用户名: 密码: 验证码:
白僵蚕活性成分分离纯化及其药理作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白僵蚕是蚕蛾科家蚕幼虫感染病原白僵菌后致死的干燥菌虫体,作为中药材首载于《神农本草经》,是我国名贵的传统中药材,利用历史悠久。白僵蚕性平味咸、辛(《本经》),具有抗惊厥、抗凝、催眠、抑菌、抗癌、降糖、降脂等药理作用。临床上,白僵蚕使用单方或与其他中药配伍,主要用于外感发热、惊厥、癫痫、抽搐、头痛、偏头痛、面瘫、偏瘫、咳嗽、哮喘、剥脱性皮炎、皮肤瘙痒症、失眠、甲状腺瘤、糖尿病、荨麻疹、脑血栓形成、高血脂症等十几种疾病治疗。目前白僵蚕药用十分广泛,并常年出口外销。白僵蚕具有的众多药理作用,与其富含的功能活性成分直接相关。黄酮类化合物、白僵菌素、多糖作为白僵蚕的重要功能活性成分,其提取与检测、含量变化、组成与结构、药理作用及其机理等没有得到较深入研究。本论文对此进行了研究,主要结果如下:
     1、利用CCD响应面方法对白僵蚕中黄酮类化合物的提取进行了优化,建立了白僵蚕粉过80目筛,以80%乙醇为提取溶剂,30:1的液料比,超声波处理20min,在100℃回流提取2.5h,为白僵蚕中黄酮类化合物的最佳提取方案。建立了分光光度法测定白僵蚕中黄酮类化合物的方法,该方法精密度、稳定性、重现性的标准差均在2%以内,回收率在95-105%范围内。利用建立的检测方法,查明了5龄起蚕感染白僵菌后12天内体内黄酮类化合物含量的变化规律。
     2、利用HPLC-MS/MS方法,确定了白僵蚕体内白僵菌素含量的检测方法,测得白僵菌素含量为21.64μg/g,方法学检测最低检测限与最低定量限分别为4μg/g和12μg/g,重现性(RSD=1.16%)与3个水平的回收率(109±4.9%,97±3.8%,924±3.4%)均达到了较满意水平。利用建立的检测方法,查明了五龄起蚕感染白僵菌后12天内白僵菌素含量的变化情况。
     3、采用阴离子交换层析(DEAE Sepharose F.F.)和凝胶柱层析(Sephacryl S系列材料),对白僵蚕多糖进行分离纯化。经DEAE Sepharose F.F.获得1个蒸馏水洗脱的中性多糖组分BBPW,3个不同浓度NaCl溶液洗脱的酸性多糖组分BBPS-1、BBPS-2、BBPS-3.进一步用Sephacryl S分离BBPW获得2个中性均一组分BBPW-1和BBPW-2,紫外扫描检测二者均不含蛋白质和核酸。红外光谱检测BBPW-2含有糖的特征吸收峰。高效液相色谱检测BBPW-1革BBPW-2为均一组分,BBPW-1分子量为3.67x106Da,是一种高度聚合的大分子多糖,BBPW-2的分子量为2.0×103Da,是一种寡聚糖。
     4、对分离得到的均一组分BBPW-2进行了结构鉴定。利用单糖组成分析、甲基化分析、部分酸水解、核磁共振(NMR)技术(一维:1HNMR,13CMR,二维:1H-1H COSY谱、TOCSY谱、HMQC谱、NOESY谱和HMBC谱),对BBPW-2的单糖组成、糖残基个数、糖残基连接方式、构型、连接顺序等进行了研究。单糖组成分析结果显示,BBPW-2含有甘露糖、葡萄糖、半乳糖,比例为1:0.74:0.59;甲基化分析结果显示,BBPW-2含有的甘露糖、葡萄糖、半乳糖这三种单糖摩尔比为1:0.75:0.47,二者比例基本保持一致。甲基化分析结果同时表明,BBPW-2残基种类较多,结构比较复杂,其中甘露糖存在多种连接方式,主要为1位端基连接方式,其次为1,2,6-连接方式,还有少量的1,3-连接方式;葡萄糖主要为1,2,6-连接,还有少量的1位端基连接;半乳糖主要以1,2-连接。NMR分析结果显示,BBPW-2的结构是以β-D-1,2,6-葡萄糖和β-D-1,2,6-甘露糖为主链、以α-D-1,2-半乳糖和α-D-1,3-甘露糖为支链、α-D-甘露糖和β-D-葡萄糖为端基所组成寡聚糖,推断其结构如下:
     5、考察了白僵蚕多糖对正常小鼠和环磷酰胺诱导的免疫抑制小鼠免疫功能的影响。发现白僵蚕多糖可提高小鼠的免疫器官重量、腹腔巨噬细胞吞噬功能、淋巴细胞转化率、血清中溶血素抗体水平和脾空斑形成细胞数量,结果表明白僵蚕多糖可从多方面增强正常小鼠和免疫抑制小鼠的免疫功能。
     6、AB-8大孔树脂和聚酰胺树脂联用,以60%乙醇洗脱,对白僵蚕黄酮类化合物进行了制备,并考察了黄酮类化合物对人宫颈癌细胞Hela和人胚胎肾细胞HEK293增殖的影响。结果表明,白僵蚕黄酮类化合物对Hela细胞的增殖有明显抑制作用,对HEK293有促进增殖的作用。
     7、考察了由超滤法分级得到的3个不同分子量多糖的体外抗癌作用。结果表明,按分子量分级法无法有效筛选出抗癌(Hela)明显却对正常细胞(HEK293)杀伤较小的组分。由阴离子交换柱分离到的4个多糖组分(包括1个中性多糖BBPW,3个酸性多糖BBPS-2、BBPS-2、BBPS-3)对人宫颈癌Hela细胞、人肝癌HepG2细胞有明显的抑制作用,其中中性多糖组分BBPW抑制作用最为明显,大于另外3个酸性多糖BBPS-1、BBPS-2、BBPS-3的抑制作用。另外考察了这4个多糖对小鼠巨噬细胞(RAW264.7)的影响,结果显示4个组分均能明显促进RAW264.7产生NO,并对其增殖有一定的促进作用。结果表明,白僵蚕多糖在体内的抗癌作用的发挥可能是通过增强吞噬细胞功能来实现的。
     8、考察了从白僵蚕中性多糖组分BBPW分离出的两个均一组分BBPW-1和BBPW-2的抗癌作用,结果显示二者对Hela、HepG2抑制作用明显,其中大分子量的BBPW-1抑制作用稍微强于BBPW-2。另外还发现,BBPW-2对人乳腺癌细胞MCF-7有长期抑制作用。通过细胞凋亡和细胞周期检测表明,BBPW-2对Hela细胞的抑制作用是通过诱导细胞凋亡和将有丝分裂阻滞在G0/G1期和G2/M期来共同实现的。
Bombyx batryticatus, an oriental crude drug firstly recorded in "Shen Nong's Herbal Classic", is dried dead fungus-insect complex, which is dead and stiffened due to a Beauveria bassiana infection. As a valuable traditional Chinese medicinal material, it has been utilized for thousands of years. Bombyx batryticatus is salty and pungent, natured. It possesses muti-pharmacologic effects including anti-convulsion, anticoagulation, hypnogenesis, anti-fungus, anticancer and hypoglycemic and hypolipidemic effects. So it is widely used clinically alone or compatible with other drugs to treat exogenous fever, convulsion, epilepsy, headache, migraine, facial paralysis, hemiplegia, cough, asthma, exfoliative dermatitis, cutaneous pruritus, insomnia, thyroid adenoma, diabetes, urticaria, cerebral thrombosis, hyperlipidemia. With the deepening of research, Bomby batyaticatus's application is more and more widely. The active constituents play an important role in its pharmacological effects. And flavonoids, beauvericin and polysaccharide, as mainly active component parts, are very helpful to the effects especially in antioxidant, anticancer aspects. The present study focus on extraction, determination, separation and purification, structural identification, pharmacologic actions about the three active constituents. The mainly results are as follows:
     1. Flavonoids was optimize-extracted by Central Composite Design of response surface methodology. The optimum program was like this:Bombyx batraticatus was extracted by80%ethanol after sifted with80item, pre-ultrasonic bath for20min,30:1liquid-to-solid ratio, for2.5h at100℃. The spectrophotometric method was established to determine flavonoids in Bombyx batraticatus, with qualified accuracy, stability and repeatability (RSD<2%) and recovery (95-105%). With the obtained optimum conditions, flavonoids content changes were investigated in silkworm body after infection of Beauveria bassiana within12days.
     2. With HPLC-MS/MS, the determination method of beauverrion in Bombyx batraticatus was constructed. The results showed beauvericin's content was21.64μg/g. Methodology validation showed the LOD and LOQ were4μg/g and12μg/g. Repeatability (RSD=1.16%) and recoveries at3level (109±4.9%,97±3.8%,92±3.4%) were satisfied. Beauvericin content changes were investigated in silkworm body after infection of Beauveria bassiana within12days.
     3. Polysaccharide of Bombyx batraticatus was separated and purified. The obtained crude polysaccharide was isolated and purified using DEAE Sepharose F. F. and gel-filtration chromatography (Sephacryl S-100-500) repeatedly. Two water-soluble homogeneous polysaccharides (BBPW-1, BBPW-2) were obtained. Lack of absorption at280nm and260nm by UV scanning indicated that they contained no protein and nucleic acid. IR spectra showed that the sugar characteristic groups were existed. HPLC producing a single symmetrical peak, indicated each of them was homogeneous and their molecular weight were3.67×106Da,2.0×103Da, respectively.
     4. The structure of homogeneous BBPW-2was studied. Their structures were investigated using chemical (Sugar analysis, Methylation analysis, partial acid hydrolysis, etc.), and spectroscopic methods (ID NMR:'H NMR,13C NMR, DEPT spectra;2D NMR:'H-'H COSY, TOCSY, HMQC, NOESY and HMBC spectra; etc.) to confirm the sugar composition, the number of sugar residues, the form of glycosyl linkage, the configuration of anomeric center, the sequence of sugar residues.
     Sugar analysis showed this polysaccharide was composed of mannose, glucose, and galactose in the ratio of1:0.74:0.59. Methylation analysis showed it contained2,6and1,3,6mannose linkage,1,6and terminal glucose linkage,1,6and2,6galactose linkage. Methylation analysis showed molar ration was1:0.75:0.47, which was accordance with the result of acetylation analysis. Methylation analysis showed BBPW-2contained1-,1,2,6-and1,3-mannose linkage,1,2,6-and1-glucose linkage and1,2-galactose linkage. NMR analysis further showed that its main chain was composed of (3-D-1,2,6linked glucosyl and (3-D-1,2,6linked mannosyl, side chain was composed of α-D-1,3mannose and α-1,2-D-galactose, and it also contains a minor terminal a-D-mannose and α-D-glucose. The structure was deducted as follows:
     5. The effects of crude polysaccharide on immunologic function of normal mice and cyclophosphamide-induce immunosuppressed mice were investigated. It was found that polysaccharide of Bombyx batraticatus could improve immune organs' weight, phagocytic function of abdominal macrophage, lymphocyte transformation rate, hemolysin antibody's level in serum, the number of spleen plaque forming cells, which suggested that Bombyx batraticatus polysaccharide could promote mice immunologic function through many aspects.
     6. Crude flavonoids was obtained by combination of AB-8marcoporous resin and amilan and elution with60%ethanol. Its effects on proliferation of cancer cells and normal cells were tested. The results showed that crude flavonoids could obviously suppress cancer cells' proliferation, and promote normal cells' proliferation.
     7. Anticancer effect of three polysaccharides with different molecular weight were tested and it was found that they showed proliferation inhibition effect on both cancer cells and normal cells. Anticancer effect of four polysaccharides with different acidity obtained thought DEAE Sepharose F. F. were also tested and the result showed the anticancer effect of neutral polysaccharide eluted by water was more obvious than that of the other three acidic polysaccharides eluted by NaCl solution. All four polysaccharides could increase RAW264.7proliferation, and promote production of NO. Our results suggested that the anti-tumor activity could exert anti-tumor effects by increasing the production of NO by macrophages in vivo.
     8. Anticancer effect of two homogeneous polysaccharides (BBPW-1, BBPW-2) separated from Bombyx batraticatus was studied and anticancer mechanism of BBPW-2with clear structure characteristics was implored. Results demonstrated both of two showed evident inhibition effect on cancer cells and the effect of BBPW-1with larger molecular weight was more significant. BBPW-2showed long-term anticancer effect on human breast cancer cells MCF-7. Through cell cycle analysis and apoptosis analysis, we found that the mechanisms of the growth inhibitory effect of BBPW-2on Hela cells is mediated through inducing cell apoptosis and cell-cycle arrest at G0/G1, G2/M phase.
引文
1. V. Kumar, G. P. Singh, A. M. Babu, et al. Germination, penetration, and invasion of Beauveria bassiana on silkworm, Bombyx mori, causing white muscardine. Italian Journal of Zoology 1999,66 (1):39-43
    2. 南京中医药大学.中药大辞典[M].上海科学技术出版社,2006.
    3. 中国医学科学院,中国协和医科大学药用植物研究所,北京医科大学药学院.中药志(Ⅵ)[M].北京:人民卫生出版社,1998.
    4. 张龙翔,张庭芳.生化实验方法和技术[M].北京:高等教育出版社,1981.
    5. 李冬生,王金华,胡征等.白僵蚕主要化学成分及其挥发油的分析.化学与生物工程2003,(06):22-24
    6. V. S. Mikhailov, E. A. Zemskov and E. B. Abramova. Protein-synthesis in pupae of the silkworm Bombyx-mori after infection with nuclear polyhedrosis-virus-resistance to viral-infection acquired during pupal period. Journal of General Virology 1992,73:3195-3202
    7. 王成树,李增智.虫生真菌分子生物学研究进展.微生物学通报2001,(03):88-92
    8. 董宏平,袁生.球孢白僵菌代谢产物的研究概况.生物技术1999,(04):34-37
    9. H. C. Kwon, I. Y. Jung, S. Y. Cho, et al. Phospholipids from Bombycis corpus and their neurotrophic effects. Archives of Pharmacal Research 2003,26 (6):471-477
    10. H. C. Kwon, K. C. Lee, O. R. Cho, et al. Sphingolipids from Bombycis corpus 101A and their neurotrophic effects. Journal of Natural Products 2003,66 (4):466-469
    11. H. Kikuchi, N. Takahashi and Y. Oshima. Novel aromatics bearing 4-O-methylglucose unit isolated from the oriental crude drug Bombyx Batryticatus. Tetrahedron Letters 2004,45 (2): 367-370
    12. N. Kodama, Y. Murata and H. Nanba. Administration of a polysaccharide from Grifola frondosa stimulates immune function of normal mice. Journal of Medicinal Food 2004,7 (2): 141-145
    13.郭丹萍,李峰,乔歌.僵蚕商品药材有害元素分析.中国中医药学刊2012,(03):630-631
    14.谭仁祥.植物成分分析[M].北京,科学出版社,2002:486-502.
    15.胡春.黄酮类化合物的抗氧化性质.中国油脂1996,(04):18-21
    16. M. Cardenas, M. Marder, V. C. Blank, et al. Antitumor activity of some natural flavonoids and synthetic derivatives on various human and murine cancer cell lines. Bioorganic & Medicinal Chemistry 2006,14 (9):2966-2971
    17. M. Y. Sun, J. Han, J. F. Duan, et al. Novel antitumor activities of Kushen flavonoids in vitro and in vivo. Phytotherapy Research 2007,21 (3):269-277
    18. F. Balmir, R. Staack, E. Jeffrey, et al. An extract of soy flour influences serum cholesterol and thyroid hormones in rats and hamsters. Journal of Nutrition 1996,126 (12):3046-3053
    19. J. Mursu, T. Nurmi, T. P. Tuomainen, et al. The intake of flavonoids and carotid atherosclerosis:the Kuopio ischaemic heart disease risk factor study. British Journal of Nutrition 2007,98(4):814-818
    20. T. Guardia, A. E. Rotelli, A. O. Juarez, et al. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco 2001,56 (9): 683-687
    21.钟飞,蒋韵,吴芬芬等.沙棘总黄酮对小鼠免疫功能的影响.中国药理学通报1989, (05):307-310
    22. M. L. Tereschuk, M. V. Q. Riera, G. R. Castro, et al. Antimicrobial activity of flavonoids from leaves of Tagetes minuta. Journal of Ethnopharmacology 1997,56 (3):227-232
    23. J. P. Rauha, S. Remes, M. Heinonen, et al. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International Journal of Food Microbiology 2000,56(1):3-12
    24. J. F. Grove and M. Pople. The insecticidal activity of beauvericin and the enniatin complex. Mycopathologia 1980,70 (2):103-105
    25. C. Q. Hu, K. Chen, Q. Shi, et al. Anti-AIDS agents.10. acacetin-7-O-beta-D-galactopyranoside, an anti-HIV principle from chrysanthemum-morifolium and a structure-activity correlation with some related flavonoids. Journal of Natural Products 1994,57(1):42-51
    26. B. Q. Li, T. Fu, D. Y. Yao, et al. Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochemical and Biophysical Research Communications 2000,276 (2):534-538
    27. J. H. Wu, X. H. Wang, Y. H. Yi, et al. Anti-AIDS agents 54. A potent anti-HIV chalcone and flavonoids from genus Desmos. Bioorganic & Medicinal Chemistry Letters 2003,13 (10): 1813-1815
    28. C. A. Riceevans, N. J. Miller, G. P. Bolwell, et al. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radical Research 1995,22 (4):375-383
    29. S. V. Jovanovic, S. Steenken, M. Tosic, et al. Flavonoids as antioxidants. Journal of the American Chemical Society 1994,116 (11):4846-4851
    30. Y. Wang, J. X. Yu, C. L. Zhang, et al. Influence of flavonoids from Phellinus igniarius on sturgeon caviar:Antioxidant effects and sensory characteristics. Food Chemistry 2012,131 (1): 206-210
    31. T. Inoue, Y. Sugimoto, H. Masuda, et al. Antiallergic effect of flavonoid glycosides obtained from Menthapiperita L. Biological & Pharmaceutical Bulletin 2002,25 (2):256-259
    32. S. Gupta, S. B. Krasnoff, N. L. Underwood, et al. Isolation of beauvericin as an insect toxin from fusarium-semitectum and fusarium-moniliforme var subglutinans. Mycopathologia 1991,115 (3):185-189
    33. R. L. Hamill, C. E. Higgens, H. E. Boaz, et al. Structure of beauvericin, a new depsipeptide antibiotic toxic to artemia salina. Tetrahedron Letters 1969, (49):4255-&
    34.李建庆,张永安,张星耀等.昆虫病原真菌毒素的研究进展.林业科学研究2003,(02):233-239
    35. S. Hazama, S. Watanabe, M. Ohashi, et al. Efficacy of orally administered superfine dispersed Lentinan (beta-1,3-Glucan) for the treatment of advanced colorectal cancer. Anticancer Research 2009,29 (7):2611-2617
    36.王金华.白僵蚕及白僵蛹活性物质的研究与应用.时珍国医国药2003,(08):492-494
    37.时连根.桑蚕病原微生物资源的开发利用.蚕桑通报1991,(03):37-39+42
    38. E. A. Zemskov, E. B. Abramova and V. S. Mikhailov. Induction of a novel protein-kinase in pupae of the silkworm Bombyx-mori after infection with nuclear polyhedrosis-virus. Journal of General Virology 1992,73 3231-3234
    39.汤化琴,徐东琴.僵蚕与氯化按药理作用实验探讨.天津中医学院学报1992,(03):40-41
    40.邢少华,刘树民.动物病理产物药的药用价值初探.中医药学报1990,(06):40-41
    41.严铸云,李晓华,陈新等.僵蚕抗惊厥活性部位的初步研究.时珍国医国药2006,(05):696-697
    42.姚宏伟,何欣嘏,何巧燕等.僵蚕和蜈蚣醇提物抗惊厥作用的药效学比较研究.中国药物与临床 2006,(03):221-223
    43.张尚谦.中药愈痫胶囊治疗癫痫大发作100例.陕西中医1994,(09):400
    44.雷田香,彭延古,郝晓元等.僵蚕抗凝作用的研究进展.湖南中医药大学学报2007,(03):76-77
    45.李安国,彭延古,邓常青等.僵蚕提取液抗凝活性初步研究.湖南中医学院学报1992,(03):37-40
    46.彭延古,李露丹,雷田香等.僵蚕抗凝成分对血小板聚集的抑制效应.血栓与止血学2007,(02):78-79
    47.黄海英,彭新君,彭延古.僵蚕的现代研究进展.湖南中医学院学报2003,(04):62-64
    48.柴卫利,项林平,王珏,郑雅文,唐光辉,吕林.僵蚕醇提物对林木病原真菌的抑菌作用.林业实用技术2009,(12):33-34
    49.项林平,柴卫利,王珏等.僵蚕抑菌活性成分的提取及其对大肠杆菌的抑制作用.西北农林科技大学学报(自然科学版)2010,(03):150-154
    50.欧美芹.自拟消瘿汤治疗甲状腺腺瘤37例.云南中医中药杂志2009,(09):81-82
    51.李军德.我国抗癌药概述[J].中成药,1992,14(2):40-42.
    52.王居祥,朱超林,戴虹.僵蚕及僵蛹的药理研究与临床应用.时珍国医国药1999,(08):82-84
    53.陈克冀.抗衰老中药学[M].北京:中医古典出版社,1989.
    54.汤瑞莲,黄岩,郑春燕.郑建民教授应用僵蚕、蝉蜕治疗小儿外感疾病经验.中国中西医结合儿科学2012,(05):417-418
    55.王怡.白僵蚕可治疗头痛.求医问药2012,(09):39
    56.荆燕俊.僵蚕在外感咳嗽中的运用.中国社区医师(医学专业)2012,(19):205
    57.曾建辛,蔡小静,黄泽青.僵蚕水提液对哮喘豚鼠引喘潜伏期及其行为学评分的影响.中医临床研究2012,(17):34-36
    58.蔡小静,曾建辛.僵蚕治疗哮喘的机理探析.尹国中医急症2012,(09):1445-1446
    59.黄泽青,蔡小静,曾建辛.僵蚕对哮喘豚鼠血清IL-4和IFN-Y的影响.中医临床研究2012,(15):30-31
    60.王世武.地龙、蝉蜕、僵蚕近30年治疗哮喘等呼吸系统疾病文献研究.2012,
    61.于军,项晶,于宙.自拟秦艽僵蚕汤治疗白癜风的临床疗效观察.2012全国中西压结合皮肤性病学术会议2012,1
    62.姜帆,韩建春,陈成等.超滤法分级纯化五味子多糖及其影响因素.食品名工业科技1
    63. A. Q. Zhang, J. S. Zhang, Q. U. Tang, et al. Structural elucidation of a novel fucogalactan that contains 3-O-methyl rhamnose isolated from the fruiting bodies of the fungus, Hericium erinaceus. Carbohydrate Research 2006,341 (5):645-649
    64. A. Q. Zhang, P. L. Sun, J. S. Zhang, et al. Structural investigation of a novel fucoglucogalactan isolated from the fruiting bodies of the fungus Hericium erinaceus. Food Chemistry 2007,104 (2):451-456
    65. A. Q. Zhang, Y. L. Deng, P. L. Sun, et al. Structural elucidation of a neutral water-soluble a-d-glucan from the fungus of Hericium erinaceus. Journal of Food Biochemistry 2011,35 (6): 1680-1685
    66. L. B. Ye, J. R. Li, J. S. Zhang, et al. NMR characterization for polysaccharide moiety of a glycopeptide. Fitoterapia 2010,81 (2):93-96
    67. L. B. Ye, X. L. Zheng, J. S. Zhang, et al. Composition Analysis and Immunomodulatory Capacity of Peptidoglycan from Ling Zhi or Reishi Medicinal Mushroom, Ganoderma lucidum (W. Curt.:Fr.) P. Karst. Strain 119 (Aphyllophoromycetideae). International Journal of Medicinal Mushrooms 2010,12 (2):157-165
    68. L. B. Ye, J. S. Zhang, S. A. Zhou, et al. Preparation of a novel sulfated glycopeptide complex and inhibiting L1210 cell lines property in vitro. Carbohydrate Polymers 2009,77 (2):276-279
    69. L. B. Ye, J. S. Zhang, K. Zhou, et al. Purification, NMR Study and Immunostimulating Property of a Fucogalactan from the Fruiting Bodies of Ganoderma lucidum. Planta Medica 2008, 74(14):1730-1734
    70. L. B. Ye, J. S. Zhang, Y. Yang, et al. Structural characterisation of a heteropolysaccharide by NMR spectra. Food Chemistry 2009,112 (4):962-966
    71. L. B. Ye, J. S. Zhang, X. J. Ye, et al. Structural elucidation of the polysaccharide moiety of a glycopeptide (GLPCW-II) from Ganoderma lucidum fruiting bodies. Carbohydrate Research 2008,343 (4):746-752
    72. Q. Ge, A. Q. Zhang and P. L. Sun. Structural investigation of a novel water-soluble heteropolysaccharide from the fruiting bodies of Phellinus baumii Pilat. Food Chemistry 2009, 114 (2):391-395
    73. Q. Ge, A. Q. Zhang and P. L. Sun. Purification and structural elucidation of a novel fucoglucan from the fruiting bodies of Phellinus baumii Pilat. Journal of the Science of Food and Agriculture 2009,89 (2):343-348
    74. Q. Ge, A. Q. Zhang and P. L. Sun. Isolation, purification and structural characterization of a novel water-soluble glucan from the fruiting bodies of phellinus baumii pilat. Journal of Food Biochemistry 2010,34 (6):1205-1215
    75. Y. Yang, J. S. Zhang, Y. F. Liu, et al. Structural elucidation of a 3-O-methyl-D-galactose-containing neutral polysaccharide from the fruiting bodies of Phellinus igniarius. Carbohydrate Research 2007,342 (8):1063-1070
    76. Y. Yang, L. B. Ye, J. S. Zhang, et al. Structural Analysis of a Bioactive Polysaccharide, PISP1, from the Medicinal Mushroom Phellinus igniarius. Bioscience Biotechnology and Biochemistry 2009,73(1):134-139
    77. A. Q. Zhang, N. N. Xiao, P. F. He, et al. Chemical analysis and antioxidant activity in vitro of polysaccharides extracted from Boletus edulis. International Journal of Biological Macromolecules 2011,49 (5):1092-1095
    78. X. J. Du, J. S. Zhang, Y. Yang, et al. Structural elucidation and immuno-stimulating activity of an acidic heteropolysaccharide (TAPA1) from Tremella aurantialba. Carbohydrate Research 2009,344 (5):672-678
    79. J. M. Fan, J. S. Zhang, Q. J. Tang, et al. Structural elucidation of a neutral fucogalactan from the mycelium of Coprinus comatus. Carbohydrate Research 2006,341 (9):1130-1134
    80.李玲.多糖的分离、纯化与分析[J].新疆工学院学报,1996,17(2)129-132.
    81.孔繁利.碱提糙皮侧耳水溶性多糖WPOP-N1的结构解析及抗肿瘤机制研究.2012,
    82.张俐娜,丁琼,张平义等.茯苓菌核多糖的分离和结构分析.告等学校化学学报1997,(06):990-993
    83. T. P. T. Cushnie and A. J. Lamb. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents 2005,26 (5):343-356
    84. E. K. Akkol, I. E. Orhan and E. Yesilada. Anticholinesterase and antioxidant effects of the ethanol extract, ethanol fractions and isolated flavonoids from Cistus lauhfolius L. leaves. Food Chemistry 2012,131 (2):626-631
    85. P. G. Pietta. Flavonoids as antioxidants. Journal of Natural Products 2000,63 (7):1035-1042
    86. H. P. Kim, K. H. Son, H. W. Chang, et al. Anti-inflammatory plant flavonoids and cellular action mechanisms. Journal of Pharmacological Sciences 2004,96 (3):229-245
    87. R. N. Gacche, H. D. Shegokar, D. S. Gond, et al. Evaluation of selected flavonoids as antiangiogenic, anticancer, and radical scavenging agents:An experimental and in silico analysis. Cell Biochemistry and Biophysics 2011,61 (3):651-663
    88. S. C. Fang, C. L. Hsu, H. T. Lin, et al. Anticancer effects of flavonoid derivatives isolated from Millettia reticulata Benth in SK-Hep-1 human hepatocellular carcinoma cells. Journal of Agricultural and Food Chemistry 2010,58 (2):814-820
    89. M. M. Zhao, B. Yang, J. S. Wang, et al. Immunomodulatory and anticancer activities of flavonoids extracted from litchi (Litchi chinensis Sonn.) pericarp. International Immunopharmacology 2007,7 (2):162-166
    90.兰真,曾凡骏,曾里等.生物类黄酮对心血管系统的调节及作用机理.现代预防医学2005,(06):613-615
    91. L. G. Ming, K. M. Chen and C. J. Xian. Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. Journal of Cellular Physiology 2013,228 (3): 513-521
    92. M. F. Abu Bakar, M. Mohamed, A. Rahmat, et al. Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap(Artocarpus odoratissimus). Food Chemistry 2009,113 (2):479-483
    93.刘淑梅,时连根,李有贵.家蚕幼虫体黄酮类化合物的提取及测定方法.蚕丝科学2005,(01):74-78
    94. J. J. Luangsa-Ard, P. Berkaew, R. Ridkaew, et al. A beauvericin hot spot in the genus Isaria. Mycological Research 2009,113 1389-1395
    95. A. Logrieco, A. Moretti, G. Castella, et al. Beauvericin production by Fusarium species. Applied and Environmental Microbiology 1998,64 (8):3084-3088
    96.米红霞,刘吉平.白僵蚕应用研究进展.广东蚕业2010,v.44(01):46-48
    97. C. G. Shin, D. G. An, H. H. Song, et al. Beauvericin and enniatins H, I and MK1688 are new potent inhibitors of human immunodeficiency virus type-1 integrase. Journal of Antibiotics 2009, 62 (12):687-690
    98. Q. G. Wang and L. J. Xu. Beauvericin, a bioactive compound produced by fungi:A short review. Molecules 2012,17 (3):2367-2377
    99. M. K. Kokkonen and M. N. Jestoi. A multi-compound LC-MS/MS method for the screening of mycotoxins in grains. Food Analytical Methods 2009,2 (2):128-140
    100. S. Uhlig and L. Ivanova. Determination of beauvericin and four other enniatins in grain by liquid chromatography-mass spectrometry. Journal of Chromatography A 2004,1050(2):173-178
    101. M. Jestoi, M. Rokka, E. Jarvenpaa, et al. Determination of Fusarium mycotoxins beauvericin and enniatins (A, Al, B, Bl) in eggs of laying hens using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Food Chemistry 2009,115 (3):1120-1127
    102. S. Monbaliu, C. Van Poucke, C. Van Peteghem, et al. Development of a multi-mycotoxin liquid chromatography/tandem mass spectrometry method for sweet pepper analysis. Rapid Communications in Mass Spectrometry 2009,23 (1):3-11
    103. K. E. Lee, B. H. Kim and C. Lee. Occurrence of Fusarium mycotoxin beauvericin in animal feeds in Korea. Animal Feed Science and Technology 2010,157 (3-4):190-194
    104. J. L. Sorensen, K. F. Nielsen, P. H. Rasmussen, et al. Development of a LC-MS/MS method for the analysis of enniatins and beauvericin in whole fresh and ensiled maize. Journal of Agricultural and Food Chemistry 2008,56 (21):10439-10443
    105. M. Jestoi, M. Rokka, A. Rizzo, et al. Determination of Fusarium-mycotoxins beauvericin and enniatins with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Journal of Liquid Chromatography & Related Technologies 2005,28 (3):369-381
    106. G. Meca, I. Sospedra, J. M. Soriano, et al. Antibacterial effect of the bioactive compound beauvericin produced by Fusarium proliferatum on solid medium of wheat. Toxicon 2010,56 (3): 349-354
    107. M. Jestoi, M. Rokka and K. Peltonen. An integrated sample preparation to determine coccidiostats and emerging Fusarium-mycotoxins in various poultry tissues with LC-MS/MS. Molecular Nutrition & Food Research 2007,51 (5):625-637
    108.糖复合物生化研究技术(张惟杰,第二版)[1].
    109.糖化学-基础、反应、合成、分离及结构--蔡孟深李中军主编.
    110.付桂明,刘成梅,涂宗财.茶树菇水溶性多糖的分离纯化和化学组成的研究.食品科学2005,(09):162-166
    111.李庄.大豆水溶性多糖的提取与应用研究.2005,
    112. T. Chen, B. Li, Y. Li, et al. Catalytic synthesis and antitumor activities of sulfated polysaccharide from Gynostemma pentaphyllum Makino. Carbohydrate Polymers 2011,83 (2): 554-560
    113. L. He, N. Yin, J. W. Cheng, et al. Structural features of a new heteropolysaccharide from the fruit bodies of Melia azedarach and its effect on cytotoxic activity. Fitoterapia 2009,80 (7): 399-403
    114. L. He, P. F. Ji, X. G. Gong, et al. Physico-chemical characterization, antioxidant and anticancer activities in vitro of a novel polysaccharide from Melia toosendan Sieb. Et Zucc fruit. International Journal of Biological Macromolecules 2011,49 (3):422-427
    115.魏远安,方积年.高效凝胶渗透色谱法测定多糖纯度及分子量.药学学报1989,(07):532-536
    116.方积年.多糖体的结构分析[J].国外医学(药学分册),1981,(4)222-228.
    117. R. A. Dwek. Glycobiology:Toward understanding the function of sugars. Chemical Reviews 1996,96 (2):683-720
    118. J. B. Lowe and P. A. Ward. Therapeutic inhibition of carbohydrate-protein interactions in vivo. Journal of Clinical Investigation 1997,100 (11):S47-S51
    119.陈义勇.桦褐孔菌多糖纯化、结构及其抗肿瘤机制研究.2010,
    120.杨焱.桑黄多糖的分离纯化、结构鉴定和生物活性的研究.2007,
    121.徐桂云,陈汝贤,常理文.用毛细管气相色谱法测定多糖中单糖的组成.分析测试学报2000,(03):71-73
    122. K. R. Anumula and P. B. Taylor. A comprehensive procedure for preparation of partially methylated alditol acetates from glycoprotein carbohydrates. Analytical Biochemistry 1992,203 (1):101-108
    123. P. E. Jansson, L. Kenne and G. Widmalm. Structure of the O-antigen polysaccharide from Escherichia-coli 018AC - a revision using computer-assisted structural-analysis with the program casper. Carbohydrate Research 1989,193322-325
    124. M. Staaf, F. Urbina, A. Weintraub, et al. Structural elucidation- of the O-antigenic polysaccharides from Escherichia coli 021 and the enteroaggregative Escherichia coli strain 105. European Journal of Biochemistry 1999,266 (1):241-245
    125. K. Zych, F. V. Toukach, N. P. Arbatsky, et al. Structure of the O-specific polysaccharide of Proteus mirabilis D52 and typing of this strain to Proteus serogroup O33. European Journal of Biochemistry 2001,268 (15):4346-4351
    126.芦殿荣.香菇多糖对正常小鼠及骨髓抑制贫血小鼠免疫功能的影响.2005,
    127. X. H. Shuai, T. J. Hu, H. L. Liu, et al. Immunomodulatory effect of a Sophora subprosrate polysaccharide in mice. International Journal of Biological Macromolecules 2010,46 (1):79-84
    128. S. Q. Huang, J. W. Li, Z. Wang, et al. Optimization of alkaline extraction of polysaccharides from Ganoderma lucidum and their effect on immune function in mice. Molecules 2010,15 (5): 3694-3708
    129.金洁.家蚕病原白僵菌的遗传多样性及白僵蚕药理作用的研究.2009,
    130.陈奇.中药药理实验.贵州人民出版社.1988.
    131.徐淑云.药理实验方法(第三版).人民卫生出版社.2002.
    132.李仪奎.中药药理实验方法学.上海科学技术出版社.1991
    133.陈慰峰.医学免疫学(第三版).人民卫生出版社.2000.
    134. X. M. Chen, W. J. Nie, S. R. Fan, et al. A polysaccharide from Sargassum fusiforme protects against immunosuppression in cyclophosphamide-treated mice. Carbohydrate Polymers 2012,90 (2):1114-1119
    135. M. Wang, X. Y. Meng, R. Le Yang, et al. Cordyceps militaris polysaccharides can enhance the immunity and antioxidation activity in immunosuppressed mice. Carbohydrate Polymers 2012, 89 (2):461-466
    136.X. L. Zhu, A. F. Chen and Z. B. Lin. Ganoderma lucidum polysaccharides enhance the function of immunological effector cells in immunosuppressed mice. Journal of Ethnopharmacology 2007,111 (2):219-226
    137. H. Wang, M. Y. Wang, J. Chen, et al. A polysaccharide from Strongylocentrotus nudus eggs protects against myelosuppression and immunosuppression in cyclophosphamide-treated mice. International Immunopharmacology 2011,11 (11):1946-1953
    138. J. J. Cui, J. F. Yuan and Z. Q. Zhang. Anti-oxidation activity of the crude polysaccharides isolated from Polygonum Cillinerve (Nakai) Ohwi in immunosuppressed mice. Journal of Ethnopharmacology 2010,132 (2):512-517
    139. P. Russo, A. Del Bufalo and A. Cesario. Flavonoids acting on DNA topoisomerases:Recent advances and future perspectives in cancer therapy. Current Medicinal Chemistry 2012,19 (31): 5287-5293
    140.陈建明,陈建真,吕圭源等.AB-8大孔树脂分离纯化桑叶黄酮的工艺研究.中华中医药学刊2008,(10):2285-2287
    141.高红宁,金万勤,郭立伟等.AB-8树脂对苦参总黄酮的吸附性能研究.中草药2001,(10):26-28
    142.刘志祥,曾超珍,张玥.AB-8大孔树脂分离纯化枸骨叶总黄酮的工艺研究.食品科学2010,(12):76-79
    143.王芸芸,刘利军.AB-8大孔树脂分离纯化甘草总黄酮.化学与生物工程2011,(02): 81-82
    144.周桃英,罗登宏,李国庆等.AB-8大孔树脂纯化荷叶总黄酮的工艺研究.中国食品添加剂2009,(05):113-119
    145.周林.桑枝黄酮提取分离及抗氧化活性研究.2011,
    146.俞坚.桑叶黄酮类化合物提取、分离鉴定及其抗氧化活性的研究.2007,
    147.景怡,景荣琴,任远,等.AB-8大孔吸附树脂分离纯化玉米须中总黄酮的研究.中医药学报2010,(01):75-78
    148.韦敏,杨中林,吴建民.大孔吸附树脂法分离纯化化橘红中柚皮苷的研究.中成考2007,(03):352-354
    149. A. Z. Zong, H. Z. Cao and F. S. Wang. Anticancer polysaccharides from natural resources:A review of recent research. Carbohydrate Polymers 2012,90 (4):1395-1410
    150. N. Akazawa, K. Taguchi, A. Imai, et al. A case of advanced gastric cancer responding to S-1/paclitaxel/lentinan as neoadjuvant chemoimmunotherapy. Gan to kagaku ryoho. Cancer & chemotherapy 2010,37 (7):1365-1367
    151. T. Hori, T. Ikehara, S. Takatsuka, et al. A case of the local advanced gastric cancer which became a resection possible in S-1/CDDP/lentinan neoadjuvant chemotherapy. Gan to kagaku ryoho. Cancer & chemotherapy 2009,36 (12):2309-2311
    152. N. Isoda, Y. Eguchi, H. Nukaya, et al. Clinical Efficacy of superfine dispersed Lentinan (beta-1,3-glucan) in Patients with hepatocellular carcinoma. Hepato-Gastroenterology 2009,56 (90):437-441
    153. K.-C. Cheng, H.-C. Huang, J.-H. Chen, et al. Ganoderma lucidum polysaccharides in human monocytic leukemia cells:from gene expression to network construction. Bmc Genomics 2007,8
    154. J. W. Hsu, H. C. Huang, S. T. Chen, et al. Ganoderma lucidum polysaccharides induce macrophage-like differentiation in human leukemia THP-1 cells via caspase and p53 activation. Evidence-Based Complementary and Alternative Medicine 2011,1-13
    155. Y. Y. Wang, K. H. Khoo, S. T. Chen, et al. Studies on the immuno-modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides:Functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities. Bioorganic & Medicinal Chemistry 2002,10(4):1057-1062
    156. S. Karnjanapratum and S. You. Molecular characteristics of sulfated polysaccharides from Monostroma nitidum and their in vitro anticancer and immunomodulatory activities. International Journal of Biological Macromolecules 2011,48 (2):311-318
    157. A. J. Ulmer, H. D. Flad, T. Rietschel, et al. Induction of proliferation and cytokine production in human T lymphocytes by lipopolysaccharide (LPS). Toxicology 2000,152 (1-3):37-45
    158.梁兆端,曾耀英,黄秀艳等.芹菜素对RAW264.7细胞增殖、分泌NO和吞噬功能的影响.暨南大学学报(自然科学版)2008,(01):95-98
    159. V. E. C. Ooi and F. Liu. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Current Medicinal Chemistry 2000,7 (7):715-729
    160. J. J. Killion and I. J. Fidler. Therapy of cancer metastasis by tumoricidal activation of tissue macrophages using liposome-encapsulated immunomodulators. Pharmacology & Therapeutics 1998,78(3):141-154
    161. Y. O. Kim, H. W. Park, J. H. Kim, et al. Anti-cancer effect and structural characterization of endo-polysaccharide from cultivated mycelia of Inonotus obliquus. Life Sciences 2006,79 (1): 72-80
    162. H. Liang and S. C. Zhang. Roles of polysaccharide from Branchiostoma belcheri in anti-DNA oxidation and anti-tumor activity in S180 mice. Chinese Journal of Oceanology and Limnology 2009,27 (4):845-850
    163. W. J. Li, S. P. Nie, Y. Chen, et al. Enhancement of cyclophosphamide-induced antitumor effect by a novel polysaccharide from Ganodema atrum in sarcoma 180-bearing mice. Journal of Agricultural and Food Chemistry 2011,59 (8):3707-3716
    164. L. Ren, C. Perera and Y. Hemar. Antitumor activity of mushroom polysaccharides:a review. Food & Function 2012,3(11):1118-1130
    165. M. Zhang, S. W. Cui, P. C. K. Cheung, et al. Polysaccharides from mushrooms:a review on their isolation process, structural characteristics and antitumor activity. Trends in Food Science& Technology 2006,18 (1):4-19
    166. S. P. Wasser. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology 2002,60 (3):258-274
    167. M.-D. Han, H. Jeong, J.-W. Lee, et al. The composition and bioactivities of Ganoderan by mycelial fractionation of Ganoderma lucidum IY009. Korean Journal of Mycology 1995,23 (4): 285-297
    168. H. Kawagishi, T. Kanao, R. Inagaki, et al. Formolysis of a potent antitumor (1-6)-beta-D-glucan protein complex from agaricus-blazei fruiting bodies and antitumor-activity of the resulting products. Carbohydrate Polymers 1990,12 (4):393-403
    169. Y. P. Keepers, P. E. Pizao, G. J. Peters, et al. Comparison of the sulforhodamine-B protein and tetrazolium (MTT) assays for invitro chemosensitivity testing. European Journal of Cancer 1991,27 (7):897-900
    170. G. J. Kerkvliet. Drug discovery screen adapts to changes. Journal of the National Cancer Institute 1990,82 (13):1087-1088
    171. T. Mizuno. P. Yeohlui, T. Kinoshita, et al. Antitumor activity and chemical modification of polysaccharides from niohshimeji mushroom, Tricholma giganteum. Bioscience Biotechnology and Biochemistry 1996,60 (1):30-33
    172. L. Wang, X. X. Li and Z. X. Chen. Sulfated modification of the polysaccharides obtained from defatted rice bran and their antitumor activities. International Journal of Biological Macromolecules 2009,44 (2):211-214
    173. D. Gan, L. P. Ma, C. X. Jiang, et al. Production, preliminary characterization and antitumor activity in vitro of polysaccharides from the mycelium of Pholiota dinghuensis Bi. Carbohydrate Polymers 2011,84 (3):997-1003
    174. F. Mao, B. X. Xiao, Z. Jiang, et al. Anticancer effect of Lycium barbarum polysaccharides on colon cancer cells involves G0/G1 phase arrest. Medical Oncology 2011,28 (1):121-126
    175. J. Wu, J. X. Zhou, Y. G. Lang, et al. A polysaccharide from Armillaria mellea exhibits strong in vitro anticancer activity via apoptosis-involved mechanisms. International Journal of Biological Macromolecules 2012,51 (4):663-667
    176. Q. Xue, J. Sun, M. W. Zhao, et al. Immunostimulatory and anti-tumor activity of a water-soluble polysaccharide from Phellinus baumii mycelia. World Journal of Microbiology& Biotechnology 2011,27 (5):1017-1023
    177. P. Scuderi. Suppression of human-leukocyte tumor necrosis factor secretion by the serine protease inhibitor para-toluenesulfonyl-1-arginine methyl-ester (tame). Journal of Immunology 1989,143 (1):168-173
    178. D. T. Chao and S. J. Korsmeyer. BCL-2 family:Regulators of cell death. Annual Review of Immunology 1998,16395-419
    179. W. Cao, X. Q. Li, X. Wang, et al. A novel polysaccharide, isolated from Angelica sinensis (Oliv.) Diels induces the apoptosis of cervical cancer HeLa cells through an intrinsic apoptotic pathway. Phytomedicine 2010,17 (8-9):598-605
    180. S. E. Park, H. S. Yoo, C.-Y. Jin, et al. Induction of apoptosis and inhibition of telomerase activity in human lung carcinoma cells by the water extract of Cordyceps militaris. Food and Chemical Toxicology 2009,47 (7):1667-1675
    181. M. Shamtsyan, V. Konusova, Y. Maksimova, et al. Immunomodulating and anti-tumor action of extracts of several mushrooms. Journal of Biotechnology 2004,113 (1-3):77-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700