用户名: 密码: 验证码:
芪卫颗粒治疗DN临床观察及调节PEDF/USF_2表达对DN肾纤维化的干预机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分为文献研究、临床观察、实验研究三部分。
     文献研究介绍了近年来国内外对糖尿病肾病(DN)发病机制研究的主要观点、进展情况和发展趋势,以及中医对DN病因病机、辨证论治和实验研究等方面的进展情况,初步探讨了目前研究尚待解决的问题
     临床观察目的:观察芪卫颗粒防治糖尿病肾病的临床疗效。方法:将70例证属气阴两虚、肾络瘀滞的糖尿病肾病Ⅲ期及Ⅳ期患者随机分为缬沙坦组和芪卫颗粒组,缬沙坦组采用基础治疗加缬沙坦口服,芪卫颗粒组采用基础治疗加芪卫颗粒口服,疗程为3个月,观察实验前后两组患者的中医临床症状、尿蛋白、早期血清标志物TGF-β1、CRP变化情况。结果:与缬沙坦组比较,芪卫颗粒组患者临床症状明显减轻(P<0.05),尿蛋白、血清TGF-β1、CRP水平明显降低(P<0.05);两组综合疗效比较,芪卫颗粒组总有效率为87.9%,缬沙坦组总有效率为66.7%,芪卫颗粒组优于缬沙坦组,(P<0.05);整个治疗阶段未见不良反应。结论:芪卫颗粒可明显改善DN患者的临床症状,减少尿白蛋白排泄,抑制DN机体微炎症状态、下调致纤维化因子表达水平,临床观察未见不良反应。
     实验研究目的:观察芪卫颗粒调节PEDF/USF2表达对DN肾纤维化的干预作用。方法:将SPF级12周龄雄性自发性2型糖尿病动物模型KK-Ay小鼠60只按血糖值随机分为模型组,芪卫颗粒组,缬沙坦组,并选20只C57BL/6J小鼠为正常对照组。连续给药12周,实验结束时麻醉小鼠后取血并处死动物,取肾脏,检测各组血糖、糖化血红蛋白(HbAlc)、尿白蛋白排泄率(UAER)、尿微量白蛋白/尿肌酐比率(ACR)、肾重/体重(KW/BW)等指标;用光镜和电镜观察肾组织的结构变化,Masson染色观察肾脏纤维化程度,计算肾小球硬化指数。RT-PCR检测肾组织中PEDF、USF2、TGF-β1的mRNA表达;western blot检测肾组织中PEDF、USF2、TGF-β1、CTGF、ILK、MMP-9、TIMP-1的蛋白表达,免疫组化染色检测TGF-β1、Ⅳ型胶原、FN、LN在肾组织中的表达情况。
     结果:实验一:与正常对照组比较,模型组肾小球面积增大、系膜区基质增多、系膜区面积/毛细血管襻面积增加、基底膜明显增厚、硬化指数(GSI)明显升高,尿蛋白明显增加(P<0.05)。经治疗后,与模型组比较,芪卫颗粒组和缬沙坦组组织病理可见肾小球硬化和间质纤维化程度明显减轻,生化检验和图形半定量分析结果显示24hUAER、 ACR、KW/BW、MRA/CCA、GA、GBM、GSI等指标均明显降低(p<0.05)。实验二:与正常对照组比较,模型组肾组织中USF2、TGF-β1的mRNA和蛋白表达明显升高,PEDF的mRNA和蛋白表达明显降低;经治疗后,与模型组比较,芪卫颗粒组和缬沙坦组PEDF的mRNA和蛋白表达明显上调,USF2、TGF-β1表达显著下降(p<0.05);芪卫颗粒组和缬沙坦组组间比较无明显差异(p>0.05);相关性分析结果显示,PEDF与TGF-β1之间相互呈负线性相关,USF2和TGF-β1表达呈正相关。免疫组化染色显示,Ⅳ型胶原、FN、LN表达主要分布于肾小球基膜、系膜区和肾小管上皮细胞;与正常对照组比较,模型组Ⅳ型胶原、FN.LN表达明显增多(P<0.05);经治疗后,与模型组比较,芪卫颗粒组和缬沙坦组Ⅳ型胶原、FN.LN蛋白表达明显降低(p<0.05)。芪卫颗粒组和缬沙坦组组间比较无明显差异(p>0.05)。实验三:与正常对照组比较,模型组KK-Ay小鼠肾脏TGF-β1及CTGF、ILK、TDMP-1表达明显增加,同时MMP-9表达明显下降,MMP-9/TIMP-1比例失衡;经治疗后,与模型组比较,芪卫颗粒组和缬沙坦组TGF-β1及CTGF、ILK、TIMP-1蛋白表达明显降低,MMP-9明显增加(p<0.05);芪卫颗粒组和缬沙坦组组间比较无明显差异(p>0.05)。相关分析显示,TGF-β1与CTGF、ILK、TIMP-1表达呈正线性相关,与MMP-9表达呈负线性相关。结论:1、KK-Ay小鼠在实验过程中出现典型的DN肾脏病理改变和肾功能损害,是研究DN的理想动物模型。芪卫颗粒能减轻DN肾脏病理损害,减少尿蛋白排泄,改善肾功能。2、KK-Ay小鼠DN肾组织PEDF表达下降、USF2表达增加,使TGF-β1过表达,进而导致CTGF.ILK过表达,以及MMP-9/TIMP-1比例失衡,从而引起ECM合成增加、降解减少,ECM积聚渐至肾纤维化。3、芪卫颗粒通过刺激KK-Ay小鼠DN肾脏PEDF表达、抑制USF2表达而下调TGF-β1表达,进而下调CTGF、ILK过表达,纠正MMP-9/TIMP-1失衡,使ECM合成减少、降解增加,从而减轻ECM积聚,阻止或延缓肾纤维化病情进展。
This paper contains three parts including documental research, clinical observation and experimental research.
     Documental Research We introduced the main ideas, advances and trend in the pathologic mechanism of diabetic nephropathy (DN) at home and abroad in recent years We also reviewed the advances in the etiology, pathogenesis, syndrome differentiation and treatment, experimental research of DN in TCM, and preliminarily discussed the unresolved problems at present.
     Clinical Observation Objective:To observe the clinical efficacy of Qi-wei granules on the prevention and treatment of diabetic nephropathy. Methods:70diabetic nephropathy phase Ⅲ and Ⅳ patients with deficiency of both qi and yin, kidney collateral stasis were randomly divided into the control group being given valsartan orally and the therapy group being given Qi-wei granules orally, both groups were also given basic treatment, lasting for3months as a course of treatment. The changes of TCM clinical symptoms, proteinuria, TGF-β1, CRP (early serum markers) were observed on both groups before and after the experiment. Results: Significantly improved clinical symptoms (P<0.05) and obviously declined proteinuria,TGF-βi, CRP (P<0.05) were seen in the therapy group as compared with the control group; the comparison of the comprehensive therapeutic effect between two groups revealed that the total efficient rate of the therapy group was superior (87.9%) to that of the control group(66.7%)(P<0.05); there were no adverse reactions during the entire period treatment. Conclusion:Qi-wei granules can significantly improve the clinical symptoms of DN patients, reduce proteinuria, inhibit microinflammatory state, down-regulate the expression level of causative factors involved in renal fibrosis. There were no adverse reactions during the clinical observations.
     Experimental Research Objective:To observe the interventional effect of Qi-wei granules regulating PEDF/USF2expression on DN renal fibrosis. Methods:60SPF grade12-week-old male KK-Ay mice with spontaneous type2diabetes were randomly divided into three groups:model group, Qi-wei granules group and valsartan group based the blood glucose level.20C57BL/6J mice were chosen as the normal control group. Being continuously administrated for12weeks, the mice were anesthetized and their blood was collected at the end of experiment. After that, the mice were sacrificed, their kidneys were removed, and then their blood sugar, HbA1c, UAER, ACR, KW/BW,etc. were examined.The structural changes in renal ti ssues were observed by light microscopy and electronic mi aoscopy. M asson staining was applied to observe the degree of renal fibrosis and cal cul ate glomerular sclerosis index. The mRNA expression of PEDF, USF2, TGF-β1in renal tissue was detected with RT-PCR. Western blot was used to detect the protein expression of PEDF, USF2, TGF-β1, CTGF, ILK, MMP-9, TIM P-1in renal tissue and Immunohistochemical staining was used to detect the expressi on of TGF-β1, Col I agen Type Ⅳ, FN and LN in renal tissue.
     Results:Experiment1:Glomerular area(GI), extracellular matix of mesangial area, MRA/CCA, glomerular basement membrane(GBM), glomerulosclerosisindex (GSI), proteinuria in the model group increased markedly as compared with the normal control group (P<0.05). After treatment, the extent of glomerulosclerosis(FSGS) and renal interstitial fibrosis(RIF) was attenuated significantly in Qi-wei granules group and valsartan group as compared with the model group. The results of biochemical tests and semi-quantitative image analysis showed that there was a significant reduction of24hU A ER, ACR, KW/BW, MRA/CCA, GA, GBM, GSI,etc.(p<0.05). Experiment2:Messenger RNA (mRNA) and protein expression of USF2, TGF-β1increased markedly, mRNA and protein expression of PEDF decreased significantly in the model group as compared with the normal control group. After treatment, mRNA and protein expression of PEDF up-regulated, mRNA and protein expression of USF2, TGF-β1down-regulated in Qi-wei granules group and valsartan group as compared with the model group; there were no obvious differences between Qi-wei granules group and valsartan group (p>0.05); correlation analysis results showed that there was a negativelinear correlation between PEDF and TGF-β1expression, a positive linear correlation between USF2and TGF-β1.Immunohistochemical staining showed that the expressi on of Col I agen Ty pe IV, FN, L N was mainly di stri buted in the glomerul ar basement membrane, mesangial area and the renal tubular epithelial cells; the expression of Col I agen Type IV, FN, LN increased markedly in the model group as compared with the normal control group.(P<0.05); after treatment, the expression of Collagen Type Ⅳ, FN, LN declined markedly in Qi-wei granules group and val sartan group as compared with the model group; there were no obvious differences between Qi-wei granules group and valsartan group (p>0.05).Experiment3:The expression of TGF-β1, CTGF, ILK, TIM P-1increased markedly, MMP-9expressi on decreased significantly, MMP-9/TIMP-1was imbalanced in the model group as compared with the normal control group; after treatment, TGF-β1, CTGF, ILK,TIMP-1expression decreased markedly and MMP-9expression increased significantly in Qi-wei granules group and valsartan group as compared with the model group. There were no obvious differences between Qi-wei granules group and valsartan group(p>0.05).Correlation analysis results showed that there was a positive linear correlation between TGF-β1and CTGF、ILK、TIMP-1expression, a negative linear correlation between TGF-β1 and MM P-9expression. Conclusion:1. KK-Ay mice with DN showing typical renal pathological changes and impaired renal function in the experimental procedure, is an ideal animal model to research DN. Qi-wei granules can alleviate renal pathological changes, reduce urinary protein excretion, improve renal function in DN mice.2. Down-regulated expression of PEDF and up-regulated expression of USF2in the renal tissue of KK-Ay DN mice caused TGF-β1overexpression, and then CTGF, ILK overexpression and MM P-9/TIMP-1imbalance, thereby leading to increased ECM synthesis and decreased ECM degradation. The accumulation of ECM gradually resulted in renal fibrosis.3. Qi-wei granules inhibited TGF-β1expression by up-regulating PEDF expression and down-regulating USF2expression in the renal tissue of KK-Ay DN mice, and then inhibited CTGF, ILK overexpression, corrected MMP-9/TIMP-1imbalance, thereby leading to decreased ECM synthesis and increased ECM degradation. The progression of renal fibrosis was prevented or slowed as the result of reduced ECM accumulation.
引文
[1]中华中医药学会肾病分会.糖尿病肾病诊断、辨证分型及疗效评定标准(试行方案)[s].上海中医药杂志,2007,7(41):7-8.
    [2]吕仁和,赵进喜,王越.糖尿病肾病临床研究评述[J].北京中医药大学学报,1994,17(2):21
    [3]南征.消渴肾病(糖尿病肾病)研究[M].长春:吉林科学技术出版社,2001:57.
    [4]董振华,季元,范爱平.祝谌予临证验案精选[M].学苑出版社,2007:25.
    [5]冯建春,时振声.时振声教授治疗糖尿病肾病学术思想和经验[D].第二届糖尿病(消渴病)国际学术会议论文集,1996,9.
    [6]林兰.中西医结合糖尿病学[M].中国医药科技出版社,1999:395-407.
    [7]华传金,仝小林.糖尿病肾病综合征病因证治初探.中国医药学报,2001,16(4):46.
    [8]李涛.糖尿病肾病的中医病机浅.新疆中医药2003,21(4).
    [9]郑柳涛,武曦蔼,李平.益气养阴活血法治疗糖尿病肾病初探[J].中医药学报,2009,37(3):6-8.
    [10]周仲英.糖尿病杂谈.江西中医药,2001,32(2):15-16.
    [11]程益春.糖尿病肾病的中医治.上海:第六届全国糖尿病中医学术会议论文集,2000,16-18.
    [12]田周英.彭万年教授治疗糖尿病肾病经验介绍.新中医,2007,39(1):22-23.
    [13]施进宝.黄宝英教授治疗早期糖尿病肾病的经验[J].中国中医药现代远程教育,2011,9(19):147-149.
    [14]任爱华,阚方旭.糖尿病肾病三焦辨治[J].山东中医杂志,2000,19(6):328.
    [15]孙建新,郑蛟东,吕芳.试从三焦论治糖尿病肾病.北京中医药,2008,27(7):517-518.
    [16]吴以岭,络病学北京中国科学技术出版,2004:73.
    [17]吴以岭,魏聪,贾振华,等.从络病学说论治糖尿病肾病及相关研究[J].上海中医药大学学报,2007,21(5):5-8.
    [18]吴欣芳.刘喜明治疗糖尿病肾病临床拾零[J].辽宁中医杂志,2009,36(7):1073-1074.
    [19]于敏,张波,史耀勋.南征教授“毒损肾络”理论学说探析及临床运用[J].中华中医药学刊,2010,28(2):243-246.
    [20]邓悦,王宏,南征.糖尿病肾病从“毒损肾络”辨治理论体系探要[J].中医药学报,2003,31(3):2-3.
    [21]南征,孙新.益肾解毒汤治疗糖尿病肾病临床研究.北京中医杂志,2002,21,(6):326.
    [22]于敏,史耀勋,田谧.南征教授从毒损肾络立论治疗糖尿病肾病经验[J].中国中医急症,2009,18(1):74-75.
    [23]仇朝辉,糖尿病肾病的气血并治.实用中医内科杂志,2005,19(1):23-24.
    [24]吕仁和,戴京璋.糖尿病肾病中医证治.北京中医药大学学,2002,25(5):65-66.
    [25]高彦彬.古今糖尿病医论医案选[M].北京,人民军医出版社,2005:199.
    [26]康红,刘志敏.辨证分型治疗糖尿病肾病84例[J].中国现代实用医学杂志,2005,4(3):78-79.
    [27]李桂芝,郑万发.中医辨证治疗糖尿病肾病100例疗效观察[J].云南中医中药杂志,2007,28(1):17.
    [28]伍新林.中西医结合治疗糖尿病肾病的临床研究[J].中国中西医结合肾病杂志,2008,9(1):51-53.
    [29]韩云平.李小娟教授治疗糖尿病肾病经验撷要[J].实用中医内科杂志,2009,23(1):13-14.
    [30]王志伏,张雅玲.糖尿病肾病的中医辨证论治[J].辽宁中医杂志,2007,34(6):791.
    [31]李肇翚,曲丽卿.糖尿病肾病的辨证论治[J].时珍国医国药,2006,17(3):448.
    [32]林莹宣,张静,曾静.元鲁光治疗糖尿病肾病经验撷要[J].山西中医,2009,25(1):6-7.
    [33]李楠,南征.南征教授从毒论治消渴肾病撷粹[J].天津中医药,2008,25(2):94-95.
    [34]邵帅,远方.远方教授从瘀论治糖尿病肾病经验管窥.辽宁中医药大学学报,2010,12(2):119.
    [35]仝小林,张志远,李宁.糖尿病肾病的中医治疗[J].中国医药学报,1998, 13(4):50-53.
    [36]张先闻,陈以平.陈以平辨治糖尿病肾病经验撷要.上海中医药杂志,2008,42(6):6.
    [37]吕仁和,高彦彬,戴京璋,等.糖尿病肾病诊治糖尿病(消渴病中医诊治荟萃[M].中国医药科技出版社,1999:415-421.
    [38]周保林,柏喜林,庞莉.贺永清主任医师治疗糖尿病肾病经验[J].陕西中医学院学报,2004,29(3):14-15.
    [39]赵进喜.糖尿病肾病的中成药治疗[J].糖尿病新世界,2007,2:34.
    [40]杨霓芝,李芳,徐大基,等.糖尿病肾病分期辨证治疗的探讨[J].辽宁中医杂志,1999,26(1):117.
    [41]孙红颖.聂莉芳教授治疗糖尿病肾病的经验[J].中国中西医结合肾病杂志,2009,10(5):380-381.
    [42]孙伟.肾病实用中西医结合治疗[M].人民军医出版社,2008:152.
    [43]周晖,高彦彬.高彦彬诊治糖尿病肾病的临床经验[J].辽宁中医杂志,2009,36(7):1078-1079.
    [44]张文龙.健脾补肾法治疗糖尿病肾病60例临床观察[J].中国中医急症,2005,14(10):946-947.
    [45]王秀芬,赵苍朵,张慧玲.益气活血汤治疗早期糖尿病肾病40例疗效观察[J],新6医,2006,38(4):46-47.
    [46]阎奇,刘鹰.血府逐瘀汤为主治疗糖尿病肾病48例疗效观察[J].中国中医药信息杂志,2007,14(4):70-71.
    [47]刘玉玲.参芪地黄汤加减治疗糖尿病肾病30例[J].陕西中医,2007,28(8):981-982.
    [48]宋银枝,宋诵文,吴新民,等.益气养阴祛瘀通络法治疗糖尿病肾病46例临床观察[C].首届国际中西医结合内分泌代谢病学术大会暨糖尿病论坛论文集2008:254-255.
    [49]陈世金,罗敏,冯成全.银杏达莫注射液治疗糖尿病肾病的临床观察[J].泸州医学院学报,2008,31(1):70.
    [50]谢子琪,贾凤新,李亚秋,等.芪丹益肾降糖胶囊治疗2型糖尿病肾病的研究[J].现代中西医结合杂志,2009,18(25):3015-3017.
    [51]陈志刚.瓜蒌瞿麦丸治疗糖尿病肾病蛋白尿的临床观察[J].长春中医药大学学报,2009,25(1):92.
    [52]魏宝强.益肾化瘀祛湿汤治疗糖尿病肾病30例观察[J].实用中医药杂志,2009,25(6):353.
    [53]周凤伟,方诺,李亚秋.芪丹益肾降糖丸治疗糖尿病肾病的临床研究[J].河北中医,2009,31(4):497-499.
    [54]宿晶,高建东.糖肾康颗粒治疗糖尿病肾病30例疗效观察[J].山东中医杂志,2010,29(6):372.
    [55]刘长明.自拟益气养阴化瘀汤治疗糖尿病肾病30临床观察[J].中国医药指南,2010,8(4):104.
    [56]高继宁,贺娟,张靖,等.参芪地黄汤加味治疗早期糖尿病肾病24例[J].光明中 医,2010,25(12):2215.
    [57]罗明祥.中西医结合治疗早期糖尿病肾病42例[J].西部中医药,2011,24(7):82-83.
    [58]李爱玲.养阴益气健脾中药治疗早期糖尿病肾病98例[J].患者《求医问药》下半月刊2012,10(6):845-847.
    [59]潘桂英,李登宇,马莉.中西医结合治疗早期糖尿病肾病临床观察[J].世界中西医结合杂志,2012,7(4):332-333,357.
    [60]吴守伦.中西医结合治疗早期糖尿病肾病158例疗效观察[J],当代医学,2012,18(2):158.
    [61]龚伟,黎磊石,刘志红,等.大黄酸对糖尿病大鼠转化生长因子β及其受体表达的影响[J].肾脏病与透析肾移植杂志,2006,15(2):101.
    [62]刘建军,喇万英,王慧芳,等.复方黄芪颗粒对糖尿病大鼠糖脂代谢及胰岛功能的影响[J].时珍国医国药,2011,22(8):1923-1926.
    [63]赵启鹏,崔秋兵,张艺.黄连用于治疗糖尿病的研究进展[J].中药与临床.2010.1(1):55-58.
    [64]I-Min Liu, Thing-Fong T zeng, Shorong-Shii Liou. A Chinese Herbal Decoction, Dang Gui Bu Xue Tang, Prepared from Radix Astragal i and Radix Angelicae sinensis, Ameliorates Insulin Resistance Induced by A High-Fructose Diet in Rats[J]. Evidence-Based Complementary and Altemative Medicine,2009.
    [65]Cheng S, Tu QN, Lu FE. Effect of Panax notoginoside on the glomcrular hyperfiltration and function of vascular endothelium in rats with experimental diabetes in its early stage [J]. Her Med,2005,24:467-470.
    [66]高怀株,张建军,吴以岭,等.津力达颗粒对2型糖尿病胰岛β细胞的影响[J].时珍国医国药,2010,21(5):1119-1120.
    [67]黄敏,朱超,梁琼麟,等.中药糖肾方调节糖尿病肾病患者磷脂代谢研究[J].药学学报,2011,46(7):780-786.
    [68]Ziyadeh F N, Wolf G. Pathogenesis of the podocy topathy and proteinuria in diabetic glomeru lopathy[J]. Curr Diabetes Rev,2008,4(1):39.
    [69]ZhangP, Zhang J J, Su J. et al. Effect of total glucosides of paeony on the expression of nephrin in the kidneys from diabetic rats[J]. Am J Chin Med,2009,37(2):295.
    [70]陈姝君,陈海平,刘奇.尿毒清颗粒对糖尿病大鼠足细胞损伤的保护作用[J].中国中西医结合肾病杂志,2008,9(10):875.
    [71]Yuan H D, Piao G C. An active part of Artemisia sacrorum Ledeb. suppresses gluconeogenesis through AMPK mediated GSK3 β and CREB phosphorylation in human HepG2 cells [J]. Biosci Biotechnol Biochem,2011,75(6):1079.
    [72]谢辉,刘长波,黄霖等.厄贝沙坦联合降糖保肾方治疗早期糖尿病肾病大鼠的实验研究[J].中国中西医结合肾病杂志,2009,10(5):392-395.
    [73]李黎莉.益气养阴活血通络方对糖尿病肾病大鼠足细胞的影响[D].河北:河北医科 大学河北省中医院,2012.
    [74]赵贤俊,李才,邓悦,等.解毒通络保肾胶囊对糖尿病大鼠肾脏的保护作用[J].中国中医基础医学杂志,2003,9(8):26.
    [75]吴莹.津力达颗粒对糖尿病大鼠组织RAS的影响.[D].上海:第二军医大学,2012,5.
    [76]王吉磊.糖肾康颗粒对糖尿病肾病肾血流动力学的临床研究.[D].山东:山东中医药大学,2005,9
    [77]张炜.黄精多糖对糖尿病肾病大鼠的治疗作用及机制研究.[D].浙江:浙江大学医学院,2011,4.
    [78]Zhang Y W, Xie D, Xia B, et al. Suppression of tran sforming growth factor-betal gene expression by Danggui Buxue Tang, a traditional Chinese herbal preparation, in retarding the progress of renal damage in strep tozotocin-induced diabetic rats[J]. Horm Metab Res,2006,38(2):82.
    [79]周巧玲,刘抗寒,王衍慧,等.冬虫夏草对糖尿病肾病模型鼠组织转化生长因子β1、结缔组织生长因子表达的影响[J].肾脏病与透析肾移植杂志,2006,15(5):443.
    [80]Li Y, Wu WQ, Zhang YM, et al. The effect of erigeron breviscapus on renal protein kinase C in diabetic rats [J].Chin J Nephrol (中华肾脏病杂志),2000,16:89-92.
    [81]Yokozawa T, Yamabe N, Kim H Y, et al. Protective effects of morroniside isolated from Corni Fructus against renaldam age in streptozotoc in-induced diabetic rats[J].Biol Pharm Bull,2008,31 (7):1422.
    [82]Liu I M, T zeng T F, Liou S S, etal. The amelioration of streptozotocin diabetes-induced renal damage by Wu-Ling-San (Hoelen Five Herb Formula), a traditional Chinese prescription[J].J E thnopharmacol.2009,124 (2):211.
    [83]Kim JO, Kim KS, Lee GD, et al. Antihyperglycemic and anf ioxidative effects of new herbal formula in streptozotocin-induced diabeticrats. [J]. J Med Food, 2009,12(4):728-735.
    [84]Judy Yuet-Wa Chan, Fung-Chun Lam, Ping-Chung Leung, et al. Antihyper glycemic and antioxidative effects of a herbal formulation of Radix Astragali, Radix Codonopsis and Cortex Lycii in a mouse model of type 2 diabetes mellitus [J] Phytother Res,2009,23(5):658-665.
    [85]Qi X M, Wu G Z, Wu Y G, et al.Renoprotective effect of brev iscapine through suppression of renal macrophage recruitment in streptozotocin induced diabetic rats[J]. Nephron Exp Nephrol,2006,104(4):e147.
    [86]苑天彤,秦曼,迟继铭,等.参芪消肾汤对糖尿病肾病大鼠血清CRP及肾组织MCP-1表达的影响[J].中国中西医结合肾病杂志,2009,10(1):49.
    [87]张雪云.益气养阴化瘀通络中药对糖尿病肾病大鼠肾脏的保护作用及对ICAM-1/VCAM-1影响的实验研究.[D].河北:河北医科大学中医院,2012.
    [88]王艳靖.肾康丸对糖尿病肾病大鼠肾脏NF-κB及MCP-1表达的影响.[D].广东: 南方医科大学,2011,4.
    [1]Yang SH, Dou KF, Song WJ. Prevalence of diabetes among men and women in China[J].N Engl J Med,2010,362 (25):24-25.
    [2]王海燕.肾脏病学.修订2版.北京:人民卫生出版社,2008.1414.
    [3]李能娟,李红.肾小管上皮细胞表型转化与糖尿病肾病.国际内分泌代谢杂志,2006,26(4):277-279.
    [4]Ichinose K, Kawasaki E, Eguchi K. Recent advancement of understanding pathogenesis of type 1 diabetes and potential relevance to diabetic nephropathy [J]. Am J Nephro,2007,27(6):554
    [5]Williams WW, Salem RM, McKnight AJ,et al. Florez JC. Association testing of previously reported variants in a large casecontrol meta-analysis of diabetic nephropathy. Diabetes,2012,61 (8):2187-2194.
    [6]Harjutsalo V, Katoh S, Sarti C, et al. Population-based assessment of familial clustering of diabetic nephropathy in type 1 diabetes. Diabetes, 2004,53(9):2449-2454.
    [7]Pettitt DJ, Saad MF, Bennett PH,et al. Familial predisposition to renaldisease in two generations of pima indians with type 2 (non-insulin-dependent) diabetes mel1itus. Diabetologia,1990,33(7):438-443.
    [8]Tanaka N, Babazono T, Saito S, et al. Association of solute carrier family 12(sodium/chloride) member 3 with diabetic nephropathy, identified by genome-wide analyses of single nucleotide polymorphisms. Diabetes, 2003,52(11):2848-2853.
    [9]Kim JH, Shin HD, Park BL, et al. Slcl2a3 (solute carrier family 12 member [sodium/chloride] 3) polymorphisms are associated with end-stage renal disease in diabetic nephropathy. Diabetes,2006,55(3):843-848.
    [10]Akkina S, Becker BN. Micrornas in kidney function and disease. Trans1Res,2011,157 (4):236-240.
    [11]Igo RP, Iyengar SK, Nicholas SB, et al. Genomewide linkage scan for diabetic renal failure and albuminuria:The find study. Am J Nephro1, 2011,33(5):381-389.
    [12]McDonough CW, Palmer ND, Hicks PJ, Roh BH, An SS, Cooke JN, Hester JM, Wing MR, Bostrom MA, Rudock ME, Lewis JP, et al. A genome-wide association study for diabetic nephropathy genes in african americans. Kidney Int, 2011,79(5):563-572.
    [13]Freedman BI, Bowden DW, Rich SS, et al. Genome-wide linkage scans for renal function and albuminuria in type 2 diabetes mellitus:The diabetes heart study. Diabet Med,2008,25(3):268-276.
    [14]Osterholm AM, He B, Pitkaniemi J, et al. Genome-wide scan for type 1 diabetic nephropathy in the finnish population reveals suggestive linkage to a single locus on chromosome 3q. Kidney Int,2007,71 (2):140-145.
    [15]Placha G, Poznik GD, Dunn J, et al. A genome-wide linkage scan for genes controlling variation in renal function estimated by serum cystatin c levels in extended families with type 2 diabetes. Diabetes,2006,55(12):3358-3365.
    [16]Schelling JR, Abboud HE, Nicholas SB, et al. Genome-wide scan for estimated glomerular filtration rate in multi-ethnic diabetic populations:The family investigation of nephropathy and diabetes (find). Diabetes,2008,57(1):235-243.
    [17]Mooyaart AL, Valk EJ, van Es LA, et al. Genetic associations in diabetic nephropathy:A meta-analysis. Diabetologia,2011,54(3):544-553.
    [18]Miyata T, Ueda Y,Horie K, et al. Renal catabolism of advanced glycation end products:the fate of pentosidine[J]. Kidney Int,1998,53(2):416.
    [19]Lindsey JB, Cipollone F, Abdullah SM, et al. Receptor for advanced glycation end-products (RAGE) and soluble RAGE(sRAGE):cardiovascular implications [J].Diab Vase Dis Res,2009,6(1)7
    [20]Sourris KC, Forbes JM. Interactions between advanced glycationend-products (AGE) and their receptors in the development and progression of diabetic nephropathy-are these receptors valid therapeutic targets [J]. Curr Drug Targets,2009,10(1):42
    [21]盛霞,黄国良.RAGEs对人肾小球系膜细胞VEGF、PEDF、表达的影响及与DN关系探讨.中华医学会第十一次全国内分泌学学术会议论文汇编.2012.
    [22]冯敏,黄国良,李健榕,等.糖基化终产物通过其受体诱导人肾小球系膜细胞表达CTGF和FN.中国病理生理杂志,2010,26(6):1156-1160.
    [23]刘智辉,于青,袁伟杰.AGE与RAGE相互作用通过活性氧引起足细胞凋亡.中国中西医结合肾病杂志,2008,9(10):864-865.
    [24]Forbes J M, Soulis T, Thallas V, et al. Renoprotective effects of a novel inhibitor of advanced glycation[J].Diabetologia,2001,44(1):108.
    [25]Wendt T M, Tanji N, Guo J, et al. RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy[J]. Am J Pathol,2003,162(4):1123.
    [26]Barnet t AH. Dyslipidaemia in diabetes-AGP guide. Practitioner,2002,246: 120-123.
    [27]Saito T. Abnormal lipid metabolism and renal disorders[J]. Tohoka J Exp Med, 1997,181(3):321.
    [28]Chen H C, Guh J Y, Chang J M, et al. Role of lipid control in diabetic nephropathy [J]. Kidney Int Suppl,2005(94):S60.
    [29]Dubois D, Chanson P, Timsit J, et al. Remission of proteinuria following correction of hyperlipidemia in NIDDM patients with nondiabetic glomerulopathy [J]. Diabetes Care,1994,17(8):906.
    [30]Wang Z, Jiang T, Li J, et al. Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVB db/db mice with type 2 diabetes [J]. Diabetes,2005,54 (8):2328.
    [31]Sugimoto H, Grahovac G, Zeisberg M, et al. Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors [J]. Diabetes,2007,56:1825-1833.
    [32]Jiang ZT, Liang QL, Luo GA, et al. HPLC-electrospray tandem mass spectrometry for simultaneous quantitation of eight plasma aminothiols: application to studies of diabetic nephropathy [J]. Talanta,,2009,77:1279-1284.
    [33]Xia JF, Liang QL, Hu P, et al. Correlations of six related purine metabol ites and diabetic nephropathy in Chinese type 2 diabetic patients [J]. Clin Biochem, 2009,42:215-220.
    [34]Cumbie B C, Hermayer K L. Current concepts in targeted therapies for the pathophysiology of diabetic microvascular complications [J]. Vasc Health Risk Manag,2007,3(6):823.
    [35]Oates P J. Aldose reductase inhibitors and diabetic kidney disease [J].Curr Opin Investig Drugs,2010,11(4):402.
    [36]Wolf G, Schroeder R, Ziyadeh FN, et al. High glucose stimulates expression of p27 in cultured mouse mesangial cells:Relationship with hypertrophy[J] Am J Physiol,1997,273:348.
    [37]Dunlop M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy [J]. Kidney Int,2000,58 (Suppl77):3-12.
    [38]Studer R K, Craven P A, DeRubertis F R. Antiox idant inhibition of protein kinase C- signaled increases in transforming growth factor- beta in mesangial cells[J]. Metabolism,1997,46:918-925.
    [39]Osicka T M, Yu Y, Panagiotopoulos S, et al. Prevention of albuminuria by aminoguanidine or ramipril in streptozotocininduced diabetic rats is associated with the normalization of glomerular protein kinase C[J]. Diabetes,2000,49: 87-93.
    [40]Park J Y, Takahara N, Gabriele A, et al. Induction of endothelin-1 expression by glucose:an effect of protein kinase C activation[J]. Diabetes,2000,49: 1239-1248.
    [41]Geraldes P, Kinh GL. Activation of protein kinase C isoforms and its impact on diabetic complications [J]. Circ Res,2010,30 (4):1319-1331
    [42]Mao C P, Gu Z L. Puerarin reduces increased c-fos, c jun, and type IV col lagen expression caused by high glucose in glomerular mesangial cells [J]. Acta Pharmacol Sin,2005,26(8):982.
    [43]Studer R K, Craven P A, DeRubertis F R. Antioxidant inhibition of protein kinase C-signaled increases in transforming growth factor-beta in mesangial cells [J]. Metabolism,1997,46 (8):918.
    [44]Kanwar Y S, Wada J, Sun L, etal. Diabetic nephropathy:mechanisms of renal disease progression[J. Exp BiolMed(Maywood),2008,233(1):4.
    [45]King GL, Das-Evciment N. Role of protein kinase C in diabetic complications [J]. Expert Rev Endocrinol Metabol,2010,5:77-88.
    [46]Ohshiro Y, Ma R C, Yasuda Y, et al. Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cbeta-null mice [J]. Diabetes,2006,55(11):3112.
    [47]陆利民.肾素-血管紧张素系统功能异常与糖尿病肾损害.Dysfunction of theintr-Arenal Renin-angiotensin system in diabetic nephropathy. Acta physiologica Sinica,Octoberl8:30.
    [48]TanY, Keum J S, Wang B, et al. Targeted deletion of B2-kinin receptors protects against the development of diabetic nephropathy. Am J Physiol Renal Physiol,2007,293:1026.
    [49]TangSC, Leung JC, Lai KN. The kallikrein-kinin system [J]. Contrib Nephrol,2011,170:145-55.
    [50]Sasser JM, Sullivan JC, Hobbs JL, et al. Endothelin A receptor blockade reduces diabetic renal injury via an anti-inflammatory mechanism [J]. J Am Soc Nephrol,2007,18 (1):143-154.
    [51]Sarafidis PA, Lasaridis AN. Insulin resistance and endothelin:another pathway for renal injury in patients with the cardiometabolic syndrome[J].J Cardiometab Syndr,2008,3(3):183-187.
    [52]Sarafidis PA, Lasaridis AN. Diabetic nephropathy:endothelin antagonism for diabetic nephropathy [J].J Nat Rev Nephrol,2010,6(8):447-449.
    [53]Bahiense-Oliveira M, Mattar AL, Malheiros DM, et al. Interstitial expression of angiotensin II and ATI receptor are increased in patients with progressive glomerulopathies[J]. J Renin Angiotensin Aldosterone Syst,2010,11 (3):158-164
    [54]Nikolic-Paterson DJ, Atkins RC. The role of macrophages in glomerulonephritis. Nephrol Dial Transplant,2001,16(5):3-7.
    [55]Fornoni A, Ijaz A, Tejada T, et al. Role of inflammtion in diabetic nephropathy[J]. Curr Diabetes Rev,2008,4(1):10-17.
    [56]Tsiotra PC, Tsigos C, Yfanti E, et al. Visfatin, TNF-alpha and IL-6mRNA expression is increased in mononuclear cells from type 2 diabetic women[J]. Horm Metab Res,2007,39 (10):758-763.
    [57]Yeo ES, Hwang JY, Park JE, et al. Tumor necrosis factor(TNFalpha) and C-reactive protein(CRP) are positively associated with the risk of chronic kidney disease in patients with type 2 diabetes[J]. Yonsei Med J,2010, 51 (4):519-525.
    [58]Formoni A, Tejada T, Lenz O, et al. Role of inflammation in diabetic nephropathy[J]. Curr Diabetes Rev,2008,4(1):10-17.
    [59]Zhang X, Chen X, Hong Q, et al. TIMP-1 promotes age-related renal fibrosis through up regulating ICAM-1 in human TIMP-1 transgenic mice[J]. J Gerontol A Biol Sci Med Sci,2006,61 (11):1130-1143.
    [60]Shelbaya S, Amer H, Seddik S, et al. Study of the role of interleukin-6 and highly senstive C-reative protein in diabetic nephropathy in type 1 diabetic patients[J]. Eur Rev Med Pharmacol Sci,2012,16 (2):176-182.
    [61]Dalla Vestra M, Mussap M, et al. A cute-phase markers of inflammation and glomerular structure in patients with type 2 diabetes[J]. J Am Soc Nephrol, 2005,16(11):78-82.
    [62]Nakamura A, Shikata K, Hiramatsu M, et al. Serum in terleukin-18 levels are associated with nephropathy andatherosclerosis in Japanese patients with type 2 diabetes [J]. Diabetes Care,2005,28(12):2890-2895.
    [63]Zhang YW, Wu CY, Cheng HT. Merit of Astragalus polysaccharide in the improvement of early diabetic nephropathy with an effect on mRNA expressions of NF-kappa B and IkappaB in renal cortex of streptozotoxin-induced diabetic rats [J]. J Ethnopharmacol,2007,114(3):387-392.
    [64]Li L, Emmett N, Mann D, et al. Fenofibrate attenuates tubulointerstitial fibrosis and inflammation through suppression of nuclear factor-κB and transforming growth factor-β1/Smad3 in diabetic nephropathy [J]. Exp Biol Med (Maywood),2010,235 (3):383-391.
    [65]Gerritsma JS. van Kooten C,Gerritsen AF, et al. Transforming growth factor-beta 1 regulates chemokine and complement production by human proximal tubular epithelial cells. Kidney int.1998Mar;53(3):609.
    [66]Chen S, Jim B, Ziyadeh FN, et al. Diabetic nephm pathy and transforming growth factor-beta:transforming our view of glom em lose lerosis and fibrosis build-up[J].Serm in Nephm,2003,23(6):532-543.
    [67]Qi W, Chen X, Poronnik P, et al. The renal cortical fibroblast in renal tubulointerstitial fibrosis. Int J B iochem Cell B iol,2006,38 (1):1-5.
    [68]Sternlicht MD, Coussens LM, Vu TH, et al. Biology and regulation of the matrix metalloproteinases[A]. Clendeninn NJ, Appelt K. Matrix metalloproteinase in hibitors in cancer therapy[M]. Totowa:Humana Press Inc,2001,1-37.
    [69]Regoli M, Ben dayan M. Alterations in the expression of the a 3 β1 integrin in certain membrane domains of the glomerular epithelial cells (podocytes) in diabetes mellitus. Diabetologia,1997,40:15-22
    [70]石宏斌.糖尿病肾病中转化生长因子-β1上调与足细胞损伤[J].中国实用医药,2008,3(26):188-190.
    [71]Shi L, Nikolic D. Activation of renal renin -angiotensin system in upstream stimulatory factor 2 transgenic mice, physiol renal physiol,2009, 296(2):257-265.
    [72]Weigert C, Brodbeck K, Sawadogo M, et al. Upstream stimulatory factor (USF) proteins induce human TGF-betal gene activation via the glucose-response element-1013/-1002 in mesangial cells:up-regulation of USF activity by the hexosamine biosynthetic pathway. The Journal of Biological Chemistry,2004, 279(16).-15908-15915.
    [73]MartinS, Yuri BP, Patrick M, et al:ANovel Small Molecule Met Inhibitor Induces Apoptosis inCellsTransformed by the Oncogenic TPR-MET Tyrosine Kinase[J]. Cancer Research,2003,63:5462-5469.
    [74]Wang JJ, Zhang SX, Mott R, et al.Beneficial effect of pigment epithelium-derived factor on diabetic nephropathy[J]. Diabetes,2005, 54(Suppl.1):211-217.
    [75]Wang JJ, Zhang SX, MottR, et al. Salutary effect of pigment epithelium derived factor in diabetic nephropathy:evidence for antifibrogenic activities. Diabetes, 2006,55(6):1678-1685.
    [76]Zhang SX, Wang JJ, Gao G, et al. Pigment epithelium-derived factor(PEDF) is an endogenous anti-inflammatory factor. FASEB J,2006,20(2):323-325.
    [77]Yoshida Y, Yamagishi S, Matsui T, et al. Protective role of pigment epithelium-derived factor(PEDF)in early phase of experimental diabetic retinopathy diabetes [J]. Diabetes Metab Res Rev,2009,25(7):678-686.
    [78]Q IW, CHEN X, PORONN IK P, et al. Transforming growth factor-β/connective tissue growth factor axis in the kidney. Int J Biochem Cell Biol,2008, 40(1):9-13.
    [79]Hannigan GE, Jane Bayani, Weksberg R, et al. Mapping of the gene encoding the integrinlinked kinase, ILK, to human chromosome 11p15.5-15.4. Genomics, 1997,42:177.
    [80]DAI C, STOLZ D B, BASTACKY S I, et a.l Essential role of integrin-linked kinase in podocyte biology:Bridging the integrin and slitdiaphragm signaling[J]. JAm SocNephro,1 2006,17:2164-2175.
    [81]Kikkawa R, Koya D, Haneda M. Progression of diabetic nephropathy. Am JKidneyDis,2003,41(3 Suppll):S19-S21.
    [82]高彦彬,李步满.中药芪卫颗粒对糖尿病大鼠肾脏氧化应激及病理形态的影响.中国中西医结合肾病杂志,2011,12(1):20-22.
    [83]张玉领,孙长颢.2型糖尿病动物模型的研究进展[J].实用糖尿病杂志,2011,7(4):7-9.
    [84]Back M, Ketelhuth DF, Agewall S. Matrix metalloproteinases in atherothrombosis [J]. Prog Cardiovasc Dis,2010,52(5):410-428.
    [85]Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloprpteinases:structure, function, and biochemistry[J]. Circ Res,2003,92 (8):827.
    [86]STEINMANN-NIGGLI K, ZTSWILER R, KUNG M, et al. Inhibition of matrix metalloproteinases attenuates anti-Thyl.1 nephritis [J]. J Am Soc Nephrol,1998, 9 (3):397-407.
    [87]Singh R, SongRh, AlaviN, et al.High glucose decreases matrix metal loproteinase-2 activity in ratmesangial cells via transforming growth factor-betal[J]. Experimental nephrology,2001,9(4):249.
    [88]DerosaG,D'AngeloA, TinelliC, et al. Evaluation of metalloprotein-ase land 9 levels and their inhibitors in diabetic and healthy subjects. Diabetes Metah.2007,33(2):129-134
    [89]TAN S M, ZHANG Y,COX A J,et al.Tranilast attenuates the up-regulation of thioredoxin-interacting protein and oxidative stress in anexperimental model of diabetic nephropathy[J]. Nephrol Dial Transplant,2011,26(1):100-110.
    [90]Stadler K, Jenei V, Bolcshazy G, et al. Role of free radicals and reactive nitrogen species in the late complications of diabetes mellitus in rats. Orv Hetil,2004,145 (21):1135-1140
    [91]孙文,赵宗江,张新雪.糖尿病肾病氧化应激与丁TGF-β1/P38MAPK信号转导通路研究进展.全国中西医结合发展战略研讨会,2011,11:354-355.
    [92]Piwkowska A, Rogacka D, Audzeyenka I, et al. High glucose concentration affects the oxidant- antioxidant balance in cultured mouse podocytes [J]. J Cell Biochem,2011,112(6):1661.
    [93]Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes [J]. J Diabetes,2008,57 (6):1446-1454.
    [94]Portero-Otin M, Pamplona R, Boada J, et al. Inhibition of renin angiotensin system decreases renal protein oxidative damage in diabetic rats [J]. Biochem Biophys Res Commun,2008,368(3):528.
    [95]DrummondMC, KristalB, Myers BD, etal. Structural basis for reduced glomerular filtration capacity in nephritic humans [J]. JClin Inves, t 1994,94(3): 1187-1195.
    [96]McLennan SV, FisherE, Martell SY,et al. Effect of glucose on matrix metalloproteinase and plasmin activities in mesangial cells:possible role in diabetic nephropathy [J]. Kidney IntSupp,1 2000,77:S81-S87.
    [97]Shankland SJ. The podocyte's response to injury:role in proteinuria and glom eru losclerosis [J]. Kidney In, t 2006,69(12):2131-2147.
    [1]Dronavalli S, Duka I, Bakris G L. The Pathogenesis of Diabetic Nephropathy [J]. J Nat Clin Pract Endocrinol Metab,2008,4(8):444-442.
    [2]王海燕.肾脏病学.修订2版.北京:人民卫生出版社,2008.1414.
    [3]Mogensen CE,Schmitz A,Christensen CR.Comparative renal pathophysiology relevant to IDDM and NIDDM patients[J].Diabetes Metabolism Rev,1998,4:453-483.
    [4]中华中医药学会肾病分会.糖尿病肾病诊断、辨证分型及疗效评定标准(试行方案)[S].上海中医药杂志,2007,7(41):7-8.
    [5]Jorge L, Mirela J.Diabetic nephropathy:diagnosis prevention and treament. Diabetes Care,2005,28:176-188.
    [6]Valmadrid CT, Klein R,Moss SE,et al.The risk of cardiovascular disease mortality associated with microalbuminuria and gross protenuria in persons with older-onset diabetes mellitus. Arch Intern Med,2000,160:1093-1100.
    [7]Najafian B, Alpers CE, Fogo AB. Pathology of human diabetic nephropathy[J]. Contrib Nephrol,2011,170:36-47.
    [8]OSTA V, NATOLIV, DIEQUEZ S. Valuation of two rapid tests for the determination of microalbuminuria and the urinary albumin/creatinine ratio[J]. Anales de Padiatria,2003,59(2):131-137.
    [9]陈燕,赵敏,张家红,等.尿微量蛋白检查对糖尿病早期肾损伤的诊断价值[J].中华检验医学杂志,2003,26(9):262-264.
    [10]程苏琴,朱美财.尿微量蛋白在糖尿病肾损伤早期诊断中的价值叨[J].中华检验医学杂志,2005,28(7):740-741.
    [11]Saraheimo M, Teppo AM, Forsblom C, et al. Diabetic nephropathy is associated with lowgrade inflammation in type 1 diabetic pationts [J]. Diabetologia Med,2003, 46 (20):1402-1407.
    [12]何冰,韩萍,吕先科,等.糖尿病患者急性时相蛋白与糖尿病肾病的关系[J].中华内分泌代谢杂志,2003,19(4):260-262.
    [13]刘明开,李达,刘日旭,等.随机尿样微量白蛋白/肌酐比值与24 h尿白蛋白定量结果的对比研究[J].实用诊断与治疗杂志,2007(3):171-173.
    [14]齐力.早期糖尿病肾病尿微量白蛋白与肌酐比值的检测[J].中国实验诊断学,2006,10(12):15-20.
    [15]陈燕,赵敏.尿微量白蛋白检查对糖尿病早期肾损伤的诊断价值[J].中国检验方剂学杂志2009,14(9):52-53.
    [16]齐力.早期糖尿病肾病尿微量白蛋白与肌酐比值的检测[J].中国实验诊断学2006,10(12):1520.
    [17]孙培荣,石永兵.尿白蛋白/肌酐比值对诊断早期糖尿病肾病的价值[J].现代临床医学,2007,33(1):3-4.
    [18]彭荔薰,肖立华.尿白蛋白与肌酐比用于诊断早期糖尿病肾病[J].华中医学杂志,2001,25(3):119-120.
    [19]Goldberg RB. Cytokine and cytokine-like inflammation markers, Endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications [J].J Clin Endocrinol Metab,2009,94:3171-3182
    [20]邹大进,李慧.肥胖、炎症与胰岛素抵抗[J].国外医学·内分泌学分册,2004,24(4):附录2-4.
    [21]陈延强,黄玉茵.活血化疲法治疗糖尿病肾病的近况[J].云南中医中药杂,2009.30(2):54-55.
    [22]王海燕.糖尿病肾病患者蛋白尿与CRP水平的相关性研究.中国实用医药2011,6(16):41-43.
    [23]温滨红.转化生长因子困在糖尿病肾病患者血清中的含量及其意义.辽宁实用糖尿病杂志,2004,12(4):20-22.
    [24]白然.缬沙坦和氟伐他汀对糖尿病肾病肾脏保护机制的研究[D].大连医科大学,2010.
    [25]韩晓芳,潘时中,杨立勇.血清TGF-β1水平与糖尿病肾病相关性研究.福建医药杂志,2005,27(2):115-117.
    [26]周晖.高彦彬诊治糖尿病肾病的临床经验[J].辽宁中医杂志,2009,36(7):1078-1079.
    [27]李英,吴闻清,张益民,等.野黄芪甙对糖尿病大鼠肾脏蛋白激酶c活性作用的研究.中华肾脏病杂志,2000,16(2):89-92
    [28]刘志红,李颖健,张精,等.转化生长因子及大黄酸对肾小球系膜细胞葡萄糖转运蛋白功能影响.中华医学杂志,1999,79(10):780.
    [29]QiuJuan Wang, HaiYan Yang, DanNi Zhu. The demons arrow feather extract of renal tubular epithelial fine The role of cell [J]. Chinese pharmacological communications,2004,(3):16.
    [1]叶任高.内科学[M].北京:人民卫生出版社,2002:798,806-808,810.
    [2]姚春艳,杨沆,邓光贵.尿微量蛋白检测与糖尿病肾病[J].国外医学临床生物化学与检验学分册,2001,21:121-122.
    [3]邹万忠,陈楠,胡仁明.糖尿病肾脏病变的诊断[J].中国处方药,2009,4:56-57.
    [4]陈文彬.诊断学[M].北京:人民卫生出版社,2001.341-342.
    [5]王鸿利,主编.实验诊断学[M].北京:人民卫生出版社,2001:124-125 104,145-146.
    [6]张玉领,孙长颢.Ⅱ型糖尿病动物模型的研究进展[J].现代预防医学,2012,39(8):2015-2017.
    [7]Bertram JF. Analyzing renal glomeruli with the new stereology. Int Rev Cytol 1995,161:111-172.
    [8]Mc Namara B, Diouf B, Hughson Met al. Associations between age, body size and nephron number with individual glomerular volumesin urban West African males. Nephrol Dial Tranplant 2009,24:1500-1506.
    [9]Kretzler M. Role of podocytes in focal sclerosis:defining the point of no return [J]. J Am Soc Nephrol,2005.16 (10):2830-2832.
    [10]Papaioannou VE, Mardon H. E ffects of diapaose on lethal yellow (AyAy) mouse embryos[J].J Exp Zool,1992,263:309-315.
    [11]陈丽萌,李学旺,黄利伟,等.2型糖尿病小鼠(KKAy)动物模型的鉴定和早期肾脏病理改变[J].中国医学科学院学报,2002,24(1):71-75.
    [12]Ledbetter S, Copeland EJ, Noonan D, et a.1 Altered steady state mRNA levels of basement membrane proteins in diabeticmouse kidneys and thromboxane synthase jnhibidon[J]. Diabetes,1990,39(2):196-203.
    [13]李志杰,张悦.糖尿病肾病动物模型的研究进展[J].生命科学,2011,23(1):90-95
    [14]Qi W, Chen X, Poronnik P, et al. The renal cortical fibroblast in renal tubulointerstitial fibrosis[J]. Int J B iochem Cell B iol,2006,38(1):1-5.
    [15]林善琰.重视糖尿病肾脏病变的临床诊断和治疗[J].中华内分泌代谢杂志,1998,12(2):65
    [1]Lida G, Paul W, Anne Woods, et al.Am J Pathyology,2001;159(5):1735-1742.
    [2]Li Y, Yang J, Dai C, et al. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis [J].J Clin Invest,2003,112(4):503-516.
    [3]Chen S, Jim B, Ziyadeh FN, et al. Diabetic nephmpathy and transforming growth factor-beta:transforming our view of glom em losc lerosis and fibrosis build-up[J].Serm in Nephm,2003,23(6):532-543.
    [4]Russo LM, del Re E, Brown D, et al. Evidence for a role of transforming growth factor (TGF)-betal in the induction of postglomerular albuminuria in diabetic nephropathy:amelioration by soluble TGF-beta type Ⅱ receptor. Diabetes, 2007,56 (2):380-388.
    [5]Yokotama H, DecketT. Central role of TGF2 β1 in the pathogeneisis of diabetic nephropathy and macrovascular compli2 cation:a hypothesis[J]. Diabetic Medicine,1998, (13):313.
    [6]Sternlicht MD, Coussens LM, Vu TH,et al. Biology and regulation of the matrix metalloproteinases[A]. ClendeninnNJ, Appelt K. Matrix metalloproteinase in hibitors in cancer therapy[M]. Totowa:Humana Press Inc,2001,1-37.
    [7]Wang JJ, Zhang SX, MottR, et al·Salutary effect of pigment epithelium derived factor in diabetic nephropathy:evidence for antifibrogenic activities Diabetes, 2006,55 (6):1678-1685.
    [8]Shi L, Nikolic D. Activation of renal renin-angiotensin system in upstream stimulatory factor 2 transgenic mice.physiol renal physiol,2009,296 (2):257-265.
    [9]Weigert C, Brodbeck K, Sawadogo M, et al. Upstream stimulatory factor(USF) proteins induce human TGF -betal gene activation via the glucose -response element -1013/-1002 in mesangial cells:up-regulation of USF activity by the hexosamine biosynthetic pathway. The Journal of Biological Chemistry,2004, 279(16):15908-15915.
    [10]Wang JJ, Zhang SX, Mott R, et al. Beneficial effect of pigment epithelium-derived factor on diabetic nephropathy[J]. Diabetes,2005, 54(Suppl.1):211-217.
    [11]林善琰.重视糖尿病肾脏病变的临床诊断和治疗[J].中华内分泌代谢杂志,1998,12(2):65
    [12]Qi W, Chen X, Poronnik P, et al. The renal cortical fibroblast in renal tubulointerstitial fibrosis. Int J B iochem Cell B iol,2006,38(1):1-5.
    [13]Chen S, Jim B, Ziyadeh FN, et al. Diabetic nephm pathy and transforming growth factor-beta:transforming our view of glom em lose lerosis and fibrosis build-up[J].Serm in Nephm,2003,23(6):532-543.
    [1]Qi W, Chen X, Poronnik P, et al. Transforming growth factor-β/connective tissue growth factor axis in the kidney. Int J Biochem Cell Biol,2008,40 (1):9-13.
    [2]Lida G, Paul W, Anne Woods,et al.Am JPathyology,2001;159(5):1735-1742
    [3]Li Y, Yang J, Dai C, et al. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis[J].J Clin Invest,2003,112(4):503-516.
    [4]Ortega-Velazquez R, Gonzalez-Rubio MP, Ruiz-Torres M, et al. Collagen I upregulates extracellular matrix gene expression and secretion of TGF-β1 by cultured human mesangial cells[J].Am J Physiol Cell Physiol,2004,286 (6):C1335-1343.
    [5]Wilson S R, Gallagher S, Warpeha K, et al. Amplification of MMP-2 and MMP-9 production by prostate cancer cell lines via activation of protease-activated receptors[J]. Prostate.2004,60 (2):168-174.
    [6]Lagente V, Manoury B, Nenan S, et al. Role of matrix metalloproteinases in the development of airway inflammation and remodeling[J]. Braz J Med Biol Res.2005.38(10):1521-1530.
    [7]Qi W, Chen X, Poronnik P, et al. The renal cortical fibroblast in renal tubulointerstitial fibrosis. Int J B iochem Cell B iol,2006,38 (1):1-5.
    [8]Mclennan SV, Wang XY, Moreno V, et al. Connective tissue growth factor mediates high glucose effects on matrix degradation through tissue inhibitor of matrixmetalloproteinas typel:implications for diabetic nephropathy[J]. Endocrinology,2004,145(12):5646-5655.
    [9]高彦彬,李步满.中药芪卫颗粒对糖尿病大鼠肾脏氧化应激及病理形态的影响.中国中西医结合肾病杂志,2011,12(1):20-22.
    [10]Chen S, Jim B, Ziyadeh FN, et al. Diabetic nephmpathy and transforming growth factor-beta:transforming our view of glom em lose lerosis and fibrosis build-up[J].Serm in Nephm,2003,23(6):532-543.
    [11]Hong S W, Isono M, Chen S, et al. Increased glomerular and tubular expression of transforming growth factor-betal, its Type II receptor, and activation of the Smad signaling pathway in the db/db mouse [J]. Am J Pathol,2001,158 (5): 1653-1663.
    [12]Inak, Kitamnra H, Tatsukawa S, et al. Transformation of interstitial fibroblasts and tubulointerstitial fibrosis in diabetic nephropathy. Med Electron Microsc,2002,35(2):87-95.
    [13]Hannigan GE, Leung-Hagestei jn C, Fitz-Gibbon L, et al. Nature,1996; 379:91-96
    [14]JUNG K Y,CHEN K, KRETZLERM, et a.1 TGF β1 regulates the PINCH-1-integrin-linked kinase-α-parvin complex in glomerular cells [J]. JAm Soc Nephro,12007, 18(1):66-73.
    [15]MartinS, Yuri BP, Patrick M, et al:ANovel Small Molecule Met Inhibitor Induces Apoptosis in Cells Transformed by the Oncogenic TPR-MET Tyrosine Kinase[J]. Cancer Research,2003,63:5462-5469.
    [16]Back M, Ketelhuth DF, Agewall S. Matrix metalloproteinases in atherothrombosis [J]. Prog Cardiovasc Dis,2010,52 (5):410-428.
    [17]Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloprpteinases:structure, function, and biochemistry[J]. Circ Res,2003,92 (8):827.
    [18]STEINMANN-NIGGLI K, ZTSWILER R, RUNG M, et al. Inhibition of matrix metallopro-teinases attenuates anti-Thyl.1 nephritis [J]. J Am Soc Nephrol,1998, 9 (3):397-407.
    [19]Singh R,SongRh, AlaviN, et a,l High glucose decreases matrix metal loproteinase-2 activity in ratmesangial cells via transforming growth factor-betal[J]. Experi-Mental nephrology,2001,9 (4):249.
    [20]DerosaG, D'AngeloA, TinelliC, et al. Evaluation of metalloproteinase land 9 levels and their inhibitors in diabetic and healthy subjects. Diabetes Metah. 2007,33(2):129-134.
    [21]Koide H, Nakamura T, Ebihara I, et al. Increased MRNA expression melalloproleinas-9 in peripheral blood monocles from patients with immunoglobulin A nephropathy[J).Am J Kidney Dis,1996,28:32-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700