et al. Detection of high incidence of KRASoncogenes during human colon tumorigenesis. Nature1987;327:298303.
    [128]. Pretlow TP, BRasitus TA, Fulton NC, et al. KRAS mutations in putative preneoplasticlesions in human colon. J. Natl. Cancer Inst1993;85:2006.
    [129]. Laurent-Puig P, Cayre A, Manceau G, Buc E, Bachet JP, Lecomte T, et al. Analysis ofPTEN, Braf, and EGFR status in determining benefit from cetuximab therapy inwild-type KRAS metastatic colon cancer. J Clin Oncol.2009;27(35):5924–30.
    [130]. Karapetis CS, Khambata-Ford S, Jonker DJ, et al. KRAS mutation and benefit fromcetuximab in advanced colorectal cancer. N Engl J Med2008;359:175765.
    [131]. Chung KY, Shia J, Kemeny NE, et al. Cetuximab shows activity in colorectal cancerpatients with tumors that do not express the epidermal growth factor receptor byimmunohistochemistry. J Clin Oncol2005;23:180310.
    [132]. Hebbar M, Wacrenier A, Desauw C, et al. Lack of useful-ness of epidermal growthfactor receptor expression determination for cetuximab therapy in patients withcolorectal cancer. Anticancer Drugs2006;17:8557.
    [133]. Cheng L, Eng C, Nieman LZ, Kapadia AS, Du XL. Trends in colorectal cancerincidence by anatomic site and disease stage in the United States from1976to2005.Am J Clin Oncol.2011;34(6):573–580.
    [134]. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics,2011: the impact ofeliminating socioeconomic and racial disparities on premature cancer deaths. CACancer J Clin.2011;61(4):212–236.
    [135]. Gramont A, Figer A, Seymour M, et al. Leucovorin and fluorouracil with or withoutoxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol.2000;18(16):2938–2947.
    [136]. Ravit Geva1, Loredana Vecchione Sabine Tejpar et al. Bevacizumab pluschemotherapy as salvage treatment in chemorefractory patients with metastaticcolorectal cancer OncoTargets and Therapy2013:653–58.
    [137]. Jing Gao, Ting-ting Wang, Lin Shen et al.Wild-Type KRAS and BRAF Could PredictResponse to Cetuximab in Chinese Colorectal Cancer Patients. Chin J Cancer Res23(4):271275,2011.
    [138]. Presta LG, Chen H, O’Connor SJ, et al. Humanization of an anti-vascular endothelialgrowth factor monoclonal antibody for the therapy of solid tumors and other disorders.Cancer Res.1997;57(20):4593–4599.
    [139]. Mulcahy MF. Bevacizumab in the therapy for refractory metastatic colorectal cancer.Biologics.2008;2(1):53–59.
    [140]. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenictherapy. Science.2005;307(5706):58–62.
    [141]. Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-inducedangiogenesis suppresses tumour growth in vivo. Nature.1993;362(6423):841–844.
    [142]. Arnold D, Andre T, Bennouna J, et al. Bevacizumab (BEV) plus chemotherapy (CT)continued beyond first progression in patients with metastatic colorectal cancer(mCRC) previously treated with BEV plus CT: results of a randomized phase IIIintergroup study (TML study)[abstract]. J Clin Oncol.2012;30Suppl:CRA3503.
    [143]. Masi FL, Salvatore L, Cremolini C, et al. A randomized phase III study evaluating thecontinuation of bevacizumab (BV) beyond progression in metastatic colorectal cancer(mCRC) patients (pts) who received BV as part of first-line treatment: results of theBEBYP trial by the Gruppo Oncologico Nord Ovest (GONO). Paper presented at:37th ESMO Conference; September28–October2,2012; Vienna, Austria.
    [144]. Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumabefficacy in patients with metastatic colorectal cancer. J Clin Oncol.2008;26(10):1626–1634.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700