用户名: 密码: 验证码:
基于“毒损脑络”病机理论的阿尔茨海默病机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.背景
     阿尔茨海默病(Alzeimer disease, AD)是老年痴呆症最常见的一种,以认知功能障碍为主要临床表现。现代医学研究表明,AD病因主要与β淀粉样蛋白(Amyloid β, Aβ)在脑组织异常沉积、Aβ清除障碍、胆碱能神经元受损、氧化应激反应、脑内炎症级联反应或基因突变等因素有关,为此研究者虽然针对改善胆碱能神经元功能、抗氧化应激等多方面研制了各种药物,但是目前尚未找到有效的治疗措施,尤其是仍未使脑损伤得以根本解决。然而,在中医理论知道下,本研究团队前期研究表明,AD隶属于中医“络病”范畴,“毒损脑络”是其病机关键,在临床中运用针对该病机关键的解毒通络法进行辨证论治取得了显著疗效。以脑微血管内皮细胞为主要物质基础的中医络脉系统具有渗灌气血、贯通营卫之功效,是经脉气血进行物质交换的场所。络脉瘀滞引发气血渗灌失常,营卫失和,卫气壅滞,郁而化热,进而损伤络脉。若发于脑部络脉则形成“毒损脑络”之病机。随着对该疾病认识的逐渐深入,研究人员日益认识到以脑微血管内皮细胞为主要物质基础的脑部络脉系统对脑损伤的保护作用,除了能够调节血管细胞生长迁移、基质降解、活化多种细胞受体、激活细胞内信号转导通路外,还能调节脑组织内特定物质的脑外转运,对维持脑组织内环境的平衡稳定具有重要的调节作用。
     2.目的
     本研究在中医络脉理论指导下,以脑部络脉系统的主要物质基础-脑微血管内皮细胞为切入点,以具有解毒通络功效的通络救脑注射液(TLJN)为干预药物,重点探讨在拟AD损伤的大鼠脑微血管内皮细胞上特定β淀粉样蛋白转运体的动态改变以及由此转运体介导的细胞内特定信号转导通路的变化,在揭示该转运体改变与内皮细胞损伤程度的同时,阐明TLJN与血管内皮保护生物效应之间的关系,从分子水平对该注射液作用内皮细胞的可能靶点进行科学诠释,为“毒损脑络”病机假说在阿尔茨海默病的确立以及TLJN的临床应用提供体外实验依据。
     3.方法
     本研究共分为四部分:第一部分:观察解毒通络药物对拟AD损伤大鼠脑组织的保护作用。第二部分:探讨拟AD损伤大鼠脑微血管内皮细胞与神经元损伤的时程变化及TLJN干预作用。第三部分:探讨Aβ1-42对β淀粉样蛋白转运体的影响以及TLJN干预作用。第四部分:探讨拟AD损伤的脑微血管内皮细胞内PI3K/Akt/Caspase-3信号转导通路变化及TLJN干预作用。具体实验方案为:第一部分:大鼠双侧海马注射凝聚态Aβ1-42拟建立AD损伤动物模型,动物实验分为五组,分别是control组(正常对照组)、sham组(假手术组),model组(模型组)、TLJN组(通络救脑注射液组)和DNP组(阳性药组),观察各组大鼠在药物干预7天、14天和21天后的Morris水迷宫行为学改变,阿尔茨海默病脑组织特征性病理改变(ELISA (?)去检测脑组织A β1-42含量、Western Blot法检测P-tau表达,HE染色观察神经元损伤程度)。第二部分:Western Blot法和ELISA法分别观察拟AD损伤大鼠在7天、14天和21天脑组织内皮细胞特异性损伤因子vWF和神经元特异性损伤因子NSE的蛋白表达以及血液中上述蛋白含量的变化。第三部分:通过体外培养拟AD损伤大鼠脑微血管内皮细胞,运用Western Blot和Real-time PCR实验技术分别从蛋白水平和mRNA水平考察拟AD损伤的大鼠脑微血管内皮细胞在不同时段中特定β淀粉样蛋白转运体LRP-1和RAGE表达变化、分光光度法检测氧化应激反应的变化(MDA含量、SOD活性、Cat活性、GSH-Px活性)、MTT法检测内皮细胞的损伤程度以及TLJN液的干预作用。第四部分:通过培养拟AD损伤大鼠脑微血管内皮细胞,运用Western Blot实验技术检测A β1-42通过LRP-1转运体介导的脑微血管内皮细胞内PI3K/Akt/Caspase-3信号转导通路中主要信号分子的蛋白表达变化(LRP-1、T-tau、 P-tau、Caspase-3)以及TLJN对该信号转导通路的调节作用。
     4.结果
     ①在本次动物实验观察范围内,通过morris水迷宫实验,我们发现造模后散发型AD大鼠行为学发生显著改变。体现在其逃避潜伏期延长、游泳总路程距离增加、目标象限停留时间缩短以及穿台次数减少。此外,AD大鼠形态学亦发生显著变化,表现在海马神经元出现不同程度的细胞皱缩、核固缩、核溶解以及核碎裂等现象;整个脑组织Tau蛋白过度磷酸化;脑组织中A β1-42含量显著增加。在通络就脑注射液干预后,AD大鼠行为学、脑部组织结构和功能均得到了不同程度的改善。
     ②在本实验中,AD大鼠脑组织和血液中的vWF蛋白量与假手术组比较在检测的三个时程中均显著升高,而AD大鼠脑组织和血液中的NSE蛋白量从检测的14天时间点开始才明显升高。在TLJN干预后,与模型组比较,vWF和NSE蛋白量在14天后明显降低,显示出对脑组织的改善作用。
     ③在本次细胞实验观察范围内,LRP-1和RAGE蛋白转运体在拟AD损伤的内皮细胞中,呈现动态改变,表现在0h、3h、6h和12h四个时间点LRP-1蛋白表达升高,在24h、36h、48h和72h四个时间点蛋白表达降;而其mRNA表达在0h、3h、6h三个时间点增加,在后续时间点降低。RAGE蛋白和mRNA表达在全部8个时间点逐渐增加;在拟AD损伤的内皮细胞中,LRP-1/RAGE蛋白比值在0h、3h、6h和12h四个时间点未见统计学差异,而在后续四个时间点显著下降;然而,LRP-1/RAGE的mRNA比值在检测的8个时间点未见规律性改变。经TLJN干预后,RAGE蛋白和mRNA表达在全部8个时间点均有不同程度地降低;而对LRP-1的干预作用,仅体现在其对LRP-1蛋白表达的下调作用,未见对mRNA的调节作用;LRP-1/RAGE蛋白比值在0h、3h、6h和12h四个时间点未见组间及组内比较的统计学差异,而在后续四个时间点其蛋白比值与A β1-42损伤组比较明显升高;在拟AD损伤的内皮细胞中,细胞内氧化应激反应(MDA含量)在8个时间点逐渐增加,抗氧化酶系统(SOD、Cat、GSH-Px活性)活性在全程逐渐下降,经TLJN干预后,细胞内氧化应激反应减弱,抗氧化酶系统活性增加。
     ④在细胞实验中,A β1-42诱导拟AD损伤内皮细胞中LRP-1受体蛋白表达下降,P-tau蛋白表达下降,Caspase-3蛋白表达升高,诱导细胞凋亡;在TLJN干预A β1-42诱导的内皮细胞后,LRP-1受体蛋白表达增加,P-tau蛋白表达增加,Caspase-3蛋白表达降低,减缓细胞凋亡;在TLJN药物和阻滞剂LY200942共同作用于A β1-42诱导的内皮细胞后,LRP-1受体蛋白表达增加,P-tau蛋白表达降低,而Caspase-3蛋白表达与Aβ1-42损伤的内皮细胞比较,明显升高,减缓细胞凋亡。
     5.结论
     ①以通络救脑注射液为代表的解毒通络方药能够减轻拟AD损伤大鼠认知功能障碍,改善大鼠脑部组织AD病变的特征性病理损伤。
     ②拟AD损伤的大鼠动物模型和脑微血管内皮细胞模型中,脑微血管病变先于神经元的损伤,由于脑微血管内皮细胞上LRP-1和RAGE两个p淀粉样蛋白转运体的动态平衡被打破,引起A β脑外转运减少,脑内聚集增加,通过LRP-1转运体介导的PI3K/Akt/Caspase-3信号转导通路,使Caspase-3蛋白表达增加,促进内皮细胞凋亡,加重拟AD损伤模型中神经元的损伤,最终形成了以认知功能障碍为主要表现的脑功能紊乱。
     ③解毒通络药物-TLJN在干预拟AD损伤模型后,恢复了脑微血管内皮细胞上LRP-1和RAGE两个β淀粉样蛋白转运体的动态平衡,可能通过TLJN中药复方多靶点的作用途径抑制内皮细胞内Caspase-3蛋白表达,减少内皮细胞凋亡,通过调节脑微血管的功能,最终达到了改善受损神经元目的,在阐明脑微血管在神经退行性病变中重要作用的同时,一定程度上为阿尔茨海默病“毒损脑络”病机假说的确立提供了体外实验依据。
1. Background
     Alzeimer's disease (AD) is the most common one of dementia, regarding cognitive dysfunction as the main mlinical manifestations. Modern medical research in this field demonstrates that the pathogenesis of AD is related to the accumulation of amyloid beta (Aβ) in brains, disorder of Aβ clearance, cholinergic neuron damage, oxidative stress, brain inflammatory cascade, gene mutation, and so forth. Although researchers have produced a variety of drugs aimed at improving cholinergic neuronal function, oxidative stress and other aspects of AD, there are not effective ways to treat AD, especially in the aspect of brain injury recovery. However, in the direction of TCM theory, our previous research showed that AD belongs to the category of 'collateral disease', and 'toxin hurts brain collaterals' is the key point in its pathogenesis. It is also realized that brain microvascular endothe lial cells (BMECs) are not only the substance exchange barrier of blood and tissue, but also have important incretion function. Our researches pay more attention to BMECs rather than neurons, which is a meaningful probe to guide Traditional Chinese Medicine mordernation in brain diseases.
     2. Purpose
     In this study, with the guidance of collateral disease theory, we take the main material basis of brain collaterals system-BMECs as the breakthrough point of our research, choose Tongluojiunao injection(TLJN)withthe function of detoxification and smoothing collaterals as intervening drugs, mainly explore the dynamic changes of Aβprotein transportersin ADimitated BMECs andchanges in thetransportermediatedspecific intracellular signal pathway, elucidate both the transporter change and endothelial cells injury and the biological effect between TLJN and vascular endothelial protection and explain the targets of TLJN to BMECs from the molecular level. At last, provide an in vitro experimental basis for "establishingthe toxin hurtingbraincollaterals"pathogenesis hypothesis in Alzheimer's disease and the clinical application of TLJN.
     3. Methods
     The experiments are divided into4parts, the first part is to observe the protective effect of Jiedu Tongluo drugs on AD imitated rat brain; The second part is to investigate time course changes between cerebral vessels and neuronal injury in the AD imitated rat and the intervention effect of TLJN; The third part is to investigate the effect of Aβ1-42on the amyloid beta protein transporter and the intervention effect of TLJN; The fourth part is to investigate the AD imitated brain microvascular endothelial cells in PI3K/Akt/Caspase-3 intracellular signal pathway and the intervention effect of TLJN.
     The experimental plans as followed:the first part:condensed Aβ1-42was injected into both hippocampus of rats to establish AD imitated animal model, animal experiments were divided into five groups, respectively, control group (normal control group), sham group (sham operation group), model group (model group), TLJN group (TLJN injection group) and DNP group (positive drug group), behavior of rats were detected by Morris water maze after drug administration for7days,14days and21days, characteristic pathological changes were observed in Alzheimer's disease brains (ELISA method for detecting the content of Aβ1-42in brain tissue, Western Blot method to detect the expression of P-tau, HE staining was chosen for neuron injury). The second part:Western Blot method and ELISA method were used to observe the expressions of both vWF and NSE in protein levels in cerebral tissues and blood in AD imitated rats of3detecting period of time. The third part:in vitro culture of AD imitated rat brain micro vascular endothelial cell, from the level of protein and mRNAto study brain damage in AD rat, the expression changes of specific amyloid beta protein transporters LRP-1and RAGE in AD imitated micro vascular endothelial cells in different period of time, detection of oxidative stress reaction by spectrophotometry (MDA content, SOD activity, Cat activity, GSH-Px activity), the viability of endothelial cells were detected by MTT method. The fourth part:through the cultivation of the AD imitated rat brain micro vascular endothelial cells to detect the main signal molecules change of LRP-1mediated PI3K/Akt/Caspase-3signal pathway induced by Abetal-42with the method of Western Blot and the regulating effect of TLJN on the signal pathway.
     4. Results
     ①In the observation of the animal experimental range, by the Morris water maze test, we found that the behavior of AD rats changed significantly, demonstrated by the prolonged escape latency, increased swimming total distance, increased target quadrant stay time and reduced number of wear stage. In addition, the morphology of AD rats also changed significantly, showing different degrees of cell shrinkage, nuclear condensation in hippocampal neurons, karyolysis and nuclear fragmentation phenomenon:Tau protein hyperphosphorylation and increased Aβ1-42content in the whole brain tissue. After the administration of TLJN. behavior of AD rats, brain tissue structure and function were improved to some extent.
     ②In this experiment, the vWF protein level in blood and brain in AD rats compared with sham operation group in three period of time were increased significantly, while the NSE protein in brain tissue and the blood in AD rats increased significantly after14days. In TLJN group, compared with model group, vWF and NSE protein decreased significantly in14days, showing the beneficial effects on AD imitated rats.
     ③In the observation of cells experimental range, LRP-1and RAGE protein expressions in the AD imitated endothelial cells showed the dynamic change, presenting the elevated expression of LRP-1in Oh,3h,6h and12h, four period of time, but decreased in24h,36h,48h and72h four period of time. As for mRNA expression of LRP-1, increased at Oh,3h and6h three time points, decreased in the subsequent time points. Expression of RAGE in both protein and mRNA levels increased gradually in all8time points; LRP-1/RAGE protein ratio showed no statistical differences in Oh,3h,6h and12h four time points, but significantly decreased in the following four period of time; however, the ratio of LRP-1/RAGE in mRNA level showed no change. After TLJN administration, the expression of RAGE both in protein and mRNA levels were decreased in all8time points; as for the regulation of LRP-1expression, TLJN could down regulate the protein expression of LRP-1, but showed no effect on the expression of LRP-1in mRNA level. In AD imitated endothelial cells, intracellular oxidative stress (MDA content) increased at all detected8time points, antioxidant enzymes (SOD, Cat, GSH-Px activity) activity decreased gradually in the whole process, after the administration of TLJN, intracellular oxidative stress was decreased, the activities of antioxidant enzymes were increased.
     ④In cellular experiments, in Aβ1-42induced AD imitated RMECs, LRP-1protein expression decreased, P-tau protein expression decreased, Caspase-3protein expression increased, inducing endothelial cell apoptosis; with the administration of TLJN, the expression of LRP-1increased, the expression of P-tau protein increased, the expression of Caspase-3decreased, reducing cell apoptosis; after the interaction of both TLJN and inhibitor-LY200942in Aβ1-42induced endothelial cells, the expression of LRP-1increased, the expression of P-tau protein reduced, and Caspase-3protein expression decreased, alleviating endothelial cell apoptosis.
     5. Conclusion
     ①TLJN as the representative of the decoction with the function detoxification and smoothing collaterals can reduce t cognitive impairment, improve the characteristic pathological injury of brain in AD imitated rats.
     ②In the AD imitated rats and rats micro vascular endothelial cell models, the cerebral microvessels are prior to the injury of neurons, due to break of the dynamic balance between LRP-1and RAGE, Aβ1-42were transported decreased and increased aggregation in brains, via LRP-1mediated PI3K/Akt/Caspase-3signal pathway, Caspase-3expression was increased, promoting the apoptosis of endothelial cells and increasing the damage to the neurons in AD imitated rats, eventually led to the cognitive dysfunction.
     ③After TLJN was administrated, it could recover the dynamic balance between LRP-1and RAGE, with the help of compound target in decoction, inhibited the expression of Caspase-3, reduced the apoptosis of endothelial cells, with the regulation to microvascular endothelial cells, achieve the purpose of improving the damaged neurons, to a certain extent for the Alzheimer's disease"toxin damaging brain collaterals" pathogenesis hypothesis establishment provides experimental evidence in vitro.
引文
[1]Alzheimer's Association. Alzheimer's disease Facts and Figures.2008, Jan 16,2009
    [2]Kayer R, Head E, Thompson J L, etc. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003;300(5618):486-489
    [3]Walsh D M. Klyubin I, Shankar GM etc. The role of cell-derived oligomers of Abeta in Alzheimer's disease and avenues for therapeutic intervention. Biochem Soc Trans 2005;33(Pt 5):1087-1090
    [4]Lesne S, Koh M T, Kayed R etc. A specific amyloid-beta protein assembly in the brain impairs memory. Nature 2006;440(7082):352-357
    [5]Snyder E M, Nong Y, Aleida C G etc. Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 2005;8(8):10510-1058
    [6]Citron M, Olersdorf T, Hass C etc. Mutation of the beta-protein production. Nature 1992;360(6405):672-674
    [7]Holtzman,D M, Zlokovic,B V. Alzheimer's disease:Advanced in genetics, molecules and cellular biology. Sisodia, S; TANZI, T, editors. Springer; New York:2007.P151-154.
    [8]Zlokovic B V, Shinya Y, Holyzman D etc. Clearance of amyloid β-peptide from brain transport or metabolism. Nat Med 2000;6:718-719.
    [9]Tanzi R E, Moir R D, Wagner S L etc. Clearance of Alzheimer's Abeta peptide:the many roads to perdition. Neuron 2004;43(5):605-608.
    [10]Zbkovic B V.Clearing amybid through the bbod-brain barrier[J]. J Neurochem,2004,89:807-811.
    [11]Zlokovic B V, Yamada S, Holtzman D, et al. Clearance of amyloid beta-peptide from brain:transport or metabolism? [J]. Nat Med,2000,6(7):718.
    [12]Selkoe D J. Alzheimer's disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. [J]. Alzheimers Dis,2011,3(1):75-80
    [13]Shibata M, Yamada S, K umar S, et al. Clearance of Alzheimer's amyloid-ss(1-40)peptide from brain by LDL receptor-related protein-1 at the blood -brain barrier[J]. J Clin Invest, 2000,106:1489-1499.
    [14]Deane R, Du Y S, Submamaryan R, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain [J]. Nat Med,2003,9:907-913.
    [15]Herz J, Marschang P.Coaxing the LDL receptor family into the fold [J].Cell,2003,112:289-292
    [16]Donahue J E, Flaherty S L, Johanson C E, et al. RAGE, LRP-1, amd amyloid-beta protein in Alzheimer's disease [J]. Acta Neuropathol,200,112:405-415.
    [17]Deane R, Wu Z, Sagare A, et al. LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβisoforms [J]. Neuron,2004,43:333-344.
    [18]Patricia G. John Blakemore, Lei Ding etc. Macrophage LRP-1 Controls Plaque Cellularity by Regulating Efferocytosis and Akt Activation. Arterioscler Thromb Vasc BioL 2010:30:787-795.
    [19]Harris-White ME, Frautschy SA. Low density lipoprotein receptor-related proteins(LRPs), Alzheimer's and cognition [J]. Curr Drug Targets CNS Neurol Disord.2005.4:469-480.
    [20]Zerbinatti CV, Bu G. LRP and Alzheimer's disease [J]. Rev Neurosci.2005.16:123-135.
    [21]Schmidt A M, Yan S D, Yan S F, et al. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses[J]. J Clin Invest,2001.108(7):949-955.
    [22]Chancy M O. Stine W B. Kokjohn T A. et al. RAGE and amyloid beta ineractions:atomic force microscopy and molecular modeling[J].Biochim Biophys Acta,2005,1741 (1-2):199-205.
    [23]Mackic J B, Stins M. McComb J G, et al. Human blood-brain barrier receptors for Alzheimer's amyloid-beta 1-40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer[J]. J Clin Invest, 1998.102(4):734-743.
    [24]Miller M C, Tavarcs R, Johanson C E, et al. Hippocampal RAGE immunoreactivity in early and advanced Alzheimer's disease[J]. Brain Res,2008,1230C:273-280
    [25]Giri R, Shen Y, Stins M, et al. beta-amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1[J]. Am J Physiol Cell Physiol,2000,279(6):C 1772-1781.
    [26]Giri R, Selvaraj S, Miller C A, et al. Effect of endothelial cell prolarity on beta-amyloid-induced migration of monocytes across normal and AD endothelium[J]. Am J Physiol Cell Physiol,2002,283(3):C895-904
    [27]Lue L F, Yan S D, Stern D M, et al. Preventing activation of receptor for advanced glycation end products in Alzheimer's disease[J]. Curr Drug Targets CNS Neurol Disord,2005,4(3)249-266.
    [28]Yan S D, Chen X, Fu J, et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease[J]. Nature,1996,382(6593):685-691
    [29]Zlokovic B V, Deane R, Sagare A P, et al. Low-density lipoprotein receptor-related protein-1:a serial clearance homeostatic mechanism controlling Alzheimer's amyloid β-peptide elimination from the brain [J]. J.Neurochem.2010,115:1077-1089.
    [1]Ferri CP,Prince M,Brayne C,Brodaty H,Fratiglioni L,Ganguli M,Hall K,Hasegawa K,Hendrie H,Huang Y,Jorm A,Mathers C,Menezes PR,Rimmer E,Scazufca M. Global prevalence of dementia:a Delphi consensus study. Lancet.2005 Dec 17.366(9503):2112-7.
    [2]魏录翠,胡国恒,匡艳红中医对老年性痴呆的认识[J].江西中医学院学报,2009,21(1):4-6.
    [3]梁健芬,覃翠,杨波.阿尔茨海默病分期与中医辨治[J].山东中医杂志,2010,29(1):67.
    [4]周志昆,曾红兵,黄兆胜,等.补肾活血方对阿尔茨海默病模型大鼠脑内胶质细胞的影响[J].中国中医基础学,2005,11(6):425-427.
    [5]王永炎,尹颖辉.老年性痴呆辨治[J].中国医药学报,1994,9(2):49.
    [6]刘丽坤,王文彩.老年性痴呆的病机治则刍议[J].中医药信息,1992(2):3-5.
    [7]颜德馨,吕立言.老年性痴呆与瘀血的关系[J].辽宁中医杂志,1991(8):37-38.
    [8]胡起超,于涛,韩景献.老年性痴呆中医证候及病因病机探析陕西中医2010,31(5):576-577.
    [9]朱荣.中医对阿尔茨海默病的病机认识与治疗方法探讨[J].山西中医,2008,24(10):1-3.
    [10]苏芮,韩振蕴,范吉平.基于“毒损脑络”理论的老年性痴呆中医病机探讨[J].南京中医药大学学报,2010,26(2):93-94.
    [11]孔德荣.龟鹿二仙胶治疗老年性痴呆60例[J].中医研究,2007,20(10):33-34.
    [12]卿照前.六味地黄丸延缓老年痴呆症50例疗效观察[J].中国中医药科技,2007,16(5):373-374.
    [13]尚炽昌,蒋士卿,张尚臣,等.地黄饮子加味治疗髓海不足型老年呆病的临床报道[J].中国医药学报,1996,11(5):36-38.
    [14]王宏献.地黄饮子加减治疗老年性痴呆50例[J].北京中医,1998,(1):13-14.
    [15]张士云,吴凡.当归芍药散治疗老年性痴呆21例[J].安徽中医学院学报,1996,15(6):20-21.
    [16]王永炎,尹颖辉.老年性痴呆辨治[J].中国医药学报,1994,9(2):49.
    [17]夏小军.谢君国诊治老年性痴呆经验[J].中医药临床杂志,2006,18(2):113-114.
    [18]杨任民.老年性痴呆的中西医治疗[J].江苏中医药,2006,27(12):4-5.
    [19]吴继全傅仁杰教授治疗老年性痴呆经验掂拾[J].实用中医内科杂志,2007,21(5):14-15.
    [20]刘晓平.老年性痴呆辨治五法[J].光明中医,2005,20(6):19-20.
    [21]赵冰,张华东,张晨,等.谢海洲治疗老年痴呆经验[J].中医杂志,2006,47(4):258-259.
    [22]林水淼,王健,周如倩,等.从心、肾论治阿尔茨海默病的临床研究[J].中国中西医结合杂志,2003,23(8):24-27.
    [23]刚宝芝,沈翠茹,复智散对阿尔茨海默病患者事件相关诱发电位的影响[J].哈尔滨医科大学学报,2007,41(6):581-583
    [24]梁健芬,覃翠,杨波,补肾益智颗粒联合西药治疗阿尔茨海默病的临床观察[J].中西医结合心脑血管病杂志,2010,8(1):39-41.
    [25]陈岩,袁勇.活脑方治疗阿尔茨海默病肾虚髓减证临床研究[J].山东医药,2008,48(32):81-82.
    [26]常富业,张云岭,王永炎,等.中医药醒脑散治疗老年性痴呆的临床研究[J].天津中医药,2008,25(5):367-368.
    [27]李悦.参蓉益智饮治疗老年性痴呆的临床研究,2008湖北中医学院,中医内科学,2008,硕士.
    [28]张毛珍.延龄长春丹化裁治疗老年性痴呆70例[J].陕西中医,2005,26(11):1160-1161.
    [29]付平,贾建平,闵宝权.针刺内关穴对阿尔兹海默病脑功能磁共振成像的影响[J].中华神经科杂志,2005,38(2):118-119.
    [30]付平,贾建平,王敏.针刺神门穴对阿尔兹海默病脑功能磁共振成像的影响[J].中国临床康复,2005,9(1):120-121.
    [31]李佰纲.针药合用治疗老年性痴呆207例[J].国医论坛,2006,21(4):29
    [32]许建阳,王发强,单保慈.针刺治疗老年性痴呆的认识能力及其脑功能成像的研究-附10例临床报告[J].中国中西医结合影像学杂志,2004,2(2):85-86.
    [33]周友龙,韩红艳,贾建平.阿尔茨海默病患者穴位埋线后认知功能变化与脑功能成像改变的相关性研究[J].中国中西医结合杂志,2008,28(8):689-693.
    [1]Li X, Li TQ, Andreasen N, Wiberg MK, Westman E, Wahlund LO:Ratio of Abeta42/P-tau(181p) in CSF is associated with aberrant default mode network in AD. Scientific reports 2013,3:1339.
    [2]Chetelat G:Alzheimer disease:Abeta-independent processes-rethinking preclinical AD. Nature reviews Neurology 2013,9(3):123-124.
    [3]苏芮,韩振蕴,范吉平.基于“毒损脑络”理论的老年性痴呆中医病机探讨.南京中医药大学学报2010(02)93-94.
    [4]李澎涛,王永炎,黄启福.“毒损脑络”病机假说的形成及其理论与实践意义.北京中医药大学学报.2001(01):1-6+16.
    [5]Zhong SZ, Ge QH, Li Q, Qu R, Ma SP:Peoniflorin attenuates Abeta((1-42))-mediated neurotoxicity by regulating calcium homeostasis and ameliorating oxidative stress in hippocampus of rats. Journal of the neurological sciences.2009,280(1-2):71-78.
    [6]Li J, Wang G. Liu J, Zhou L. Dong M, Wang R. Li X, Li X, Lin C, Niu Y:Puerarin attenuates amyloid-beta-induced cognitive impairment through suppression of apoptosis in rat hippocampus in vivo. European journal of pharmacology.2010,649(1-3):195-201.
    [7]O'Hare E. Weldon DT, Mantyh PW, Ghilardi JR, Finke MP, Kuskowski MA, Maggio JE, Shep hard RA, Cleary J:Delayed behavioral effects following intrahippocampal injection of aggregated A beta (1-42). Brain research.1999,815(1):1-10.
    [8]Liu Y, Hua Q, Lei H, Li P:Effect of Tong Luo Jiu Nao on Abeta-degrading enzymes in AD rat brains. Journal of ethnophannacology.2011,137(2):1035-1046.
    [9]邱宏,金国琴,金如锋,赵伟康.水迷宫重复测量数据的方差分析及其在SPSS中的实现.中西医结合学报 2007(01):101-105.
    [10]Robakis NK:Are Abeta and its derivatives causative agents or innocent bystanders in AD? Neuro-degenerative diseases 2010,7(1-3):32-37.
    [11]Monji A, Yoshida I, Tashiro K, Hayashi Y, Matsuda K, Tashiro N:Inhibition of A beta fibril formation and A beta-induced cytotoxicity by senile plaque-associated proteins. Neuroscience letters.2000,278(1-2):81-84.
    [12]O'Hare E, Scopes DI, Treherne JM, Monaghan J, Palmer PM, Amijee H, Kim EM:Novel anti-inflammatory compound SEN 1176 alleviates behavioral deficits induced following bilateral intrahippocampal injection of aggregated amyloid-beta(1)(-)(4)(2). Journal of Alzheimer's disease:JAD.2011,25(2)219-229.
    [13]Liang JH, Du J, Xu LD, Jiang T, Hao S, Bi J, Jiang B:Catalpol protects primary cultured cortical neurons induced by Abeta(1-42) through a mitochondrial-dependent caspase pathway. Neurochemistry international.2009,55(8):741-746.
    [14]Laczo J, Andel R, Vyhnalek M, Vlcek K, Magerova H, Varjassyova A, Nedelska Z, Gazova I, Bojar M, Sheardova K et al:From Morris Water Maze to computer tests in the prediction of Alzheimer's disease. Neuro-degenerative diseases.2012,10(1-4):153-157.
    [15]Young GS, Choleris E, Kirkland JB:Use of salient and non-salient visuospatial cues by rats in the Morris Water Maze. Physiology & behavior.2006,87(4):794-799.
    [16]Saab BJ, Luca RM, Yuen WB, Saab AM, Roder JC:Memantine affects cognitive flexibility in the Morris water maze. Journal of Alzheimer's disease:JAD.2011, 27(3):477-482.
    [17]Zhou L, Hou Y, Yang Q, Du X, Li M, Yuan M, Zhou Z:Tetrahydroxystilbene glucoside improves the learning and memory of amyloid-beta(1-42)-injected rats and maybe connected to synaptic changes in the hippocampus. Canadian journal of physiology and pharmacology.2012.90(11):1446-1455.
    [18]Limon D, Diaz A, Hernandez M, Fernandez GJ, Torres-Martinez AC, Perez-Severiano F, Rendon-Huerta EP, Montano LF. Gue vara J:Neuroprotective effect of the aminoestrogen prolame against impairment of learning and memory skills in rats injected with amyloid-beta-25-35 into the hippocampus. European journal of pharmacology.2012. 685(1-3):74-80.
    [19]Yip AG, McKee AC, Green RC, Wells J. Young H, Cupples LA, Fairer LA:APOE, vascular pathology, and the AD brain. Neurology.2005,65(2):259-265.
    [20]Vickers JC, King AE. Woodhouse A, Kirkcaldie MT, Staal JA, McCormack GH, Blizzard CA, Musgrove RE, Mitew S. Liu Y et al:Axonopathy and cytoskeletal disruption in degenerative diseases of the central nervous system.Brain research bulletin.2009.80(4-5):217-223.
    [21]Deane R, Bell RD, Sagare A, Zlokovic BV:Clearance of amyloid-beta peptide across the blood-brain barrier:implication for therapies in Alzheimer's disease. CNS & neurological disorders drug targets.2009,8(1):16-30.
    [22]Zlokovic BV:New therapeutic targets in the neurovascular pathway in Alzheimer's disease. Neurotherapeutics:the journal of the American Society for Experimental NeuroTherapeutics 2008,5(3):409-414.
    [23]Zlokovic BV:The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron.2008,57(2):178-201.
    [1]Gluhovschi C, Gluhovschi G, Potencz E, Herman D, Trandafirescu V, Petrica L, Velciov S, Bozdog G, Bob F, Vernic C et al:The endothelial cell markers von Willebrand Factor (vWF), CD31 and CD34 are lost in glomerulonephritis and no longer correlate with the morphological indices of glomerular sclerosis, interstitial fibrosis, activity and chronicity. Folia histochemica et cytobiologica/Polish Academy of Sciences, Polish Histochemical and Cytochemical Society 2010,48(2):230-236.
    [2]Jin C, Lu L, Zhu ZB, Zhang RY, Zhang Q, Du R, Ding FH, Chen QJ, Shen WF:Increased serum vWF and sVCAM-1 levels are associated with late or very late angiographic stent thrombosis after sirolimus-eluting stent implantation. Coronary artery disease 2010, 21(5)273-277.
    [3]Cho JY, Um HS, Kang EB, Cho IH, Kim CH, Cho JS, Hwang DY:The combination of exercise training and alpha-lipoic acid treatment has therapeutic effects on the pathogenic phenotypes of Alzheimer's disease in NSE/APPsw-transgenic mice. International journal of molecular medicine 2010,25(3):337-346.
    [4]Davydovskaia MV, Lebedev SB, Gurina OI, Chekhonin VP:[Elimination of NSE and MBP into cerebrospinal fluid and blood in acute experimental autoimmune encephalomyelitis]. Zhurnal nevrologii i psikhiatrii imeni SS Korsakova/Ministerstvo zdravookhraneniia i meditsinskoi promyshlennosti Rossiiskoi Federatsii, Vserossiiskoe obshchestvo nevrologov [i] Vserossiiskoe obshchestvo psikhiat 2009,109(7 Suppl 2)28-31.
    [5]Chaves ML, Camozzato AL, Ferreira ED, Piazenski I, Kochhann R, Dall'Igna O, Mazzini GS, Souza DO, Portela LV:Serum levels of S100B and NSE proteins in Alzheimer's disease patients. Journal of neuroinflammation 2010,7:6.
    [6]Yan SD, Chen X, Fu J, Chen M, Zhu H,Roher A, Slattery T. Zhao L, Nagashima M, Morser J et al:RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Nature 1996,382(6593):685-691.
    [7]Du H, Li P, Wang J. Qing X. Li W:The interaction of amyloid beta and the receptor for advanced glycation endproducts induces matrix metalloproteinase-2 expression in brain endothelial cells. Cellular and molecular neurobiology 2012,32(1):141-147.
    [8]Carrano A, Hoozemans JJ, van der Vies SM, Rozemuller AJ, van Horssen J, de Vries HE: Amyloid Beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy. Antioxidants & redox signaling 2011,15(5):1167-1178.
    [9]Zlokovic BV:Neuro vascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nature reviews Neuroscience 2011,12(12):723-738.
    [10]张志慧,康健生,马艳玲.从络探讨老年性痴呆发病机制的现代医学意义.陕西中医2010(03):327-329.
    [11]苏芮,韩振蕴,范吉平.基于“毒损脑络”理论的老年性痴呆中医病机探讨.南京中医药大学学报2010(02):93-94.
    [12]李澎涛,王永炎,黄启福.”毒损脑络”病机假说的形成及其理论与实践意义.北京中医药大学学报2001(01):1-6+16.
    [13]Liu Y, Hua Q, Lei H, Li P:Effect of Tong Luo Jiu Nao on Abeta-degrading enzymes in AD rat brains. Journal of ethnopharmacology 2011,137(2):1035-1046.
    [14]Bowen DM, Francis PT, Procter AW, Halliwell JV, Mann DM, Neary D:Treatment strategy for the corticocortical neuron pathology of Alzheimer's disease. Annals of neurology 1992,32(1):112.
    [15]Zlokovic BV:Neurodegeneration and the neurovascular unit. Nature medicine 2010, 16(12):1370-1371.
    [16]Virgintino D, Errede M, Rizzi M, Girolamo F, Strippoli M, Walchli T, Robertson D, Frei K, Roncali L:The CXCL12/CXCR4/CXCR7 ligand-receptor system regulates neuro-glio-vascular interactions and vessel growth during human brain development. Journal of inherited metabolic disease 2013.
    [17]Chander BS, Chakravarthy VS:A computational model of neuro-glio-vascular loop interactions. PloS one 2012,7(11):e48802.
    [1]Xiao HB, Cao X, Wang L, Run XQ, Su Y, Tian C, Sun SG, Liang ZH:1.5-dicaffeoylquinic acid protects primary neurons from amyloid beta 1-42-induced apoptosis via PI3K/Akt signaling pathway. Chinese medical journal 2011,124(17)2628-2635.
    [2]张志慧,吴以岭:通心络对Aβ-(1-42)损伤人脑微血管内皮细胞HIF-1α、VEGF表达的干预作用.中国药理学通报2010(01):124-127.
    [3]Li W, Li P, Hua Q, Hou J, Wang J, Du H, Tang H, Xu Y:The impact of paracrine signaling in brain micro vascular endothelial cells on the survival of neurons. Brain research 2009, 1287:28-38.
    [4]李卫红,青雪梅,华茜,等.大鼠脑微血管内皮细胞条件培养液对皮质神经元活性的影响以及通络救脑注射液的干预作用[J]络病学基础与临床研究(6).2010.
    [5]Coulson EJ, May LM, Osborne SL, Reid K, Underwood CK, Meunier FA, Bartlett PF, Sah P:p75 neurotrophin receptor mediates neuronal cell death by activating GIRK channels through phosphatidylinositol 4,5-bisphosphate. The Journal of neuroscience:the official journal of the Society for Neuroscience 2008,28(1):315-324.
    [6]Liao MC, Hoos MD, Aucoin D, Ahmed M, Davis J, Smith SO, Van Nostrand WE: N-terminal domain of myelin basic protein inhibits amyloid beta-protein fibril assembly. The Journal of biological chemistry 2010,285(46)35590-35598.
    [7]司银楚,吴海霞,许红,等.通络救脑注射液对脑缺血大鼠脑皮质梗塞灶Glu及其NMDA受体表达的影响.中国医药学报,2003(08).
    [8]汤轶波:通络救脑注射液抗大鼠局灶性脑缺血损伤相关分子机制的研究.2011.
    [9]王润俊:脑缺血病理过程中ADAM17-TNF-α通路的变化及通络救脑方药的干预机制.2011.
    [10]张晓杰,牛英才,周丽,等.通络救脑口服液对AD模型大鼠Bax和Bel-2 mRNA的影响.中华中医药学刊,2007,25(05):926-928.
    [11]Donahue JE, Flaherty SL, Johanson CE, Duncan JA,3rd, Silverberg GD, Miller MC, Tavares R, Yang W, Wu Q, Sabo E et al:RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta neuropathologica,2006.112(4):405-415.
    [12]Mruthinti S, Hill WD. Swamy-Mruthinti S, Buccafusco JJ:Relationship between the induction of RAGE cell-surface antigen and the expression of amyloid binding sites. Journal of molecular neuroscience:MN.2003.20(3):223-232.
    [13]Yan SS.Chen D.Yan S,Guo L.Du H, Chen JX.RAGE is a key cellular target for Abeta-induced perturbation in Alzheimer's disease. Front Biosci (Schol Ed),2012,4:240-250.
    [14]Jaeger LB. Dohgu S. Hwang MC, Farr SA. Murphy MP. Fleegal-DeMotta MA, Lynch JL, Robinson SM. Niehoff ML, Johnson SN et al:Testing the neurovascular hypothesis of Alzheimer's disease:LRP-1 antisense reduces blood-brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition. Journal of Alzheimer's disease:JAD 2009,17(3):553-570.
    [15]Deane R, Wu Z, Zlokovic BV,RAGE (yin) versus LRP (yang) balance regulates alzheimer amyloid beta-peptide clearance through transport across the blood-brain barrier. Stroke; a journal of cerebral circulation 2004,35(11 Suppl 1):2628-2631.
    [16]Carrano A, Hoozemans JJ, van der Vies SM, Rozemuller AJ, van Horssen J, de Vries HE. Amyloid Beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy. Antioxidants & redox signaling 2011,15(5):1167-1178.
    [17]Kovac A, Erickson MA, Banks WA.Brain micro vascular pericytes are immunoactive in culture:cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysacc haride. Journal of neuroinflammation 2011,8:139.
    [18]Jiang LF, Liao HL, Huang HM, Zhou LX, Li L, Cheng SX, Du CZ.Potential Prevention and Treatment of Maifanite for Alzheimer's Disease Based on Behavior Test, Oxidative Stress Assay, and Trace Element Analysis in Hippocampus of Abeta(25-35)-Induced AD Rats. Biological trace element research,2013,152(1)50-56.
    [19]Zhang J, Zhen YF, Pu Bu Ci R, Song LG, Kong WN, Shao TM, Li X, Chai XQ.Salidroside attenuates beta amyloid-induced cognitive deficits via modulating oxidative stress and inflammatory mediators in rat hippocampus. Behavioural brain research 2013, 244:70-81.
    [20]Xi YD, Li XY, Ding J, Yu HL, Ma WW, Yuan LH, Wu J, Xiao R.Soy Isoflavone Alleviates Abetal-42-Induced Impairment of Learning and Memory Ability through the Regulation of RAGE/LRP-1 in Neuronal and Vascular Tissue. Current neurovascular research 2013.
    [21]Yan FL, Zheng Y, Zhao FD:Effects of ginkgo biloba extract EGb761 on expression of RAGE and LRP-1 in cerebral microvascular endothelial cells under chronic hypoxia and hypoglycemia. Acta neuropathologica,2008,116(5):529-535.
    [22]Aris JP, Elios MC, Bimstein E, Wallet SM, Cha S, Lakshmyya KN, Katz J:Gingival RAGE expression in calorie-restricted versus ad libitum-fed rats. Journal of periodontology,2010,81 (10):1481-1487.
    [1]Li X, Li TQ, Andreasen N, Wiberg MK, Westman E, Wahlund LO:Ratio of Abeta42/P-tau(181p) in CSF is associated with aberrant default mode network in AD. Scientific reports 2013,3:1339.
    [2]Chetelat G:Alzheimer disease:Abeta-independent processes-rethinking preclinical AD. Nature reviews Neurology 2013,9(3):123-124.
    [3]苏芮,韩振蕴,范吉平:基于“毒损脑络”理论的老年性痴呆中医病机探讨.南京中医药大学学报2010(02):93-94.
    [4]李澎涛,王永炎,黄启福:”毒损脑络”病机假说的形成及其理论与实践意义.北京中医药大学学报2001(01):1-6+16.
    [5]Zhong SZ, Ge QH, Li Q, Qu R, Ma SP:Peoniflorin attenuates Abeta((1-42))-mediated neurotoxicity by regulating calcium homeostasis and ameliorating oxidative stress in hippocampus of rats. Journal of the neurological sciences 2009,280(1-2):71-78.
    [6]Li J, Wang G. Liu J, Zhou L, Dong M, Wang R, Li X, Li X, Lin C, Niu Y:Puerarin attenuates amyloid-beta-induced cognitive impairment through suppression of apoptosis in rat hippocampus in vivo. European journal of pharmacology 2010,649(1-3):195-201.
    [7]O'Hare E, Weldon DT, Mantyh PW, Ghilardi JR, Finke MP, Kuskowski MA, Maggio JE, Shephard RA. Cleary J:Delayed behavioral effects following intrahippocampal injection of aggregated A beta (1-42). Brain research 1999,815(1):1-10.
    [8]Liu Y. Hna Q, Lei H, Li P:Effect of Tong Luo Jiu Nao on Abeta-degrading enzymes in AD rat brains. Journal of ethnopharmacology 2011,137(2):1035-1046.
    [9]邱宏,金国琴.金如锋.赵伟康:水迷宫重复测量数据的方差分析及其在SPSS中的实现.中西医结合学报2007(01):101-105.
    [10]Robakis NK:Are Abeta and its derivatives causative agents or innocent bystanders in AD? Neuro-degenerative diseases 2010,7(1-3):32-37.
    [11]Monji A, Yoshida I, Tashiro K, Hayashi Y, Matsuda K, Tashiro N:Inhibition of A beta fibril formation and A beta-induced cytotoxicity by senile plaque-associated proteins. Neuroscience letters 2000,278(1-2):81-84.
    [12]O'Hare E, Scopes DI, Treherne JM, Monaghan J, Palmer PM, Amijee H, Kim EM:Novel anti-inflammatory compound SEN1176 alleviates behavioral deficits induced following bilateral intrahippocampal injection of aggregated amyloid-beta(1)(-)(4)(2). Journal of Alzheimer's disease:JAD 2011,25(2)219-229.
    [13]Liang JH, Du J, Xu LD, Jiang T, Hao S, Bi J, Jiang B:Catalpol protects primary cultured cortical neurons induced by Abeta(1-42) through a mitochondrial-dependent caspase pathway. Neurochemistry international 2009,55(8):741-746.
    [14]Lac zo J, Andel R, Vyhnalek M, Vlcek K, Magerova H, Varjassyova A, Nedelska Z, Gazova I, Bojar M, Sheardova K et al:From Morris Water Maze to computer tests in the prediction of Alzheimer's disease. Neuro-degenerative diseases 2012,10(1-4):153-157.
    [15]Young GS, Choleris E, Kirkland JB:Use of salient and non-salient visuospatial cues by rats in the Morris Water Maze. Physiology & behavior 2006,87(4):794-799.
    [16]Saab BJ, Luca RM, Yuen WB, Saab AM, Roder JC:Memantine affects cognitive flexibility in the Morris water maze. Journal of Alzheimer's disease:JAD 2011, 27(3):477-482.
    [17]Zhou L, Hou Y, Yang Q, Du X, Li M, Yuan M, Zhou Z:Tetrahydroxystilbene glucoside improves the learning and memory of amyloid-beta(1-42)-injected rats and maybe connected to synaptic changes in the hippocampus. Canadian journal of physiology and pharmacology 2012,90(11):1446-1455.
    [18]Limon D, Diaz A, Hernandez M, Fernandez GJ. Torres-Martinez AC, Perez-Severiano F, Rendon-Huerta EP. Montano LF, Guevara J:Neuroprotective effect of the aminoestrogen prolame against impairment of learning and memory skills in rats injected with amyloid-beta-25-35 into the hippocampus. European journal of pharmacology 2012, 685(1-3):74-80.
    [19]Yip AG, McKee AC, Green RC, Wells J, Young H, Cupples LA. Farrer LA:APOE vascular pathology, and the AD brain. Neurology 2005,65(2):259-265.
    [20]Vickers JC, King AE, Woodhouse A. Kirkcaldie MT, Staal JA. McCormack GH. Blizzard CA, M us grove RE, Mite w S, Liu Y et al:Axonopathy and cytoskeletal disruption in degenerative diseases of the central nervous system. Brain research bulletin 2009, 80(4-5):217-223.
    [21]Deane R, Bell RD, Sagare A, Zlokovic BV:Clearance of amyloid-beta peptide across the blood-brain barrier:implication for therapies in Alzheimer's disease. CNS & neurological disorders drug targets 2009,8(1):16-30.
    [22]Zlokovic BV:New therapeutic targets in the neurovascular pathway in Alzheimer's disease. Neurotherapeutics:the journal of the American Society for Experimental NeuroTherapeutics 2008,5(3):409-414.
    [23]Zlokovic BV:The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008,57(2):178-201.
    [24]Gluhovschi C, Gluhovschi G, Potencz E, Herman D, Trandafirescu V, Petrica L, Velciov S, Bozdog G, Bob F, Vernic C et al:The endothelial cell markers von Willebrand Factor (vWF), CD31 and CD34 are lost in glomerulonephritis and no longer correlate with the morphological indices of glomerular sclerosis, interstitial fibrosis, activity and chronicity. Folia histochemica et cytobiologica/Polish Academy of Sciences, Polish Histochemical and Cytochemical Society 2010,48(2):230-236.
    [25]Jin C, Lu L, Zhu ZB, Zhang RY, Zhang Q, Du R, Ding FH, Chen QJ, Shen WF: Increased serum vWF and sVCAM-1 levels are associated with late or very late angiographic stent thrombosis after sirolimus-eluting stent implantation. Coronary artery disease 2010, 21(5)273-277.
    [26]Cho JY, Um HS, Kang EB, Cho IH, Kim CH, Cho JS, Hwang DY:The combination of exercise training and alpha-lipoic acid treatment has therapeutic effects on the pathogenic phenotypes of Alzheimer's disease in NSE/APPsw-transgenic mice. International journal of molecular medicine 2010,25(3):337-346.
    [27]Davydovskaia MV, Lebedev SB, Gurina OI, Chekhonin VP:[Elimination of NSE and MBP into cerebrospinal fluid and blood in acute experimental autoimmune encephalomyelitis].Zhurnal nevrologiipsikhiatrii imeni SS Korsakova/Ministerstvo zdravookhraneniiameditsinskoi promyshlennosti Rossiiskoi Federatsii. Vserossiiskoe obshchestvo nevrologov [J] Vserossiiskoe obshchestvo psikhiat 2009.109(7 Suppl 2):28-31.
    [28]Chaves ML. Camozzato AL. Ferreira ED. Piazenski I. Kochhann R. Dall'Igna O. Mazzini GS, Souza DO, Portela LV:Serum levels of S100B and NSE proteins in Alzheimer's disease patients. Journal of neuroinflammation 2010.7:6.
    [29]Yan SD. Chen X, Fu J, Chen M, Zhu H, Roher A. Slattery T, Zhao L. Nagashima M, Morser J et al:RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Nature 1996.382(6593):685-691.
    [30]Du H, Li P, Wang J, Qing X, Li W:The interaction of amyloid beta and the receptor for advanced glycation endproducts induces matrix metalloproteinase-2 expression in brain endothelial cells. Cellular and molecular neurobiology 2012,32(1):141-147.
    [31]Carrano A, Hoozemans JJ, van der Vies SM, Rozemuller AJ, van Horssen J, de Vries HE: Amyloid Beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy. Antioxidants & redox signaling 2011,15(5):1167-1178.
    [32]Zlokovic BV:Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nature reviews Neuroscience 2011,12(12):723-738.
    [33]张志慧,康健生,马艳玲.从络探讨老年性痴呆发病机制的现代医学意义.陕西中医,2010(03):327-329.
    [34]Bowen DM, Francis PT, Procter AW, Halliwell JV, Mann DM, Neary D:Treatment strategy for the corticocortical neuron pathology of Alzheimer's disease. Annals of neurology 1992,32(1):112.
    [35]Zlokovic BV:Neurodegeneration and the neurovascular unit. Nature medicine 2010, 16(12):1370-1371.
    [36]Virgintino D, Errede M, Rizzi M, Girolamo F, Strippoli M, Walchli T, Robertson D, Frei K, Roncali L:The CXCL12/CXCR4/CXCR7 ligand-receptor system regulates neuro-glio-vascular interactions and vessel growth during human brain development Journal of inherited metabolic disease 2013.
    [37]Chander BS, Chakravarthy VS:A computational model of neuro-glio-vascular loop interactions. PloS one 2012,7(11):e48802.
    [38]Liao MC, Hoos MD, Aucoin D, Ahmed M, Davis J, Smith SO, Van Nostrand WE: N-terminal domain of myelin basic protein inhibits amyloid beta-protein fibril assembly. The Journal of biological chemistry 2010,285(46):35590-35598.
    [39]Xu YQ, Long L, Yan JQ, Wei L, Pan MQ, Gao HM, Zhou P, Liu M, Zhu CS, Tang BS et al: Simvastatin Induces Neiuoprotection in 6-OHDA-Lesioned PC 12 via the PI3K/AKT/Caspase 3 Pathway and Anti-Inflammatory Responses. CNS neuroscience & therapeutics 2013,19(3):170-177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700