用户名: 密码: 验证码:
冠心病血瘀证“瘀毒”病机转变的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     冠心病(Coronary Heart Disease, CHD)的二级预防是临床防治的重点,在稳定期CHD患者中,有些患者发生了急性心血管事件(Acute Cardiovascular Events, ACEs),有的长期稳定,原因何在?基于此,陈可冀院士带领的973课题组在既往研究的基础上,提出心血管血栓性疾病“瘀毒”病因病机假说,认为血瘀是贯穿于冠心病发展过程的中心环节,也是稳定期患者的基础病理状态。若瘀久化热、酿生毒邪,或从化为毒,可致瘀毒内蕴(潜毒),如迁延日久、失治误治,则正消邪长、气血失衡,一旦外因引动、蕴毒骤发,则蚀肌伤肉,进而毒瘀搏结、痹阻心脉,终致变证丛生,并通过文献研究、实验室研究和稳定期患者前瞻性队列研究,综合分析归纳了CHD稳定期患者“毒”的临床表征和理化指标,制定了CHD稳定期患者“因毒致病”诊断及量化标准,为本研究提供了重要的理论支持。但CHD稳定期“瘀毒”是如何转化的?有何生物学基础?尚有待进一步阐明。
     蛋白质组学是研究一个细胞、组织、器官或有机体在一定时间或一定状态下所表达的所有蛋白质,其研究重心是某一层次所有蛋白质及动态变化规律,具有动态性、时间性、空间性、特异性、整体性等特点,与中医“证候”有着惊人的相似。不同证候之间的差异,必然有其相应的物质基础做支撑,证候蛋白质组学研究作为中医证候研究的重要手段,旨在揭示证候发生、发展规律和证候诊断的实质和生物学基础。蛋白质组学从系统整体水平研究生命功能的直接体现者——蛋白质,为诠释复杂的生命活动提供了全新的视角,成为后基因组时代生命科学领域的前沿。它克服了蛋白质表达和基因之间的非线性关系,可以直接研究中医证候的特征与细胞蛋白质整体动态变化之间的内在联系,因而具有高效解码证候生物学基础的潜力,将是揭示证候实质的最有效手段,也为研究CHD稳定期“瘀毒”病机转化的生物学基础提供了技术支撑。
     研究目的:
     以CHD血瘀证患者发生心血管事件与否为主线,通过不同患者之间、同一患者不同疾病阶段的横向、纵向比较相结合,探索CHD血瘀证发展过程中“瘀毒”病机转变的相关蛋白。
     研究方法:
     入组冠心病血瘀证(CHD-BSS)、冠心病非血瘀证(CHD-非BSS)、非冠心病血瘀证(非CHD-BSS)、非冠心病非血瘀证(非CHD-非BSS)、急性心肌梗死(AMI)、传统中医毒证6组人群,并对1269例CHD-BSS人群的1年的ACEs进行随访。AMI作为CHD“毒证”组,随访发生ACEs的CHD稳定期患者作为CHD“潜毒”组。采用Matrix Assisted Laser Desorption Ionization/Time-of Flight Mass Spectroscopy (Maldi-Tof-MS)方法对不同人群的差异蛋白进行横向和纵向的比较分析和鉴定,最终确定CHD“瘀毒”病机转化中的关键蛋白。采用ClinProTool2.1软件进行图谱分析和统计学处理,采用BioworksBrowser3.3.1SP1进行SequestTM检索,检索数据库为International Protein Index (IPI human v3.45fasta with71983entries).
     研究结果:
     (1)共分析出与CHD相关的16个多肽,其中在CHD组表达明显升高的有2个,降低的有14个。
     (2)本研究中与BBS相关的多肽未达到统计学差异。与"CHD-BBS"相关的多肽有76个,表达明显增高的有28个,表达明显降低的有48个。
     (3)通过比较CHD-BSS、CHD-非BSS、非CHD-BSS、非CHD-非BSS、AMI组的差异蛋白,最终确定与CHD“瘀一毒”转化相关的多肽有6个,分子量分别是:1945.31Da、1981.25Da、1071.55Da、4644.76Da、6631.28Da、9527.44Da,与CHD“非瘀一毒”转化相关的多肽(在"CHD-BSS"中没有该多肽链的表达,但随访心血管事件过程中该多肽链表达有变化,称之为“非瘀一毒”转化相关蛋白)有3个分子量分别是:3883.4Da、6432.56Da、4230.19Da。上述两组多肽中,质谱鉴定成功的有5个,其中随着CHD“毒”证的增加("FB-FA-D")表达逐渐升高的包括同种型高分子量激肽原1的前体(Isoform HMW of Kininogen-1precursor, KNG1)、过氧化物还原酶-1(Peroxiredoxin-1, PRDX1),表达逐渐降低的有纤维蛋白原α链的前体1(Isoform1of Fibrinogen alpha chain precursor, FGA),在"FB-FA-D"中逐渐降低但在"Ffa-FF"中有短暂升高者包括载脂蛋白C-I前体(APOC1Apolipoprotein C-I precursor, APOC1)和血浆丝氨酸蛋白酶抑制剂前体(Plasma serine protease inhibitor precursor, SERPINA5)(FB:CHD-BSS中随访没有发生事件的患者;FA:CHD-BSS中随访发生事件的患者;D:急性心肌梗死患者;FF:随访发生事件患者复查且血样保存完整的患者;Ffa:复查组患者入组时点的血样)。利用KNG1和PRDX1两个蛋白进行建模,对FA、FB两组别进行分类,得到的FA组的识别率为90.2%,预测率为89.6%。
     (4)CHD“瘀毒”证与传统毒证组相比较,共有4个多肽链表达明显不同,其中在CHD“瘀毒”组表达较高的多肽分子量为2022.61Da、1062.13Da,在传统毒证组表达较高的为2863.13Da和3540.44Da。对组间差异最大的多肽2022.61Da进行了鉴定,为补体C3的类似物,相对于传统毒证,该蛋白在CHD“瘀毒”组患者中表达较高。
     研究结论:
     初步筛选到了CHD稳定期“瘀毒”病机转变相关蛋白:KNGI和PRDX1,提示其生物学基础可能与凝血纤溶系统、缓激肽作用和氧化应激反应有关。FGA、APOC1和SERPINA5还需要进一步深入研究;并利用KNG1、PRDX1构建了基于“瘀毒致变”理论早期识别CHD稳定期高危患者的模型,有待进一步验证。
Background:
     The secondary prevention is very important in patients with Stable Angina (SA), with the same treatment, some SA patients develop acute cardiovascular events (ACEs), while others do not in a very long period, why? Based on this question, National973Project leaded by Chen Keji academician presented a hypothesis of "blood-stasis→toxin" etiology and pathogenesis in cardiovascular thrombotic diseases, they considered blood stasis syndrome (BSS) was the basic syndrome in the development of CHD. Toxin was generally formed and accumulated by long-time BSS that brewed heat, or transformed from other pathologic factors. If lasting for a long time, delayed treatment or mistreatment, the accumulated toxin could be suddenly triggered by external causes and injured the tissue. The conglutination of toxin and blood-stasis further obstructed the heart vessel and leaded to ACEs. Therefore,"blood-stasis&toxin causing catastrophe" is the main etiology and key pathogenesis in SA patients who develop ACEs. Chen Keji academician and his fellow researchers further concluded the clinical manifestations of "toxin syndrome" in patient with SA by lots of literature studies and a prospective cohort study, they also made up a diagnostic and quantitative standard for the patients with SA complicated by "potential toxin syndrome". It is the basic or primary theory for us to study further. However, how to transform between BSS and "toxin syndrome"? And what is the biological substance in this process? All these questions need to study further.
     The proteome is a subject studying all the proteins in a cell, a kind of tissue or an organism in specific conditions or at specific times, it aims to all proteins and all the changes of these proteins. The proteome is similar to syndromes of Traditional Chinese Medicine (TCM) for its dynamics, timeliness, spatiality, specificity, integrality and et al. Different syndromes certainly have different biological substance, therefore, syndrome proteomics has been an important method to study TCM syndromes because it can reveal the biological substance of syndromes and their changes. The proteome is a subject studying proteins which can reflect biological function immediately, it has given us a new approach for explaining physical activities and has been a life science frontier in the time of post genome. The proteome has conquered the non-linear relationship between protein and gene, and could interpret the internal relationship between TCM syndromes and the biological substance, so far, the proteome has been one of the most effective approaches for revealing biological essence of syndromes.
     Objectives:
     To find the relative proteins of "Blood-stasis→toxin syndrome" pathogenesis transformation in the progress of CHD-BSS by comparing different diseases or syndromes in a cross sectional study and a cohort study, the ACEs should be considered in this study.
     Methods:
     We included patients in6different groups including CHD-BSS, CHD-nonBSS, nonCHD-BSS, nonCHD-nonBSS, AMI and traditional toxic syndrome, a1-year follow-up was performed in1269CHD-BSS patients for ACEs. Patients in AMI were defined as "toxin syndrome" group, and SA patients who appeared ACEs in1year follow-up were defined as "potential toxin syndrome" group. Matrix Assisted Laser Desorption Ionization/Time-of Flight Mass Spectroscopy (Maldi-Tof-MS) technology was used to analyze and identify the differential proteins through horizontal and longitudinal contrast in these groups, and the key proteins for CHD " blood-stasis→toxin" were identified finally. Using ClinProTool2.1software to analysis the polypeptide mass spectrum, using BioworksBrowser3.3.1SP1to Sequest search, the database for researching is International Protein Index (IPI human v3.45fasta with71983entries).
     Resul ts:
     (1)16peptides were found for "CHD",2of16peptides showed higher expression and14peptides showed lower expression.
     (2) No peptide showed significant difference for "BSS"(P>0.05).76peptides was found for "CHD-BSS"(P≤0.05),28of76peptides showed higher expression and48peptides showed lower expression.
     (3)6peptides were found for "blood-stasis→toxin" transformation, the mass including1945.31Da,1981.25Da,1071.55Da,4644.76Da,6631.28Da and9527.44Da.3peptides were considered as "non blood-stasis→toxin", the mass including3883.4Da,6432.56Da and4230.19Da.5of9proteins were ident if ied. The express ion of Isoform HMW of Kininogen-1precursor (KNG1) and Peroxiredoxin-1(PRDX1) showed increased gradually in "FB-FA-D"; the expression of Isoform1of Fibrinogen alpha chain precursor(FGA) showed decreased gradually in "FB-FA-D"; the expression of Apol ipoprotein Cl (APO C1) and Serine protease inhibitor (SERPINA5) showed decreased gradually in "FB-FA-D" but showed increased temporarily in "Ffa-FF"(FA: Patients developed ACEs in1-year follow-up; FB: Patients did not developed ACEs in follow-up; D: Patients in AMI; FF: Blood sample in reexamination for patients in FA and their blood samples were storaged very well; Ffa: Blood sample in enrollment for patients in FF). KNG1and PRDX1were used for modeling using SNN to distinguish FA and FB, discrimination power for FA was90.2%, predictive values for FA was89.6%.
     (4)4peptides were found for distinguishing CHD "blood-stasis&toxin" and traditional "toxin syndrome", peptides in higher expression in CHD "blood-stasis&toxin" were2022.61Da and1062.13Da, peptides in higher expression in traditional "toxin syndrome" were2863.13Da and3540.44Da. LOC653879(Similar to Complement C3) was identified, it showed high expression in CHD "blood-stasis&toxin"
     Conclus ions:
     KNG1and PRDX1were identified as biomarker for "blood-stasisz→toxin" pathogenesis transformation, which might be related to the blood coagulation, fibrinolysis, effect of bradykinin and oxidative stress; FGA, AP0C1and SERPINA5A were also identified as biomarker for "blood-stas is→toxin" pathogenesis transformation but need to study further; Model made up by KNG1and PRDX1for distinguishing "high-risk" patients in SA was established but need to check in the further.
引文
[1]王阶,姚魁武.血瘀证证候实质研究进展与思考[J].中国医药学报,2003,18(8):490-493.
    [2]时晶,田金洲,王永炎,等.血瘀证的生物学基础研究[J].中华中医药杂志,2006,21(6):363-364.
    [3]马晓娟,殷惠军,陈可冀.血瘀证与炎症相关性的研究进展[J].中国中西医结合杂志,2007,27(7):669-672.
    [4]谢琛,马晓昌.冠心病血瘀证与血脂谱的关系研究[J].北京中医药,2010,29(6):427-428.
    [5]吴大嵘,赖世荣.血瘀证及中风病血瘀证的诊断标准概述[J].中国中医药信息杂志,2000,7(10):17-20.
    [6]姜春华主编.活血化瘀研究[M].上海科技出版社,1981.426.
    [7]中国中西医结合研究会第一次全国活血化瘀学术会议.血瘀证诊断试行标准[J].中西医结合杂志,1983,3(3):封2.
    [8]第二届全国活血化瘀研究学术会议.血瘀证诊断标准[J].中西医结合杂志,1987,7(3):129.
    [9]血瘀证研究国际会议.血瘀证诊断参考标准[J].实用中西医结合杂志,1989,2(1):7.
    [10]郑筱萸 主编.中药新药临床研究指导原则(试行)[M].中国医药科技出版社,2002.383.
    [11]邓铁涛主编.中医诊断学(第五版)[M].上海科技出版社,1984.101.
    [12]朱文锋主编.中医诊断学(十五国家规划教材)[M].中国中医药出版社,2002.168.
    [13]季绍良,成肇智主编. 中医诊断学(21世纪课程教材)[M].人民卫生出版社,2002.126.
    [14]王阶,陈可冀,翁维良,等.血瘀证诊断标准的研究[J].中西医结合杂志,1988,8(10):585-587,589.
    [15]赖世隆,曹桂娟,梁伟雄,等.中医证候的数理统计基础及血淤证宏观辨证计量化初探[J].中国医药学报,1988,3(6):27-32.
    [16]小川新,桑滨生.国际血瘀诊断标准试行方案[J].临床荟萃,1987,2(12):558.
    [17]寺泽捷年.瘀血诊断基准及临床治疗[J].汉方研究,1983,6:191.
    [18]付长庚,高铸烨,王培利,等.冠心病血瘀证诊断标准研究[J].中国中西医结合杂志,2012,32(9):1285-1286.
    [19]汪东生,朱文峰.眼科血瘀证诊断标准的探讨[J].承德医学院院报,1998,15(4):304-307.
    [20]侯风刚,赵钢,刘庆,等.原发性肝癌血瘀证量化标准的方法学研究[J].中医药学刊,2005,23(3):477-480.
    [21]侯风刚,岑怡,朱凌云,等.肠癌血瘀证量化辨证标准的研究[J].成都中医药大学学报,2009,32(3):19-22.
    [22]刘永衡,张培彤,孔凡君.中晚期原发性肺癌血瘀证量化标准的研究[J].中医杂志,2010,51(10):924-927.
    [23]王辉,杜欣颖,王苏,等.乳腺癌血瘀证量化诊断标准的制定及判别过程的自动化实现[J].北京中医药,2012,31(7):483-486.
    [24]中国中西医结合研究会儿科专业委员会第二届学术会议.小儿血瘀证诊断标准(试行)[J].中国中西医结合杂志,2000,20(2):104.
    [25]中岛一.从皮肤病学角度探讨血瘀证的诊断标准[J].中西医结合杂志,1988,8(10):588-589.
    [26]魏巍,荆鲁,徐凤芹.利用德尔菲法确定心血瘀阻诊断标准[J].中国中西医结合杂志,2010,30(6):585-588.
    [27]吴锐,谢建祥,赵凤达,等.“特尔菲法”筛选传统血瘀证诊断指标的临床研究[J].中国中西医结合杂志,2008,28(4):307-309.
    [28]瞿海斌,毛利锋,王阶.基于决策树的血瘀证诊断规则自动归纳方法[J].中国生物医学工程学报,2005,24(6):709-711,727.
    [29]矢数道明等.日本汉方医学及临证经验[M].1975:3-4.http://wenku.baidu.com/view/4e834c18fc4ffe473368abf5.html
    [30]寺泽捷年.瘀血证的证候分析与诊断标准刍议[J].国外医学·中医中药分册,1984,(1):1.
    [31]张红宇,高菊珍,张晓华.补阳还五汤对气虚血瘀证大鼠血液流变学的影响[J].云南中医学院学报,2003,3(3):10-11.
    [32]庞树玲,高金亮.中年大鼠气虚血瘀证的模拟及其机理探讨[J].天津中医学院学报,1997,16(3):28-30.
    [33]赵辉,亚健,李净,等.多因素复合制作气虚血瘀证脑缺血动物模型体会[J].河南中医,2001,21(4):18-20.
    [34]李净,王健.益气活血法改善气虚血瘀证局灶性脑缺血再灌注模型鼠生物学特征的有效性评价[J].中国中医基础医学杂志,2003,9(4):22-26.
    [35]王健,胡建鹏.缺血性中风气虚血瘀证动物模型的初步研究[J].安徽中医学院学报,1999,18(2):46.
    [36]郭建队,杨秀清,陈梅.气血血瘀证脑梗死动物模型的制作[J].现代中医药, 2005,3:1-3.
    [37]王硕仁,赵明镜,王振涛,等.建立心肌梗死心气虚血瘀证和心阳虚血瘀证病证动物模型的研究[J].中国中西医结合杂志,2008,28(3):245-254.
    [38]徐亚林,李承晏,王鹏.局灶性脑缺血气虚血瘀证动物模型的构建[J].湖北中医学院学报,2004,6(3):16-17.
    [39]李萍,杨丽彩,徐宝婴,等.气虚血瘀大鼠慢性伤口模型的研究—阿霉素对大鼠伤口的影响[J].中国中医基础医学杂志,1998,4(6):57-59.
    [40]闫润红,王世民,闫志芳.不同剂量的补阳还五汤对气虚血瘀家兔血黏度的影响[J].中药药理与临床,1999,15(1):7-9.
    [41]曹雪滨,李培建,黄河玲.兔气虚血瘀型心力衰竭模型的建立[J].实验动物科学与管理,1999,16(3):9-12.
    [42]卢振初,周淑英,罗宇慧.疼痛所致家兔“血瘀证”模型的研究[J].南京中医学院学报,1991,7(3):149-150.
    [43]任建勋,林成仁,王敏,刘建勋.多因素整合建立气滞血瘀证动物模型研究[J].中药药理与临床,2007,23(5):210-211.
    [44]王婷婷,贾乘,陈宇,等.大鼠气滞血瘀证模型的建立及影响因素分析[J].中国中药杂志,2012,37(11):1629-1633.
    [45]刘丹彤,马小娜,张小勇,等.子宫内膜异位症气滞血瘀证大鼠模型的建立及评价[J].中医药学报,2012,40(2):31-34.
    [46]尹军祥,田金洲,王永炎,等.寒凝血瘀证表征模型的建立[J].北京中医药大学学报,2006,29(10):682-685.
    [47]李乐军,田金洲,尹军祥,等.脑缺血叠加寒冷诱导血瘀证表征模型的建立[J].北京中医药大学学报,2008,31(9):611-615.
    [48]吴大梅,冯麟,张小容,等.血瘀寒凝血瘀证大鼠模型的研制[J].贵阳中医学院学报,2011,33(6):29-32.
    [49]王学岭,陆一竹,陈晓旭,等.寒凝、热毒所致血瘀证模型大鼠血液流变学观察及中药干预作用[J].天津中医药,2010,27(3):243-244.
    [50]张哲,杨关林,张会永,等.以外科瘤痈论治动脉粥样硬化斑块设想探要[J].辽宁中医杂志,2008,35(2):201-202.
    [51]杨进,陆平成.家兔“热毒血瘀证”系列动物模型的试制[J].南京中医药大学学报,1995,11(2):70-72.
    [52]卞慧敏,杨进,陈德宁,等.不同造模方法所致“热毒血瘀证”模型家兔血液流变学改变的比较研究[J].微循环技术杂志,1996,(2):99-101.
    [53]江欢,周岩,孙晓红,等.中医“热毒血瘀证”模型大鼠血管内皮损伤及血小板功能障碍研究[J].中西医结合心脑血管病杂志,2009,7(4):425-428.
    [54]狄凤桐,魏文清,狄宁,等.颅脑冲击波伤血瘀证实验模型的建立[J].中国微循环,2000,4(3):186-187.
    [55]张明雪,常艳鹏,刘宁,等.建立冠心病阳虚血瘀证动物模型的若干问题探讨[J].亚太传统医药,2007,3(12):17-19.
    [56]赵玲,魏海峰,张丽,等.中医痰浊血瘀证候的生物学基础研究[J].中华中医药杂志,2008,23(8):680-683.
    [57]马晓娟,殷惠军,陈可冀.血瘀证患者差异基因表达谱研究[J].中西医结合学报,2008,6(4):355-360.
    [58]王阶,杨保林,姜燕.冠心病血瘀证相关基因研究[J].世界科学技术—中医药现代化基础研究,2005,7(1):16-19.
    [59]袁肇凯,王丽萍,黄献平,等.冠心病血瘀证遗传相关的差异基因筛选及其功能路径分析[J].中国中西医结合杂志,2012,32(10):1313-1318.
    [60]赵慧辉,杨帆,王伟,等.无标记定量法研究冠心病不稳定性心绞痛血瘀证的差异蛋白质组[J].高等学校化学学报,2010,31(2):285-292.
    [61]吴红金,马增春,高月,等.蛋白质组学技术对冠心病血瘀证相关蛋白的研究[J].中西医结合心脑血管病杂志,2005,3(3):189-191.
    [62]周倩倩.冠心病不同阶段、血瘀证的血清蛋白质组学研究及其对HUVEC的影响[D].2011年.北京中医药大学硕士研究生论文.
    [63]张红栓,贾钰华,华何与,等.冠心病心绞痛痰浊证、血瘀证的血浆代谢组学研究[J].新中医,2010,42(6):12-14.
    [64]张红栓,贾钰华,华何与,等.冠心病心绞痛痰浊证、血瘀证的尿液代谢组学研究[J].中国中医基础医学杂志,2010,16(2):126-128.
    [65]王勇,李中峰,陈建新,等.基于NOESY序列核磁共振技术冠心病心肌缺血血瘀证代谢组学的试验研究[J].中国中西医结合杂志,2011,31(10):1364-1368.
    [66]姜良铎,张文生.从毒论治初探[J].北京中医药大学学报,1998,21(5):2-3.
    [67]刘伟.“毒“的含义辨析[J].中医药学刊,2004,22(12):2282,2292.
    [68]朱爱松,郑洪新.论中医病因之“毒”[J].医学信息、,2009,22(6):997-998.
    [69]刘龙涛,张京春,陈可冀,等.中医“瘀毒”理论的文献研究概述[J].世界中医药,2008,3(2):106-107.
    [70]许旭昀,池莲祥.脂毒学说与糖尿病[J].中国实用医药,2008,3(20):181-183.
    [71]毛宇湘.浊毒论[J].环球中医药,2012,5(7):520-522.
    [72]周仲英.“伏毒”新识[J].世界中医药,2007,2(2):73-75.
    [73]李澎涛,王永炎.毒损络脉病机的理论内涵及其应用[J].中医杂志,2011,52(23):1981-1984.
    [74]丁书文,李晓,李运伦.热毒学说在心系疾病中的构建与应用[J].山东中医药大学学 报,2004,28(6):413-416.
    [75]徐浩,史大卓,殷惠军,等.“瘀毒致变”与急性心血管事件:假说的提出与临床意义[J].中国中西医结合杂志,2008,28(10):934-938.
    [76]陈可冀,史大卓,徐浩,等.冠心病稳定期因毒致病的辨证诊断量化标准[J].中国中西医结合杂志,2011,31(3):313-314.
    [77]陈浩.冠心病急性冠脉综合征中医“瘀毒”证的临床辨证标准研究[D].2009年.中国中医科学院博士研究生论文.
    [78]蔡军,王金良.动脉粥样硬化与感染、炎症和自身免疫[J].国外医学临床生物化学与检验学分册,2002,23(6):328-329.
    [79]张京春,陈可冀,张文高,等.不稳定斑块的中西医结合认识现状及研究思路[J].中国中西医结合杂志,2005,25(10):869-871.
    [80]黄磊,陆国平.外周血循环标记物检测不稳定动脉粥样硬化斑块[J].心血管病学进展,2005,26(2):116-117.
    [81]王鹂,魏陵博,刘学法,等.热毒学说在急性冠脉综合征中的地位[J].中西医结合心脑血管病杂志,2005,3(12):1080-1081.
    [82]杜武勋,刘长生,张红霞,等.热毒病机假说与急性心肌梗死发病机制的研究[J].中西医结合心脑血管病杂志,2006,4(5):434-436.
    [83]吴伟,彭锐.冠心病热毒病机的探讨[J].新中医,2007,39(6):3-4.
    [84]段浩,张宏考,刘继军,等.小檗碱对兔颈动脉损伤后白介素-6等的影响[J].医药论坛杂志,2006,10(27):6.
    [85]吴敏,王阶.黄连有效成分小檗碱抗动脉粥样硬化机制研究进展[J].中国中药杂志,2008,33(18):2013-2016.
    [86]雷载权主编.中药学[M].上海科学技术出版社,1995.67.
    [87]梅全喜主编.现代中药药理使用手册[M].中国中医药出版社,1998.98.
    [88]沈丕安主编.中药药理与临床运用[M].人民卫生出版社,2006.360.
    [89]贺圣文,赵仁宏,吴洪娟,等.野生马齿苋对家兔动脉粥样硬化形成的影响[J].中华预防医学杂志,1997,31(2):91.
    [90]谭华炳.绞股蓝预防兔动脉粥样硬化的研究[J].中国老年学杂志,2007,27(6):519-521.
    [91]谢连娣,陈立新,吴圣贤,等.四妙勇安汤治疗冠心病的临床和基础研究概述[J].环球中医药,2012,5(8):629-633.
    [92]朱娜,曹雪明,蔡颖娴,等.黄连解毒汤对冠心病心绞痛患者C反映蛋白和肿瘤坏死因子-a的影响[J].中国中医急诊,2012,21(4):542-543.
    [93]李国强,黄萍,程穗茗,等.黄连解毒汤对动脉粥样硬化大鼠CD4+CD25+调节性T细胞表达的影响[J].广东医学,2010,31(3):329-331.
    [94]郭重仪,黄萍,李国强,等.黄连解毒汤对动脉粥样硬化大鼠MCP-1/CCR2 mRNA表达的干预作用[J].中药新药与临床药理,2010,21(6):583-586.
    [95]王少英.清热解毒药物在治疗冠心病中的运用[J].北京中医,2004,23(1):14-15.
    [96]吴圣贤,吴雪莲,黄政鑫,等.解毒软脉方抗动脉粥样硬化初步临床观察[J].福建中医药,2000,31(5):8-10.
    [97]李晓,丁书文,姜萍,等.心和颗粒剂保护冠心病患者血管内皮损伤的临床研究[J].中医杂志,2000,41(11):661.
    [98]郑峰,周明学,徐浩,等.活血解毒中药对稳定期冠心病患者血清炎症标记物及血脂的影响[J].中华中医药杂志,2009,24(9):1153-1157.
    [99]余蓉,何淑娴,叶秀琳.活血解毒中药对急性冠状动脉综合征血清sCD40L的影响[J].中国中医急诊,2008,17(11):1500-1501.
    [100]余蓉,胡雪松,何淑娴,等.活血解毒汤对急性冠状动脉综合征患者血清MMP-1、 MMP-9、TIMP-1的影响[J].中国中医急症,2008,17(10):1337-1338.
    [101]卢笑晖,丁书文.黄连解毒胶囊治疗不稳定型心绞痛临床疗效及作用机制的研究[J].山东中医药大学学报,2005,29(6):457-460.
    [102]赵玉霞,刘运芳,张梅.祛瘀消斑胶囊对动脉粥样斑块组织学构成的临床研究[J].上海中医药杂志,2001,35(12):13-14.
    [103]徐浩,陈可冀.冠心病易损斑块与中西医结合干预的实践与思考[J].中西医结合心脑血管病杂志,2006,4(11):941-942.
    [104]周明学,徐浩,陈可冀,等.几种活血解毒中药有效部位对ApoE基因敲除小鼠主动脉粥样斑块稳定性的影响[J].中国病理生理杂志,2005,21(5):864-867.
    [105]周明学,徐浩,陈可冀,等.活血解毒中药有效部位对ApoE基因敲除小鼠动脉粥样硬化斑块炎症反应的影响[J].中西医结合心脑血管病杂志,2007,5(12):1202-1205.
    [106]郑峰,周明学,徐浩,等.活血解毒中药对稳定期冠心病患者血清炎症标记物及血脂的影响[J].中华中医药杂志,2009,24(9):1153-1157.
    [107]张京春,陈可冀,郑广娟,等.解毒活血中药配伍对载脂蛋白E基因敲除小鼠主动脉NF-κB与MMP-9表达的调控作用[J].中国中西医结合杂志,2007,13(1):221-225.
    [1]Faber BC, Cleutjens KB, N iessen RL, et al. Identification of genes potentially involved in rupture of human atherosclerotic plaques[J]. Circ Res,2001,89:547-554.
    [2]Hiltunen MO, Tuomisto TT,Niemi M,etal. Changes in gene expression in atherosclerotic plaques analyzed using DNA array [J]. At hero sclerosis,2002,165: 23-32.
    [3]Gygi SP,Rochon Y, Franza BR,et a 1. Correlation between protein and mRNA abundance in yeast [J].Mol Cell Biol,1999,19:1720-1730.
    [4]Moore BR,Free SJ. Protein modification and its biologicalrole[J]. Int J Biochem,1985,17:283-289.
    [5]Sung HJ,Ryang YS, JangSW, et al.Proteomic analysis of differential protein expression in atherosclerosis [J]. Biomarkers,2006,11(3):279-290
    [6]Fach EM,Garulacan LA, Gao J,et al. In vitro biomarker discovery for atherosclerosis by proteomics by Proteomics[J]. Mol Cell Proteomics,2004,3(12): 1200-1210.
    [7]Marjo MPC Donners, Monique J Verluyten, Freek G Bouwman, et al.Proteomic analysis of differential protein expression in human atherosclerotic plaque progression[J]. J Pathol,2005,206:39-45.
    [8]Duran MC,Mas S,Martin Venture JL,etal. Proteomic analysis of human vessels:application to the atherosclerotic plaques[J]. Proteomics,2003,3(6): 973-978.
    [9]杨鹏远.动脉粥样硬化炎症基因的差异表达及相关药物调控的蛋白质组学研究[D].2004年.第二军医大学博士研究生论文.
    [10]Veronica M Darde, Fernando de la Cuesta,Felix Fil Dones,et al. Analysis of the Plasma Proteome Associated with Acute Coronary Syndrome:Does a Permanent Protein Signature Exist in the Plasma of ACS Patients? [J].J Proteome Res,2010,9 (9):4420-4432.
    [11]Tijl De Celle,Frank Vanrobaeys, Peter Lijnen,et al.Alterations in mouse cardiac proteome after in vivo myocardial infarction:permanent ischaemia versus ischaemia reperfusion [J].Exp Physiol,2005,90(4):593-606.
    [12]You SA, Archacki SR, Angheloiu G,et al.Proteomic approach to coronary atherosclerosis shows ferritin light chain as a significant marker:evidence consistent with iron hypothesis in atherosclerosis [J]. Physiol Genomics,2003, 13(1):25-30.
    [13]周倩倩,李治国,黄力.冠心病不同阶段血清的差异蛋白质组学研究[J].中西医结合心脑血管病杂志,2011,9(12):1409-1411.
    [14]Volpi E, Giusti L, Ciregia F,et al. Platelet proteome and clopidogrel response in patients with stable angina undergoing percutaneous coronary intervention[J]. Clin Biochem.2012,45 (10-11):758-65.
    [15]Zanin Zhorov G, Tal S, Shivtiel M, et al. Heart shock protein 60 activates cytokine -associated negative regulated suppressor of cytokine signaling 3 in T cells:effects on signaling, chemotaxis, and inflammation [J]. J Immunol,2005,175(1):276-285.
    [16]Birnie DH, Vickers LE,Hillis WS, et al. Increased titres of antihuman heat shock protein 60 predict an adverse one year prognosis in patients with acute cardiac chest pain[J]. Heart,2005,91 (9):1148-1153.
    [17]于智勇,陈月云.热休克蛋白与冠状动脉粥样硬化性心脏病的相关性研究进展[J].医学综述,2011,17(14):2081-2084.
    [18]Koenig, Twardella, Brenner, et al. Plasma concentrations of cystatin C in patients with coronary deart disease and risk for secondary cardiovascular events:more than simply a marker of glomerular filtration rate[J]. Clin Chem,2005,51 (2):321-327.
    [19]张翠萍,许玲,王波,等.大鼠心肌梗死后差异蛋白质组学研究[J].现代生物医学进展,2011,11(2):230-232.
    [20]Chaerkady R, Pandey A. Applications of proteomics to lab diagnosis [J]. Annu Rev Pathol Mech Dis,2008,3:485-98.
    [21]余宗阳,杜建.蛋白质组学与中医证实质研究[J].中国中西医结合杂志,2004,24(9):844-846.
    [22]刘军莲,宋剑南,雷燕,等.血脂异常及动脉粥样硬化不同痰瘀证候血浆蛋白差异表达谱的研究[J].中国中西医结合杂志,2010,30(5):482-486.
    [23]中国中西医结合学会心血管分会.冠心病中医辨证标准[J].中国中西医结合杂志,1991,11(5):257.
    [24]赵慧辉,侯娜,王伟,等.冠心病气虚血瘀证的蛋白质组学特征研究[J].中国中西医结合杂志,2009,29(6):489-492.
    [25]刘蕾,王伟,宋剑南,等.心肌缺血血瘀证小型猪模型差异蛋白质组学研究[J].中华中医药杂志,2009,24(6):716-719.
    [26]崔佩佩,朱明丹,姜民,等.痰浊内阻及心气虚弱型冠心病患者的比较蛋白质组学研究[J].中医杂志,2011,52(增刊):75-77.
    [27]袁宏伟,杜武勋,朱明丹,等.冠心病心气虚弱证/心肾阴虚证血清蛋白质组学特征研究[J].时珍国医国药,2012,23(4):1014-1016.
    [28]宋庆桥.冠心病心绞痛患者中医证候与相关血清蛋白表达的研究[D].2010年.中国中医科学院博士研究生论文.
    [29]吴红金,马增春,高月,等.蛋白质组学技术对冠心病血瘀证相关蛋白的研究[J].中西医结合心脑血管病杂志,2005.3(3):189-191.
    [30]马增春,高月,谭洪玲,等.复方丹参片对冠心病患者血浆蛋白影响的蛋白质组学研究[J].中国中药杂志,2006,31(9):766-768.
    [31]刘玥.血小板骨架蛋白Gelsolin在冠心病血瘀证中的作用及赤芍川芎有效组分的干预效应研究[D].2012年.中国中医科学院博士研究生.
    [32]盘箐.补体的生物活性与抗感染免疫[J].实用预防医学,2009,16(5):1680-1681.
    [33]雷清,代龙文.72例外科感染性疾病降钙素原及C-反应蛋白检测的早期诊断分析[J].检验医学与临床,2009,6(11):842,844.
    [34]徐浩,史大卓,殷惠军,等.“瘀毒致变”与急性心血管事件:假说的提出与临床意义[J].中国中西医结合杂志,2008,28(10):934-938.
    [35]Majek P, Reicheltova Z, Suttnar J, et al. Plasma proteome changes in cardiovascular disease patients:novel isoforms of apolipoprotein A1[J].J Transl Med,2011,9(84).
    [1]国际心脏病学会,国际心脏病协会,世界卫生组织临床命名标准化联合专题组报告.缺血性心脏病的命名及诊断标准[J].中华内科杂志,1981,20(4):254.
    [2]中华医学会心血管病分会,中华心血管病杂志编辑委员会,中国循环杂志编辑委员会.急性心肌梗死诊断和治疗指南[J].中华心血管病杂志,2001,29(12):710-725.
    [3]中国中西医结合学会心血管分会.冠心病中医辨证标准[J].中国中西医结合杂志,1991;11(5):257.
    [4]中国中西医结合学会活血化瘀专业委员会.血瘀证诊断标准[J].中西医结合杂志,1987,7(3):129.
    [5]付长庚,高铸烨,王培利,等.冠心病血瘀证诊断标准研究[J].中国中西医结合杂志,2012,32(9):1285-1286.
    [6]王阶.血瘀证诊断标准的研究.活血化瘀研究与临床[M].北京医科大学中国协和医科大学联合出版社,1993:7-10.
    [7]Koenig, Twardella, Brenner, et al. Plasma concentrations of cystatin C in patients with coronary deart disease and risk for secondary cardiovascular events:more than simply a marker of glomerular filtration rate[J]. Clin Chem,2005,51(2):321-327.
    [8]Taglieri N, Fernandez-Berges DJ, Koenig W, et al. Plasma cystatin C for prediction of 1-year cardiac events in Mediterranean patients with non-ST elevation acute coronary syndrome[J]. Atherosclerosis,2010,209(1):300-305.
    [9]王喜梅,吴永健,杨跃进.半胱氨酸蛋白酶抑制剂C在急性冠状动脉综合征中的研究进展[J].心血管病学进展,2012,33(3):297-299.
    [10]Noto D,Cefalu' AB, Barbagallo CM, et al. Cystatin C levels are decreased in acute myocardial infarction:effect of cystatin C G73A gene polymorphism on plasma levels[J]. Int J Cardiol,2005,101 (2):213-217.
    [11]李世峰,陈慧.激肤释放酶-激肤系统与血管内皮细胞功能关系研究新进展[J].心血管康复医学杂志,2005,14(5):508-510.
    [12]Merlo C,Wuillemin WA,Redondo M,et al.Elevated levels of plasma prekallikrein, highmolecular weight kininogen and factor XI in coronary heart disease[J]. Atherosclerosis,2002,161 (2):261-267.
    [13]苏定冯.心血管药理学[M].北京科技出版社,2001,151.
    [14]李世峰,陈慧.激肤释放酶-激肤系统与血管内皮细胞功能关系研究新进展[J].心血管康复医学杂志,2005,14(5):508-510.
    [15]Joseph K,Tholanikunnel BG,KaplanAP.Heat shock protein 90 catalyzes activation of the prekallikrein-kininogen complex in the absence of factorXII [J].Proc Natl Acad Sci USA,2002,99(2):896-900.
    [16]Seeger HC, Avery PS,Me Williams DF,et al. Combined effect of bradykinin B2 and neurokinin-1 receptor activation on endothelial cell proliferation in acute synovitis[J].FASEB J,2004,18(6):762-764.
    [17]Guo YL, Wang S, Colman RW. Kininostatin, an angiogenic inhibitor, inhibits proliferation and induces apoptosis of human endothelial cells [J]. Arterioscler Thromb Vase Biol,2001,21 (9):1427-1433.
    [18]潘传涌,时多,缪明永,等.激肽系统活性产物[J].生命的化学,2008,28(5):629-632.
    [19]Veronica M Darde, Fernando de la Cuesta,Felix Fil Dones,et al. Analysis of the Plasma Proteome Associated with Acute Coronary Syndrome:Does a Permanent Protein Signature Exist in the Plasma of ACS Patients?[J].J Proteome Res,2010,9(9):4420-4432.
    [20]Chang TS, Jeong W, ChoL SY,et al. Regulation of Peroxiredoxins I Activity by Cdc2-mediated phosphorylation[J]. Journal of Biological Chemistry,2002, 227 (28):25370-25376.
    [21]Wood ZA, Schroder E, Robin HJ,et al. Structure, mechanism and regulation of peroxiredoxins[J].Trends Biochem,2003,28:32-40.
    [22]Zhang B, Wang Y, Su Y. Peroxiredoxins, a novel target in cancer rediotherapy[J]. Cancer,2009,286 (2):154-160.
    [23]Chen MF, Keng PC, Shau H, et al. Inhibition of lung tumor growth and augmentation of radiosensitivity by decreasing peroxiredoxin I expression [J]. Int. J Radiat Oncol Biol Phys,2006,64:581 591.
    [24]Neumann CA, J Cao and Y Manevich. Peroxiredoxin 1 and its role in cell signaling[J].Cell Cycle,2009,8(24):4072-4078.
    [25]Ellis HR,Poole LB. Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium[J]. Biochemistry,1997,36 (43):13349-56.
    [26]Lee W, Choi KS, Riddell J, et al. Human peroxiredoxin 1 and 2 are not duplicate proteins:the unique presence of CYS83 in Prxl underscores the structural and functional differences between Prxl and Prx2[J]. J Biol Chem,2007,282 (30): 22011-22.
    [27]Lim JC,Choi HI,Park YS,et al. Irreversible oxidation of the active-site cysteine of peroxiredoxin to cysteine sulfonic acid for enhanced molecular chaperone activity [J]. J Biol Chem,2008,283(43):28873-80.
    [28]Rhee SG, Jeong W, Chang TS, et al. Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin:its discovery, mechanism of action, and biological significance [J]. Kidney Int Suppl,2007,(106):S3-8.
    [29]Chuang MH, WU MS,Lo WL, et al. The antioxidant protein alkylhydroperoxide reductase of Helicobacter pyloriswi tches froma peroxide reductase to a molecular chaperone function[J]. Proceedings of the National Academy of Sciences, 2006,103(8):2552-2557.
    [30]Woo HA, Chae HZ, Hwang SC, et al. Reversing the inact ivation of peroxiredoxins caused by cysteine sulf inic acid format ion [J]. Science,2003,300 (5619):653-656.
    [31]Woo HA, Yim SH, Shin DH, et al. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signal ing [J]. Cell,2010,140(4):p.517-28.
    [32]Kim SY, Kim TJand Lee KY. A novel function of peroxiredoxin 1 (Prx-1) in apoptosis signal-regulating kinase 1 (ASK 1)-mediated signaling pathway [J]. FEBS Lett,2008,582(13):1913-8.
    [33]Du ZX,Yan Y,Zhang HY,et al. Suppression of MG132-mediated cell death by peroxiredoxin 1 through influence on ASK1 activation in human thyroid cancer cells[J]. Endocr Relat Cancer,2010,17 (3):553-60.
    [34]Cao J, Schulte J, Knight A, et al. Prdxl inhibits tumorigenes is via regulating PTEN/AKT activity[J]. EMBO J,2009,28(10):1505-17.
    [35]Kim YJ, Lee WS, Ip C, et al. Prxl suppresses radiation-induced c-Jun NH2-terminal kinase signal ing in lung cancer cells through interact ion with the glutathione S-transferase Pi/c-Jun NH2-terminal kinase complex [J]. Cancer Res, 2006,66(14):7136-42.
    [36]Mohler JL, Gregory CW, Kim D, et al. The androgen axis in recurrent prostate cancer[J]. Clin Cancer Res,2004,10(2):440-8.
    [37]Jain RK, Goel S, FukumuraD. Normalization of tumor vasculature:an emerging concept in antiangiogenic therapy [J]. Science,2005,307 (5706):58-62.
    [38]Veal EA, Findlay VJ, Day AM,et al. A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stress-activated MAP kinase[J]. Mol Cell,2004,15(1):129-39.
    [39]苗东风,刘广盛,李德全.浅谈人体自由基对心血管疾病的影响[J].中国地方病防治杂志,2012,27(2):100.
    [40]张志辉,周胜华,祁述善,等.氧化应激、炎症与冠心病患者冠状动脉斑块的关系[J].中南大学学报(医学版),2006,31(4):556-559.
    [41]林丽珠,王淑美,周京旭.益气除痰方对脾虚Lewis肺癌小鼠肿瘤生长、生存期及PRDX-1、PRDX-6表达的影响[J].中国中西医结合杂志,2011,31(1):99-103.
    [42]Jonah R Riddell, Wiam Bshara, Michael T Moser, et al. Peroxiredoxin 1 Controls Prostate Cancer Growth through Toll-Like Receptor 4 Dependent Regulation of Tumor Vasculature [J]. Cancer Res,2011,71 (5):1637-1646.
    [43]Takashi Shichita, Eiichi Hasegawa, Akihiro Kimura, et al. Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain[J]. Nature Medicine,18 (6):911-918.
    [44]杨鹏远.动脉粥样硬化炎症基因的差异表达及相关药物调控的蛋白质组学研究[D].2004年.第二军医大学博士研究生论文.
    [45]Hoffmeister HM, Heller W, Seipel L. Blood coagulation and fibrinolysis in arteriosclerosis [J]. Z Kardiol,1999,88(5):315-323.
    [46]Seeger FH, Blessing E, Gu L, et al. Fibrinogen induces chemotactic activity in endothelial cells[J]. Acta Physiol Scand,2002,176 (2):109-115.
    [47]Tataru MC, Schulte H, von Eckardstein A, et al. Plasma fibrinogen in relation to the severity of arteriosclerosis in patients with stable angina pectoris after myocardial infarction[J]. Coron Artery Dis,2001,12 (3):157-165.
    [48]Naito M. Effects of fibrinogen, fibrin and their degradation products on the behaviour of vascular smooth muscle cells[J]. Nippon Ronen Igakkai Zasshi,2000, 论 37 (6):458-463.
    [49]赵凤萍,周秀艳.急性心肌梗死患者血清肌钙蛋白T、D一二聚体、纤维蛋白原降解产物及超敏C反应蛋白检测的临床意义[J].中国煤炭工业医学杂志.2012,15(10):1560-1561.
    [50]陈建昌,吾柏铭,洪小苏,等.不稳定性心绞痛患者内皮素和纤维蛋白(原)及其降解产物的变化[J].中国循环杂志,1998,13(1):13-14.
    [51]Smit M, van der Kooij-Meijs E, Rune RF,et al. Apolipoprotein gene cluster on chromosome 19 [J]. Hum Genet,1988,78:90-93.
    [52]Karl H Weisgraber, Robert W Mahley, Rovert C Kowal, et al. Apolipoprotein C-I Modulates the Interaction of Apolipoprotein E with β-Migrating Very Low Density Lipoproteins (β-VLDL) and Inhibi ts Binding of (3-VLDL to Low Density Lipoprotein Receptor-related Protein[J]. The Journal of Biological Chemistry. 265(36):22453-22459.
    [53]Marit Westerterp, Jimmy F. P. Berbee, Nuno M. M. Pires, et al. Apolipoprotein C-I Is Crucially Involved in Lipopolysaccharide-Induced Atherosclerosis Development in Apolipoprotein E Knockout Mice[J]. Circulation,2007,116: 2173-2181.
    [54]Thomas Gautier, David Masson, Jean-Paul Pais de Barros, et al. Human Apolipoprotein C-I Accounts for the Ability of Plasma High Density Lipoproteins to Inhibit the Cholesteryl Ester Transfer Protein Activity[J]. The Journal of Biological Chemistry,2000,275 (48):37504-37509.
    [55]Hamsten A, Silveira A, Boquist S,et al. The apolipoprotein CI content of triglyceride-rich lipoproteins independently predicts early atherosclerosis in healthy middle-aged men FREE[J]. J Am Coll Cardiol,2005,45(7):1013-1017.
    [56]刘皓,刘秉文.载脂蛋白C研究进展[J].中国动脉硬化杂志,2002,10(1):76-80.
    [57]Suzuki K, Nishioka J, Kusumoto H, et al. Mechanism of inhibi t ion of act ivated protein C by protein C inhibitor[J]. J Biochem,1984,95(1):187-195.
    [58]Carroll V A, Griffiths M R, Geiger M, et al. Plasma protein C inhibitor is elevated in survivors of myocardial infarction [J]. Arterioscler Thromb Vasc Biol,1997,17(1):114-118.
    [59]Strandberg K, Bhiladvala P, Holm J, et al. A new method to measure plasma levels of activated protein C in complex with protein C inhibitor in patients with acute coronary syndromes. [J]. Blood Coagul Fibrinolysis,2001,12(7): 503-510.
    [60]Pavlov V I, Skjoedt M O, Siow T Y, et al. Endogenous and natural complement inhibitor attenuates myocardial injury and arterial thrombogenesis [J]. Circulation,2012,126(18):2227-2235.
    [61]Carter A M, Prasad U K, Grant P J. Complement C3 and C-reactive protein in male survivors of myocardial infarction. [J]. Atherosclerosis,2009,203 (2): 538-543.
    [62]Giasuddin A S, Elmahdawi J M, Elhassadi F M. Serum complement (C3, C4) levels in patients with acute myocardial infarct ion and angina pec tor is [J]. Bangladesh Med Res Counc Bull,2007,33 (3):98-102.
    [63]Distelmaier K, Adlbrecht C, Jakowitsch J, et al. Local complement activation triggers neutrophil recruitment to the site of thrombus formation in acute myocardial infarction. [J]. Thromb Haemost,2009,102 (3):564-572.
    [64]Onat A, Can G, Murat S, et al. Clinical biomarkers of high-density lipoprotein dysfunction among middle-aged Turks [J]. Anadolu Kardiyol Derg, 2012,12(8):628-636.
    [65]Alwaili K, Bailey D, Awan Z, et al. The HDL proteome in acute coronary syndromes shifts to an inflammatory profile[J]. Biochim Biophys Acta,2012, 1821(3):405-415.
    [66]马晓望,李松香.外科感染疾病中免疫球蛋白和补体C3的变化[J].浙江医学,1997,19(2):121-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700