用户名: 密码: 验证码:
“腰—盆—髋”模型模拟腰椎定点坐位旋转手法的有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的建立“腰椎-骨盆-股骨上端”三维有限元生物力学模型,验证所建模型的可靠性;利用所建立的“腰椎-骨盆-股骨上端”模型模拟腰椎定点坐位旋转手法,探索腰椎定点坐位旋转手法的作用机制,评价腰椎定点坐位旋转手法的安全性。
     方法使用64层螺旋CT扫描志愿者第12胸椎以下双侧股骨上端以上范围,得到的CT原始影像图片879张,以DICOM格式存储;将DICOM格式的CT图片导入Mimics10.01软件进行“蒙面”编辑,利用其三维重建功能建立“腰椎-骨盆-股骨上端”几何模型;将模型导入geomagic12进行精修(减少噪音、松弛、删除钉状物、快速平滑、砂纸、填充孔、自动修补功能),以利于网格划分,确定三角形无自相交后输出模型;将geomagic12精修过的几何模型导入hypermesh10,划分四面体网格并添加椎间盘(区分纤维环和髓核)与相关韧带。参照相关文献设置模型各部分材料属性,以双侧股骨上端下表面为边界,模拟腰椎斜扳手法、坐位旋转手法以及牵扳手法加载三个不同工况(①工况1:不加载荷,单纯右旋15°;②工况2:前屈15°,纵向加载300N,右旋15°;③工况3:前屈15°,牵引300N右旋15°),参考前期实验生物力学和有限元分析数据对模型进行加载,运算模拟腰椎三种手法下模型各部位的位移及应力分布,以验证模型的有效性。根据腰椎定点旋转手法的作用原理,将腰椎定点坐位旋转手法进行分解,改变腰椎前屈和侧弯参数,设计四种不同的工况(④X轴:前屈15°,Y轴:侧曲15°,Z右旋15°,纵向加载300N,L1椎体上面15Nm右旋力矩,L4棘突3Nm左偏前30°旋转力矩。⑤X轴:前屈15°,Y轴:侧曲9°,Z右旋15°,纵向加载300N,L1椎体上面15Nm右旋力矩,L4棘突3Nm左偏前30°旋转力矩。⑥X轴:前屈20°,Y轴:侧曲12°,Z右旋15°,纵向加载300N,L1椎体上面15Nm右旋力矩,L4棘突3Nm左偏前30°旋转力矩。⑦X轴:前屈15°,Y轴:侧曲20°,Z右旋15°,纵向加载300N,L1椎体上面15Nm右旋力矩,L4棘突3Nm左偏前30°旋转力矩),将相关数据导入三维有限元模型,进行运算手法作用下各部位的位移及应力分布。
     结果①得到腰椎-骨盆-股骨上端骨质(区别骨松质和骨密质)、椎间盘(区分纤维环和髓核)以及前纵韧带、后纵韧带、黄韧带、棘间韧带、棘上韧带、骶髂韧带、骶结节韧带、髂腰韧带、腹股沟韧带有限元模型。模型包括290771个节点,1321886个四面体单元,296个spring单元。②不加载荷,单纯旋转15°工况下,腰椎-骨盆-股骨上端骨质、椎间盘及各韧带的位移值和应力值与牵引和加载相比,各项指标明显普遍较小。③同时旋转15°,纵向加载和牵引,腰椎-骨盆-股骨上端骨质、椎间盘以及各韧带位移值总体趋势自上而下逐步减小;应力集中分布在椎弓根、腰椎小关节、骶髂关节、股骨颈处,右侧更明显。④相同前屈角度(前屈15°)的情况下,随着侧曲角度的增加(9°-15°-20°),同平面腰椎-骨盆-股骨上端骨质、椎间盘以及各韧带位移增加。同平面腰椎-骨盆-股骨上端骨质、椎间盘以及各韧带的最大位移出现在前屈20°侧曲12°。⑤相同前屈角度(前屈15°)的情况下,随着侧曲角度的增加(9°-15°-20°),同平面腰椎-骨盆-股骨上端骨质、椎间盘以及各韧带应力增加。同平面腰椎-骨盆-股骨上端骨质以及各韧带的最大应力出现在前屈20°侧曲12°。椎间盘的最大应力出现在前屈15°侧曲20°。⑥模拟腰椎定点坐位旋转手法,观察腰椎-骨盆-股骨上端骨质、椎间盘以及各韧带位移的变化趋势,出现自上而下,由右前上方向左后下方递减的趋势。同平面腰椎-骨盆-股骨上端骨质、椎间盘以及各韧带各部位移由右前方向左后方递减的趋势递减。观察腰椎-骨盆-股骨上端骨质以及各韧带位移:对骨质来讲,左髋关节以下基本没有什么位移,但是左髂腰韧带和、右骶棘韧带和右骶结节韧带却出现了明显的位移。⑦模拟腰椎定点坐位旋转手法,观察椎间盘以及各韧带应力的变化趋势,出现自上而下,由左后上方向右前下方递增的趋势。⑧模拟腰椎定点坐位旋转手法,腰椎-骨盆-股骨上端骨质的应力没有出现规律性分布,应力集中在腰椎椎体右前部、椎弓、椎间小关节、骶髂关节以及右股骨颈等处,右侧更明显。⑨纤维环和髓核做为一个整体,和腰椎并不存在同步位移,相邻的椎体和椎间盘的位移相差1-3mm。纤维环和髓核的应力分布并不同步,而且差别比较大。
     结论1.所建立的“腰椎-骨盆-股骨上端”三维有限元模型有效,可以用于对“腰椎定点坐位旋转手法”进行有限元生物力学分析。2.在施行“腰椎定点坐位旋转手法”过程中,腰椎侧弯和前屈都是影响腰椎-骨盆-股骨上端骨质(区别骨松质和骨密质)、椎间盘(区分纤维环和髓核)以及各韧带位移和应力分布的因素。相对来说,前屈对骨质的影响较大,侧弯对椎间盘的影响较大。3.“腰椎定点坐位旋转手法”可以调整小关节结构,松解腰椎小关节粘连,缓解小关节结构紊乱以及滑膜嵌顿引起的腰腿疼痛症状。4.在施行“腰椎定点坐位旋转手法”时注意选择手法旋转的方向,以及手法操作的合适力度,以免加重临床症状或出现并发症。
Objective To bulid the three-dimensional finite elementbiomechanical model and Verify the reliability of the model;Usingthe established lumbar vertebra pelvic-proximal femur model,simulation Lumbar fixed-point Sitting-rotatory manipulation,Explore the mechanism of Lumbar fixed-point Sitting-rotatorymanipulation, and evaluate the safety of Lumbar fixed-pointSitting-rotatory manipulation.
     Method Using64slice Spiral computed tomography (CT), scanned thevolunteer from the inferior margin of12th thoracic vertebra to thesuperior margin of bilateral proximal femur. obtained879CTpictures about original image of the volunteer,and stored them withDICOM format. Imported those CT pictures which with DICOM formatinto Mimics10.01, masked and edited them. Use the function ofthree-dimensional reconstruction,built the model of lumbarvertebra-pelvic-proximal femur; Imported the model into geomagic12and further modified it (function of reducing noise, relaxating,removing nails, fastly smoothing, sandpaper, filling holes,automatic repairing) in order to make the meshing easily. Confirmed there were not self-intersecting triangles in the model, thenimported the model. Imported the geometric model into hypermesh10modified by geomagic12, divied the model with tetrahedron gridand added the inter-vertebral disc (distinguish the annulusfibrosus and nucleus pulposus) and relevant ligament. refer torelevant literature, set the material properties of each part ofthe model. set the surface of bilateral proximal femur’s bottomas boundary, simulation lumbar oblique-pulling manipulation,Lumbar stretch-pulling manipulation and lumbar Sitting rotatory manipulation. Designed three conditions. condition①: noload, dextrorotation15°; condition②: anteflexion15°,Vertical load300N, dextrorotation15°;condition③: anteflexion15°, tract300N, dextrorotation15°. Refer to the data obtainedby previous biological mechanics experiment and the finite elementanalysis loaded the model,in order to Verify the validity of themodel. According to the principle of the Lumbar fixed-pointSitting-rotatory manipul-ation, divided it and loded the modelwith four congitions by changing the angle of lumbar anteflexionand lateral flexion. Condition④: X-axis anteflexion15°, Y-axis lateral flexion15°, Z-axis dextrorotation15°, load300NVertically on L1vertebra body, load15Nm running torque towardsthe right on L1vertebra body, load15Nm running torque at L4spinous process towards left anterior30°; Condition⑤: X-axisanteflexion15°, Y-axis lateral flexion9°, Z-axisdextrorotation15°, load300N Vertically on L1vertebra body, load15Nm running torque towards the right on L1vertebra body, load15Nm running torque at L4spinous process towards left anterior30°; Condition⑥: X-axis anteflexion20°, Y-axis lateral flexion12°, Z-axis dextrorotation15°, load300N Verticallyon L1vertebra body, load15Nm running torque towards the righton L1vertebra body, load15Nm running torque at L4spinous processtowards left anterior30°; Condition⑦: X-axis anteflexion15°, Y-axis lateral flexion20°, Z-axis dextrorotation15°,load300N Vertically on L1vertebra body, load15Nm running torquetowards the right on L1vertebra body, load15Nm running torqueat L4spinous process towards left anterior30°.Imported therelated data into three-dimensional finite element model andoperated, to obtain the displacement and stress-distribution ineach part of the model effected by Lumbar fixed-point Sitting rotatory manipulation.
     Result①Obtained the-dimensionalfinite element model including: bone of lumbar vertebra-pelvic-proximal femur (distinguish between Cancellous bone and Compactbone), lumbar inter-vertebral disc (distinguish between nucleuspulposus and annulus fibrosus), and Anterior longitudinalligament,Posterior longitudinal ligament,Liga-ment flava,Supraspinal ligament,Interspinal ligaments,Sacrospinou ligament,Sacrotuberous ligament, Iliolumbar ligament, Inguinal ligament.with which290771node,1321886tetrahedralsolid element and296spring element.②In the condition of no load, dextrorotation15°, compare the displacement and stress-distribution in the lumbarvertebra-pelvic-proximal femur, lumbar inter-vertebral discand each ligament with tracted and Vertical loaded, The value ofeach index is generally smaller obviously.③In the condition ofdextrorotation15°, tracted and Vertical loaded, the value of thedisplacement and stress-distribution in the lumbar vertebra-pelvic-proximal femur, lumbar inter-vertebral disc and each ligament decreasing from superior to inferior; the distribution ofstress concentrated upon vertebral pedicle, umbar facet joint,sacroiliac joint and collum femoris, right more obviously.④Inthe condition of anteflexion15°, change with the angle of lateralflexion(9°-15°-20°), the value of displacement in the same planeof the lumbar vertebra-pelvic-proximal femur, lumbar inter-vertebral disc and each ligament increasing. The largest valueappear on the condition of anteflexion20°, lateral flexion12°.⑤In the condition of anteflexion15°, change with the angleof lateral flexion(9°-15°-20°), the value of stress in the sameplane of the lumbar vertebra-pelvic-proximal femur, lumbar inter-vertebral disc and each ligament increasing. The largest valueof lumbar vertebra-pelvic-proximal femur appear on the conditionof anteflexion20°, lateral flexion12°, The largest value oflumbar inter-vertebral disc appear on the condition of anteflexion15°, lateral flexion20°.⑥In the condition of simulatingLumbar fixed-point Sitting-rotatory manipulation, the trendencyof displacement in the lumbar vertebra-pelvic-proximal femur,lumbar inter-vertebral disc and each ligament descreasing fromsuperior to inferior, and from the right antero-superior to leftpostero-inferior,and descreasing from the right antero-superiorto left postero-inferior in the same plane in the lumbar vertebra-pelvic-proximal femur, lumbar inter-vertebral disc and eachligament follow this law also. For the displacement of vertebra-pelvic-proximal femur, there almost little displacement below theleft articulatio coxa. But there was obvious displacement in leftIliolumbar ligament, right Sacrospinou ligament and rightSacrotuberous ligament.⑦In the condition of simulating Lumbar fixed-point Sitting-rotatory manipulation, the trendency ofstress in the lumbar inter-vertebral disc and each ligamentincreasing from superior to inferior, and from the leftposterosuperior to right anteroinferior.⑧In the condition ofsimulating Lumbar fixed-point Sitting-rotatory manipulation,the trendency of stress in the lumbar vertebra-pelvic-proximalfemur was not occurred any regular distribution. The distributionof stress concentrated upon vertebral pedicle, umbar facet joint,sacroiliac joint and collum femoris, right more obviously.⑨Asa whole,nucleus pulposus and annulus fibrosus have not synchronousdisplacement with adjacentlumbar.there was a relative displacementbetween adjacent lumbar and lumbar inter-vertebral disc,about1-3mm. at the same time, there was not synchronous stress betweennucleus pulposus and annulus fibrosus. What is more, differentsignificantly.
     Conclusion1. Built the three-dimensional finite element model oflumbar vertebra-pelvic-proximal femur successfully,it can beused to simulate Lumbar fixed-point Sitting-rotatorymanipulation and make the finite element analysis.2. During theoperation of Lumbar fixed-point Sitting-rotatoryr manipulation,both anteflexion and lateral flexion was the main factor whicheffects the displacement and stress in the lumbar vertebra-pelvic-proximal femur (distinguish between Cancellous bone and Compactbone), lumbar inter-vertebral disc (distinguish between nucleuspulposus and annulus fibrosus), and each ligament. relativelyspeaking, anteflexion put more important influence on thebone(distinguish between Cancellous bone and Compact bone). andlateral flexion put more important influence on the lumbar inter -vertebral disc (distinguish between nucleus pulposus and annulusfibrosus).3. Those can occurre when the lumbar Sitting-rotatorymanipulation was operated, that disordered umbar facet joint wasadjusted, and adhered umbar facet joint was released. the pain inwaist and lower extremities caused by disoredered umbar facet jointand incarcerated synovial membrane was relieved accordingly.4.During the operation of lumbar Sitting-rotatory manipulation, wemust pay attention to the direction and the force ofmanipulation,lest aggravating clinical symptoms or giving rise tocomplications.
引文
[1] Leetun DT, Ireland ML, Willson JD, et al. Core stabilitymeasures as risk factors for lower extremity injury inathletes[J]. Med Sci Sports Exerc,2004.36(6):926-34
    [2] Willson JD, Dougherty CP, Ireland ML, et al. Core stability andits relationship to lower extremity function and injury[J]. JAm Acad Orthop Surg,2005.13(5):316-25
    [3] Willson JD, Petrowitz I, Butler RJ, et al. Male and femalegluteal muscle activity and lower extremity kinematics duringrunning[J]. Clin Biomech (Bristol, Avon),2012.27(10):1052-7
    [4] Lars Kolsrud.Kedcord S-E-T Sport1(翻译:司瑾).北京体育大学引进国外智力项目[R].北京:北京体育大学外事处,2007
    [5]刘邦忠,何萍,朱一皓.慢性腰痛患者在脊柱突然失衡时多裂肌的肌电表现[J].中国康复医学杂志,2003.(10):33-35
    [6]刘邦忠.躯干肌在腰椎稳定性中的作用[J].中华物理医学与康复杂志,2003.(01):49-50
    [7]中华人民共和国国务院.医疗机构管理条例,1994-09-01
    [8]张勇,李义凯.腰椎旋转手法的生物力学及相关临床解剖学研究[D].第一军医大学优秀硕士学位论文,2002,5:19-21,28
    [9] Li Kang-hua,Wang Hua,Huang Xiao-yuan,etal. Establishment offinite element model of lumbar motion segments and itsbiomechani cal significance[J].Chinese Journal of ClinicalRehabilitati on,2005,14(9):198-99
    [10]Sylvestre PL,Villemure I,Aubin CE. Finite element modeling ofthe growth plate in a detailed spine model. Med Biol Eng Comput,2007.45(10):977-88
    [11]Wosu R,Sergerie K,Levesque M,Villemure I.Mechanical properties of the porcine growth plate vary with developmentalstage[J]. Biomech Model Mechanobiol,2012,11(3-4):303-12
    [12]Polikeit A, Nolte LP, Ferguson SJ. The effect of cementaugmentation on the load transfer in an osteoporotic functionalspinal unit:finite-element analysis[J]. Spine(Phila Pa1976),2003.28(10):991-6
    [13]Ahmad F,Koichi S,Goel V,et al. Biomech anical rationale ofossification of the second ary ossification center onapophyseal bony ring fracture: A biomechanical study[J].Clinical Biomechan ics,2007,22:1063-7
    [14]田强,吴山.坐位旋转手法时腰椎应力及位移的有限元分析[D].广州中医药大学优秀硕士学位论文,2008,5:13
    [15]徐海涛,徐达传,张美超.坐位旋转手法时L4-5变形和位移的研究[J].中国临床解剖学杂志,2008,26(3):321-324
    [16]徐海涛,李松,刘澜等.腰椎斜扳手法时椎间盘的有限元分析[J].中国组织工程研究与临床康复,2011.(13):2335-8
    [17]冯天有.中西医结合治疗软组织损伤[M].北京:人民卫生出版社,1977:80
    [18]冯宇,高燕,冯天有.脊柱定点旋转复位法治疗腰椎间盘突出症的临床和影像学疗效观察[J].中国骨伤,2011.(01):30-33
    [19]冯伟,冯天有,毕永民等.借助3D螺旋CT重建探讨脊柱(定点)旋转复位法治疗机制的初步研究[J].中国骨伤,2012.(04):328-30
    [20]吴山,张美超,李义凯.两种坐位旋转手法腰椎应力及位移的有限元分析[J].广东医学,2010,8(31):992-4
    [21]郭汝松,林伟锋,田强,吴山.立体定位斜扳法治疗腰椎间盘突出症的临床研究[J].颈腰痛杂志,2009.(01):84-85
    [22]王国林,李义凯,张美超,等.坐位腰椎旋转手法时腰椎单元内在应力和位移的实时监测[J].中国骨伤.2007,20(3):175-175
    [23]Yamamoto I,Panjabi MM,Crisco T,et al.Three-dimensional movements of the whole lumbar spine and lumbosacral joint[J]. Spine(Phila Pa1976),1989.14(11):1256-60
    [24]Mcgregor AH, Mccarthy ID, Hughes SP. Motion characteristics ofthe lumbar spine in the normal population.Spine[J].1995,20(22):2421-2428
    [25]McGregor AH, Henley A, Morris TP, et al. An evaluation of apostoperative rehabilitation program after spinal surgery andits impact on outcome[J].Spine (Phila Pa1976),2012.37(7):E417-22.
    [26]McGregor AH, Dore CJ, Morris TP, et al. Function after spinaltreatment,exercise and rehabilitation (FASTER):improving thefunctional outcome of spinal surgery[J]. BMC MusculoskeletDisord,2010.11:17
    [27]McGregor AH, Hukins DW.Lower limb involvement in spinalfunction and low back pain[J].J Back Musculoskelet Rehabil,2009.22(4):219-22
    [28]杨述华.实用脊柱外利学仁[M].北京:人民军医出版社,2004
    [29]王国林.腰椎定点旋转手法对退变腰椎间盘内在应力及位移的影响
    [D].第一军医大学优秀硕士学位论文,2002.3
    [30]徐海涛,徐传达,李云贵.坐位旋转手法时退变腰椎间盘内在应力和位移的有限元分析[J].中国康复医学杂志,2007,22(9):769-71
    [31]徐海涛,李松,刘澜,等.腰椎斜扳手法时椎间盘的有限元分析[J].中国组织工程研究与临床康复,2011.(13):2335-8
    [32]宋铁兵.腰椎间盘突出症三扳手法规范及力学量化研究[D].中国中医科学院优秀硕士论文,2008,05
    [33]张军,韩磊,王芃,等.分步斜扳手法治疗腰椎间盘突出症的临床疗效观察[J].中国骨伤,2010.(02):84-6
    [34]毕胜,李义凯,赵卫东,等.推拿手法治疗腰推间盘突出症的机制[J].中国康复医学杂志,2001,16(1):8-10
    [35]冯宇,高燕,邓京京,等.椎体位移离体动物模型的建立及手法治疗机制的实验研究.中国中医骨伤科杂志,2001,9(6):31
    [36]冯宇,高燕,冯天有.脊柱定点旋转复位法治疗腰椎间盘突出症的临床和影像学疗效观察[J].中国骨伤,2011,(01):30-3
    [37]林俊山、魏毅、李兆文,等,不同角度牵引治疗腰椎间盘突出症的疗效观察[J].中医药学刊,2004,22(6):1035-6
    [38]林俊山,林石明,林乔龄.不同角度和牵引力对腰椎间盘作用的实验究[J].福建中医学院学报,2002.(01):21-5
    [39]魏毅,林俊山.不同角度牵引加针刺治疗腰椎间盘突出症[J].福建中医学院学报,2003.13(06):15-6
    [40]鲁雯,李虎,王瑞臣.腰椎牵引的力学机理与生理效应的探讨[J].中国矫形外科杂志,2005,(15):1159-61
    [41]姜建勇.推拿治疗退行性腰椎滑脱症的临床试验研究[D].上海中医药大学优秀硕士论文,2004:1,27
    [42]Vibert BT, Sliva CD, Herkowitz HN. Treatment of instability andspon dylolisthesis: surgical versus nonsurgical treatment[J].Clin Orthop Relat Res,2006,443:222-7.
    [43]严隽陶.推拿学[M].北京:中国中医药出版社,2003:67,145
    [44]戴德纯,房敏,严隽陶.退行性腰椎滑脱症的推拿临床研究进展[J].按摩与导引,2006,22(7):42-5
    [45]戴德纯,房敏,沈国权.脊柱微调手法对退行性腰椎滑脱症腰椎稳定性的影响[J].中国康复医学杂志,2006.(12):1110-2
    [46]刘鲲鹏,房敏,戴德纯,等.推拿干预慢性疲劳综合征患者骨骼肌中位频率的临床研究[J].中西医结合学报,2011.(10):1083-7
    [47]林泊韬.屈脊团身翻滚手法治疗退行性腰椎滑脱症的临床观察[D].南京中医药大学优秀硕士论文,2009,04.10
    [48]Cohen SP. Sacroiliac joint pain: a comprehensive review ofanatomy, diagnosis, and treatment[J]. Anesth Analg,2005.101(5):1440-53
    [49]Dreyfuss P, Dreyer SJ, Cole A, et al. Sacroiliac joint pain[J].J Am Acad Orthop Surg,2004.12(4):255-5
    [50]龙层花,钟士元,王廷臣.骨盆旋移综合征[J].颈腰痛杂志,2004,25(3):l98-202
    [51]栾明拥,栾明义,汪超等.栾氏正骨诊治骨关节错缝的特点[J].辽宁中医杂志,2002,29(8):462-3
    [52]严隽陶.推拿学[M].北京:中国中医药出版社,2003,146
    [53]Cohen SP,Larkin TM,Barna SA,et al.Lumbar discography: a comprehensive review of outcome studies, diagnostic accuracy, andprinciples[J].Reg An esth Pain Med,2005,30(2):163-83
    [54]Hansen HC, McKenzie-Brown AM, Cohen SP,et al.Sacroiliac jointinter ventions: a systematic review[J].Pain Physician,2007.10(1):165-84
    [55]Cohen SP, Hurley RW, Christo PJ, et al. Clinical predictors ofsuccess and failure for lumbar facet radiofrequency denervation[J]. Clin J Pain,2007.23(1):45-52
    [56]梁善皓,叶淦湖,陈焕亮,等.骶髂关节半脱位的临床研究[J].中国康复医学杂志,2007,22(2):172-3
    [57]郭健红,林木南,高晖,等.手法整复治疗骶髂关节错位240例[J].福建中医药,2005.(06):19-20
    [58]郭健红,秦茵.半导体激光联合Maitland手法治疗非特异性下背痛[J].中国激光医学杂志,2010.(04):251-3
    [59]李明,徐荣明.骶髂关节的解剖学和生物力学研究现状[J].骨与关节损伤杂志,2003,18(7):493-5
    [60]范炳华.推拿学[M].北京:中国中医药出版社,2008:166-8
    [61]孙雪生,黄素芳,王朝亮,等.手法复位治疗骶髂关节紊乱的治疗体会[J].泰山医学院学报,2006,27(4):351-2
    [62]王学昌,肖红恩,王西彬.三步复合手法治疗骶髂关节错缝132例[J].中国中医骨伤科杂志,2011,(06):40-1
    [63]郭俊海.推拿手法治疗骶髂关节损伤[J].中国实验方剂学杂志,2011,(14):317-8.
    [64]王恒斌,冯前.平乐郭氏推按整复手法治疗骶髂关节错位120例[J].中国中医骨伤科杂志.2011,(11):44-5
    [65]聂清培.手法治疗骶髂关节扭伤40例临床体会[J].中国卫生产业,2011,(Z2):82
    [66]孙慧民.手法治疗骶髂关节后错位疗效观察[J].中国中医药信息杂志,2012,(06):66-7
    [67]朱剑文,姚栩新,洪向东.短杠杆微调结合针刺推拿治疗骶髂关节紊乱46例[J].上海中医药杂志,2006,40(9):57
    [68]毛建军,巫中华,凌纯,等.手法治疗骶髂关节损伤的体会[J].中医正骨,2007,19(9):44
    [69]李普光,孙宇一,罗杰,等.手法治疗骶髂关节错位85例[J].中医药学报,2005,33(2):l7-8
    [70]屈留新,邢丽阳.手法治疗股二头肌损伤型腰腿痛的疗效分析及机理研究[J].中国中医骨伤科杂志.2002,10(3):43-4
    [71]高晖,林木南.改良斜扳法治疗骶髂关节紊乱症36例[J].福建中医药,2006,37(4):25
    [72]Snijders CJ, Hermans PF, Kleinrensink GJ.Functional aspects ofcross-legged sitting with special attention to piriformismuscles and sacroiliac joints[J].Clin Biomech (Bristol,Avon),2006.21(2):116-21
    [73]Vlaanderen E,Conza NE,Snijders CJ,Bouakaz A, et al.Low backpain, the stiffness of the sacroiliac joint: a new method usingultrasound[J]. Ultrasound Med Biol,2005,31(1):39-44
    [74]Pel JJ,Spoor CW,Pool-Goudzwaard AL,et al.Biomechanical analysis of reducing sacroiliac joint shear load by optimization ofpelvic muscle and ligament forces[J]. Ann Biomed Eng,2008,36(3):415-24
    [75]Kraan GA,Smit TH,Hoogland PV, et al.Lumbar extraforaminalligaments act as a traction relief and prevent spinal nervecompression[J].Clin Biomech (Bristol,Avon),2010.25(1):10-5
    [76]孙树椿,孙之镐.临床骨伤科学[M].北京:人民卫生出版社,2006
    [77]叶淦湖,张美超,李义凯.模拟推拿时腰椎小关节有限元模型的生物力学分析[J].广州中医药大学学报,2003,20(3):195-7
    [78]梁善皓,叶淦湖,陈焕亮,等.骶髂关节半脱位的临床研究[J].中国康复医学杂志.2007,(02):172-3
    [79]叶淦湖,梁伟雄.自体筋膜固定治疗腰椎不稳的生物力学研究[J].中国临床解剖学杂志,2005,(03):291-4
    [80]徐海涛,张美超,李义凯,等.坐位旋转手法对正常腰椎间盘内在压力和位移的实时监测的实验研究[J].中国康复医学杂志,2005,20(8):563-5
    [81]陈浩,徐海涛,张美超,等.坐位旋转手法对腰椎内压力的实时监测[J].中国临床学解剖学杂志,2005,23(4):420-2
    [82]张勇.腰椎旋转手法对髓核内压力和神经根位移的影响[J].颈腰腿痛,2001,22(3):184-6
    [83]van TMW, Jellema P, van PMN, et al. WITHDRAWN: Lumbar supportsfor prevention and treatment of low-back pain[J].CochraneDatabase Syst Rev,2006,(2):CD001823
    [84]Danielsson AJ,Hasserius R,Ohlin A, et al.Body appearance andquality of life in adult patients with adolescent idiopathicscoliosis treated with a brace or under observation aloneduring adolescence[J].Spine (Phila Pa1976),2012,37(9):755-62
    [85]Dionne CE,Dunn KM,Croft PR,et al.A consensus approach towardthe standardization of back pain definitions for use inprevalence studies.Spine (Phila Pa1976),2008,33(1):95-103
    [86]Reigo T,Tropp H,Timpka T.Clinical findings in a population withback pain. Relation to one-year outcome and long-term sickleave[J].Scand J Prim Health Care,2000,18(4):208-14
    [87]Reigo T,Tropp H,Timpka T.Absence of back disorders in adultsand work-related predictive factors in a5-year perspective[J].Eur Spine J,2001,10(3):215-20;discussion221
    [88]Bressler HB,Keyes WJ,Rochon PA,et al.The prevalence of low backpain in the elderly.A systematic review of the literature[J].Spine (Phila Pa1976),1999,24(17):1813-9
    [89]高应超,郭征,付军,等.坐位骨盆的三维有限元分析[J].中国组织工程研究与临床康复,2011,(22):3997-4001
    [90]李全,张治宇,郑龙坡,等.骶骨次全切除术后骨盆有限元模型的建立及验证[J].中国组织工程研究与临床康复,2008,10(28)8649-52
    [91]李全,郑龙坡,杨成伟,等.改良Galveston技术单侧固定骶髂关节的三维有限元分析[J].中国组织工程研究与临床康复,2009.(22):4273-6
    [92]杨安礼,洪水棕,林兆华,等.站、坐位态骨盆应力分布的实验研究[J].生物医学工程与临床,2002,(04):206-8
    [93]Martins JA, Pato MP, Pires EB, et al.Finite element studies ofthe deformation of the pelvic floor[J].Ann N Y Acad Sci,2007.1101:316-34
    [94]Parente MP, Natal JRM, Mascarenhas T, et al. The influence ofthe mat erial properties on the biomechanical behavior of thepelvic floor muscles dur ing vaginal delivery[J].J Biomech,2009,42(9):1301-6
    [95]Phillips AT, Pankaj P, Howie CR, Usmani AS, Simpson AH. Finiteele ment modelling of the pelvis: inclusion of muscular andligamentous boundary conditions[J].Med Eng Phys,2007,29(7):739-48
    [96]Clarke SG, Phillips AT, Bull AM. Evaluating a suitable levelof model complexity for finite element analysis of the intactacetabulum[J]. Comput Me thods Biomech Biomed Engin,2011,14(12)1105-11
    [97]Clarke SG, Phillips AT, Bull AM, et al. A hierarchy of computationally derived surgical and patient influences on metal onmetal press-fit acetabular cup failure[J].J Biomech,2012,45(9):1698-704
    [98]Li Z, Kim JE, Davidson JS, Etheridge BS, Alonso JE, EberhardtAW. Biomechanical response of the pubic symphysis in lateralpelvic impacts: a finite element study[J].J Biomech,2007,40(12):2758-66
    [99]Kim JE,Li Z,Ito Y,et al.Finite element model development of achild pelvis with optimization-based material identification[J]. J Biomech,2009,42(13):2191-5
    [100]Little JP,Taddei F,Viceconti M,et al. Changes in femur stressafter hip resurfacing arthroplasty: response to physiologicalloads[J].Clin Biomech(Bri stol,Avon),2007,22(4):440-8
    [101]Little JP,Pearcy MJ,Pettet GJ.Parametric equations to represent the profile of the human intervertebral disc in thetransverse plane[J].Med Biol Eng Comput,2007,45(10):939-45
    [102]Taylor M. Finite element analysis of the resurfaced femoralhead[J]. Proc Inst Mech Eng H,2006,220(2):289-97
    [103]Wong AS, New AM, Isaacs G, et al. Effect of bone materialproperties on the initial stability of a cementless hip stem:afinite element study.[J] Proc Inst Mech Eng H,2005,219(4):265-75
    [104]周建伟.球囊扩张骨水泥填充治疗股骨头缺血坏死的实验性研究[D].中国人民解放军军医进修学院博士论文,2012,5
    [105]Polgár K,Gill HS,Viceconti M,et al. Strain distributionwithin the hu man femur due to physiological and simplifiedloading: finite element analysis using the muscle standardized femur model[J].Proc Inst Mech Eng,2003,217(3):173-89
    [106]Rudman KE,Aspden RM,Meakin JR.Compression or tension? Thestress distribution in the proximal femur[J].Biomed EngOnline,2006,5,12
    [107]Gupta S, New AM,Taylor M. Bone remodelling inside a cementedresurfaced femoral head[J].Clin Biomech(Bristol,Avon),2006,21(6):594-602
    [108]Radcliffe IA, Taylor M. Investigation into the effect ofvarus-valgus orientation on load transfer in the resurfacedfemoral head:a multi-femur finite element analysis[J].ClinBiomech (Bristol, Avon),2007,22(7):780-786
    [109]Radcliffe IA, Prescott P, Man HS, et al.Determination ofsuitable sample sizes for multi-patient based finite elementstudies[J].Med Eng Phys,2007,29(10):1065-72
    [110]Radcliffe IA, Taylor M. Investigation into the affect ofcementing techniques on load transfer in the resurfaced femoral head: a multi-femur finite element analysis[J].Clin Biomech (Bristol, Avon),2007,22(4):422-30
    [111]胡勇,谢辉,杨述华.三维有限元分析在脊柱生物力学中应用[J].医用生物力学,2006,21(3):246-50
    [112]杜瑞卿,陈以国,张鹏,等.脊柱生物力学有限元分析法的概述[J].北京生物医学工程,2004,23(1):78-80
    [113]闫广奎,叶君健.有限元分析法在腰椎生物力学研究中的应用[J].中国组织工程研究,2012,(22):4117-20
    [114]付帅,黄菊英.腰椎有限元分析及其临床意义[J].医疗卫生装备,2012,(10):76-8
    [115]苏晋,赵文志,陈秉智等.建立全腰椎有限元接触模型[J].医用生物力学,2010,(03):200-5
    [116]付裕,阮狄克,刘斌,等.正常人体颈椎间盘的三维有限元分析[J].内蒙古医学院学报,2007,29(2):94-96
    [117]Pahl MA,Brislin B,Boden S,et al.The impact of four commonlumbar spine diagnoses upon overall health status[J].Spine,2006S6(2):125-30
    [118]Cummins J,Lurie JD,Tosteson TD,et al.Descriptive Epidemiology and Prior Healthcare Utilization of Patients in theSpine Patient Outcomes Re search Trial’s(SPORT) Three Observational Cohorts-Disc Herniation, Spinal Stenosis,and Degenerative Spon dylolisthesis[J].Spine.2006,31(7):806-14
    [1]张重文,金宏柱.台湾骨节正骨推拿治疗单纯型腰椎间盘突出症的临床评价和机制分析[D].南京中医药大学博士论文,2011,04
    [2]王守丰,邱勇.生物力学因素对椎体生长板的影响和临床意义[J].中国脊柱脊髓杂志,2006,16(04):301-03
    [3]张云坤,郁忠杰,杨闻强,等.椎间盘镜下经椎弓根椎体植骨成形术治疗胸腰椎压缩性骨折[J].中华创伤杂志,2003,19(10):596-9
    [4] Leferink VJ, Keizer HJ, Oosterhuis JK, et al. Functional outcomein patients with thoracolumbar burst fractures treated withdorsal instrumentation and transpedicular cancellous bonegrafting[J]. Eur Spine J,2003.12(3):261-7
    [5]尹知训,丁红梅,靳安民,等.胸腰椎骨质疏松压缩性骨折经椎弓根植骨的生物力学研究[J].中国临床解剖学杂志,2008,26(2):196-8
    [6]施俊武,池永龙,郭晓山.磷酸钙骨水泥注射椎体成形术的生物力学研究[J].浙江创伤外科,2005,10(4):238-41
    [7]杜东鹏,姜文雄,潘奇,等.经皮椎体成形术在胸、腰椎压缩骨折中的应用[J].颈腰痛杂志,2011.(01):29-31
    [8]徐海涛,李松,罗筱伟,等.身高对腰椎斜扳手法“咔哒”声响时推扳力的影响[J].中国疗养医学,2011,(05):391-2
    [9]吴山,张美超,李义凯,等.两种坐位旋转手法腰椎应力及位移的有限元分析[J].广东医学,2010,(08):992-4
    [10]Niosi CA,Wilson DC,Zhu Q,et al.The effect of dynamic posteriorstabilization on facet joint contact forces: an in vitroinvestigation[J].Spine (Phila Pa1976),2008,33(1):19-26
    [11]Natarajan RN,Lavender SA,An HA,et al.Biomechanical response ofa lumbar intervertebral disc to manual lifting acti vities:aporoelastic finite element model study[J].Spine,2008,33(18):1958-65
    [12]Serhan HA, Varnavas G, Dooris AP, et al.Biomechanics of theposterior lumbar articulating elements[J]. Neurosurg Focus,2007,22(1):E1
    [13]Tischer T, Aktas T, Milz S, et al. Detailed pathological changesof human lumbar facet joints L1-L5in elderly individuals[J].Eur Spine,2006,15(3):308-15
    [14]Abbas J, Hamoud, K, Peleg S, et al.Facet Joints Arthrosis inNormal and Stenotic Lumbar Spines[J].Spine,2011,36(24):E1541-6
    [15]de Schepper EI, Damen J, van MJB, et al. The association betweenlumbar disc degeneration and low back pain: the influence ofage, gender, and individual radiographic features[J].Spine(Phila Pa1976),2010,35(5):531-6.
    [16]Williams FM, Popham M, Sambrook PN, et al. Progression of lumbardisc degeneration over a decade: a heritability study[J]. AnnRheum Dis,2011,70(7):1203-7.
    [17]Alexiou GA, Voulgaris S. The influence of body mass index onlumbar disc degeneration: comment on the article by Samartziset al[J].Arthritis Rheum,2012.64(12):4163-4;author reply4164-5
    [18]Guo LX, Wang ZW, Zhang YM, et al. Material property sensitivityanalysis on resonant frequency characteristics of the humanspine[J].J Appl Biomech,2009,25(1):64-72
    [19]闰家智.腰椎有限元模型建立与临床应用[D].北京:北京协和医学院优秀硕士论文,2008,5
    [20]Li H, Wang Z.Intervertebral disc biomechanical analysis usingthe finite element modeling based on medical.Images[J].ComputMed Imaging Graph,2006,30(6-7):363-70
    [21]Ruberte LM,Natarajan RN,Andersson GB.Influence of single-level lumbar degenerative disc disease on the behavior of theadjacent segment-a finite element model.study[J],J Biomech,2009,42(3):341-8
    [22]解洪刚,陈海龙.腰脊柱、骨盆生物力学及腰腿痛的病因分析[J].中国现代医药杂志,2011,11:130-3
    [23]Moore RJ,Colloca CJ,Gunzburg R,et al.Biomechancial quantification of pathologic manipulable spinal lesions: an in vivoovine model of spondy lolysis and intervertebral discdegeneration[J].J Manipulative Physiol Ther.2012,35(5):354-66
    [24]Rohlmann A, Zander T, Krishnakanth P, et al. Diurnal variationsin intervertebral disc height affect spine flexibility,intradiscal pressure and contact compressive forces in thefacet joints. Comput Methods Biomech Biomed Engin[J].2010,13(5):551-7
    [25]Fagan AB, Sarvestani G, Moore RJ, et al. Innervation of anulustears: an experimental animal study[J]. Spine (Phila Pa1976),2010,35(12):1200-5
    [26]Zhu QA, Park YB, Sjovold SG, et al. Can extra-articular strainsbe used to measure facet contact forces in the lumbar spine?An in-vitro biomechanical study[J].Proc Inst Mech Eng H,2008,222(2):171-84
    [27]Gries NC,Berlemann U,Moore RJ,Vernon-Roberts B.Early histologic changes in lower lumbar discs and facet joints and theircorrelation[J].Eur Spine J,2000,9:23-9
    [28]肖进,张美超,赵卫东,等.腰椎小关节力学机制的有限元分析[J].南方医科大学学报,2008,28(10):1916-8
    [29]Natarajan RN, Lavender SA, An HA,et al.Biomechanical responseof a lumbar intervertebral disc to manual lifting activities:a poroelastic finite element model study [J].Spine,2008,33(18):1958-65
    [30]Natarajan RN,Qasim M, An HS, et al. Initiation and progressionof mechanical damage in the intervertebral disc under cyclicloading using continuum damage mechanics methodology:A finiteelement study[J].J Bio mech,2012,45(11):1934-40
    [31]刘洋,陈方舟,梅红军,等.静止站立位正常骨盆的生物力学研究[J].临床医学工程,2010,17(6)7-11
    [32]Garras DN,Carothers JT,Olson SA.Single-leg-stance (flamingo)radio graphs to assess pelvic instability: how much motion isnormal[J]?J Bone Joint Surg Am,2008,90(10):2114-8
    [33]申喜生.经皮骶髂螺钉内固定治疗骶髂复合体损伤[J].中医正骨.2011,(09):69-71
    [34]Moed BR, Vrahas MS. Disruptions of the pelvic ring: an update:editor ial comment[J].Clin Orthop Relat Res.2012,470(8):2073-4
    [35]钱齐荣,贾连顺,高建新,等.骶髂关节面形态的测量及其生物力学意义[J].临床骨科杂志,2002,5(1):1-5
    [36]Pool-Goudzwaard A,Hoekvan Dijke G, Mulder P,et al.The iliolumbar ligam ent: its influence on stab ility o f the sacro iliacjoint[J].Clin B iomech (Bristol,Avon),2003,18(2):99-105
    [37]Van Wingerden JP, Vleeming A, Buyruk HM, et al.Stabilizationof the sacroiliac joint in vivo: verification of muscularcontribution to force closure of the pelvis[J].Eur Spine J,2004,13(3):199-205.
    [38]Pel JJ, Spoor CW, Pool-Goudzwaard AL,et al.Biomechanical analysis of reducing sacroiliac joint shear load by optim izationof pelvic muscle and ligament forces[J].Ann Biomed Eng,2008,36(3):415-24.
    [39]柏树令.系统解剖学[M].北京:人民卫生出版社,2001:95-9.
    [40]Snijders CJ,Hermans PF, Kleinrensink GJ.Functional aspects ofcross-legged sitting with special attention topiriformismuscles and sacroiliac joints [J]. Clin Biomech(Bristol, Avon),2006,21(2):116-21
    [41]Richa rdson CA, Snijders CJ, Hides JA, et al.The relationbetween the transversus abdom in is m uscles, sacroiliac jointmechanics,and low back pain [J]. Spine(Ph ila Pa1976),2002,27(4):399-405
    [42]Mitchell B,Colson E,Chandramohan T.Lumbopelvic mechanics[J].Br J Sports Med,2003,37(3):279-80
    [43]Cook KM, Heiderscheit B. Conservative management of a youngadult with hip arthrosis[J]. J Orthop Sports Phys Ther,2009,39(12):858-66
    [44]Maus T. Imaging the back pain patient[J]. Phys Med Rehabil ClinN Am,2010,21(4):725-66
    [45]Zilber S,Lazennec JY-Gorin M,et al.Variations of caudal,central,and cranial acetabular anteversion according to thetilt of the pelvis[J].Surg Radiol Anat,2004,26(6):462-5
    [46]Martinon-Tomes M.Quantifying trabecular orientation in thepelvic cancellous bone of modern humans, chimpanzees,and theKebara Neanderthal [J].Am J Hum Biol,2003,15(5):647-61
    [47]Ryan TM, van Rietbergen B. Mechanical significance of femoralhead trabecular bone structure in Loris and Galago evaluatedusing micro mechanical finite element models [J].Am J PhysAnthropol,2005,126(1):82-96
    [48]Fajardo RJ, Muller R, Ketcham RA, et al. Nonhuman anthropoidprimate femoral neck trabecular architecture and itsrelationship to locomotor mode[J].Anat Rec(Hoboken),2007,290(4):422-36
    [49]Widmer KH, Zurfluh B, Morscher EW Load transfer and fixationmode of press-fit acetabular sockets [J].JArthroplasty,2002,17(7):926-35
    [50] Schmalzried TP.The importance of proper acetabular componentpositi oning and the challenges to achieving it[J].OperativeTechniques in Orthopaedics,2009,19(3):132-6
    [51] Dongyun Gu,Yazhu Chen, Kerong Dai,et al.The shape of theacetabular cartilage surface: A geometric morphometric studyusing three-dimensional scanning[J]. Medical Engineering&Physics,2008,30(8):1024-31
    [52] Sparks DR. Beason DR, Etheridge BS, et aL. Contact pressuresin the flexed hip joint during lateral trochanteric loading[J].J Orthop Research,2005,23(2):359-366
    [53]Eero Hirvensalo,Jan Lindahl,Veikko Kiljunen. Modified and newapproaches for pelvic and acetabular surgery[J]. Injury J CareInjured,2007,38(4):431-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700