用户名: 密码: 验证码:
镉对大鼠大脑皮质神经细胞毒性损伤的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镉是具有很强毒性的重金属,常见于工业场所、食品污染物和烟草中。低浓度镉就具有毒性,因为其在体内的半衰期长达10~30年,易在体内蓄积,可对包括肺脏、肝脏、’肾脏、睾丸、脑和胎盘在内的多个器官产生严重损害。镉可进入脑实质和神经元导致人和动物模型的神经学上的改变,引起注意力低下、痛觉敏感性高、嗅觉异常和记忆力下降。些以神经元和神经胶质细胞为模型的体外研究表明,μM级的镉就具有神经毒性,且这种细胞毒性与诱导凋亡有一定的相关性,并得出镉致皮质神经细胞凋亡是引起中枢神经系统异常及导致记忆减退、智力发育低下的主要原因,但镉致神经细胞凋亡的机制尚未阐明。本研究用孕18~19d Sprague Dawley (SD)大鼠的胎鼠建立体外培养的大鼠大脑皮质神经细胞模型,通过体外试验探讨了镉对大鼠大脑皮质神经细胞的毒性损伤效应及其凋亡可能的作用机理,为进一步认识镉的神经毒性作用提供理论依据。
     1、镉诱导大鼠大脑皮质神经细胞凋亡的线粒体途径
     为从线粒体途径研究镉致大鼠大脑皮质神经细胞凋亡的机制。本研究在建立体外原代大鼠大脑皮质神经细胞培养的基础上,以不同浓度(0、5、10、20μmol/L)醋酸镉染毒12h,Hoechst33258荧光染色观察细胞凋亡的形态变化;流式细胞术检测细胞内活性氧(ROS)水平和线粒体膜电位(△Ψm);实时荧光定量PCR检钡Caspase-3mRNA转录水平。以10μmol/L醋酸镉染毒大鼠大脑皮质神经细胞0、12、24和48h,免疫印迹检测Caspase-9活化和PARP裂解情况。结果表明:经免疫组化染色鉴定,所培养的原代细胞为神经元特异性烯醇化酶(NSE)阳性,呈现典型神经细胞特征。与对照组相比,各染毒组细胞表现核皱缩、染色质致密浓染、核碎裂等典型的凋亡特征,ROS水平显著或极显著升高(P<0.05或P<0.01),△Ψm显著或极显著降低(P<0.05或P<0.01),Caspase-3mRNA转录水平极显著升高(P<0.01),同时经10μmol/L镉处理皮质神经细胞12h后开始检测至Caspase-9活化及PARP裂解大片段。说明镉诱导大鼠大脑皮质神经细胞凋亡可能通过线粒体途径。
     2、钙稳态失衡在镉致大鼠大脑皮质神经细胞凋亡中的作用
     为研究钙稳态失衡在镉致大鼠大脑皮质神经细胞凋亡中的作用,并探讨内质网钙库释放在镉致神经细胞钙稳态失衡机制中的作用。本研究用不同浓度(0、5、10、20μmol/L)醋酸镉和细胞内钙离子螯合剂BAPTA-AM[1,2-二(2-氨基苯氧基)乙烷-N,N,N',N'-四乙酸-四乙酰氧甲基酯,1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-tetraacetoxymethyl ester (10μmol/L)]以及三磷酸肌醇受体(IP3R)特异性阻断剂2-APB [2-氨基乙氧基二苯基硼酸盐,2-aminoethoxydiphenyl borate (50μmol/L)]单独或联合作用于大鼠大脑皮质神经细胞12h。Hoechst33258荧光染色观察细胞凋亡的形态变化,流式细胞术检测细胞内[Ca2+]i,ATPase酶试剂盒测定Na+-K+-ATPase和Ca2+-Mg2+-ATPase活性的变化,实时荧光定量PCR测定钙调蛋白(CaM) mRNA转录水平。结果表明,与对照组相比,染毒后的神经细胞经Hoechst33258染色呈现典型的凋亡特征,各镉染毒组细胞内[Ca2+]i极显著升高(P<0.01),Na+-K+-ATPase和Ca2+-Mg2+-ATPase活性显著或极显著降低<0.05或P<0.01),20μmol/L组CaM mRNA转录水平极显著降低(P<0.01)。与相应镉染毒组相比,BAPTA-AM联合组凋亡细胞减少,BAPTA-AM联合组和2-APB联合组细胞内[Ca2+]i显著或极显著降低(P<0.05或P<0.01)。说明镉可能通过影响CaM mRNA转录水平与维持钙稳态相关酶(Na+-K+-ATPase和Ca2+-Mg2+-ATPase)的活性以及胞内内质网Ca2+库的释放,从而干扰神经细胞内钙稳态,而细胞内钙稳态失衡在镉诱导大鼠大脑皮质神经细胞凋亡中起着重要作用。
     3、镉对大鼠大脑皮质神经细胞MAPK言号通路的影响
     为探讨不同浓度、不同时间染镉对体外培养的原代大鼠大脑皮质神经细胞中细胞外信号调节蛋白激酶(ERK1/2)、c-Jun氨基末端激酶(JNK)和p38MAPK磷酸化的影响,大鼠大脑皮质神经细胞用不同浓度(0、5、10、20μmol/L)醋酸镉染毒3h及10μmol/L醋酸镉染毒不同时间(0、1、2、3、4、5、6h),免疫印迹法测定样品ERK1/2、JNK和p38MAPK总蛋白的表达及磷酸化水平。结果表明,5、10、20μmol/L镉处理细胞3h后,除5μmol/L镉处理组ERK1/2磷酸化水平未升高外,其余所有浓度镉处理组的ERK1/2、JNK1和p38MAPK磷酸化水平均升高,而染镉后ERK1/2、JNK和p38MAPK,总量无明显变化;10μmol/L醋酸镉染毒后,ERK1/2磷酸化水平于2h便开始升高,一直维持到6h; JNK和p38MAPK磷酸化水平于试验后1h开始升高,3h达到高峰,之后逐渐下降,但6h内仍高于对照组,ERK1/2、JNK和p38MAPK、总量无明显变化。说明镉可引起MAPK信号通路关键蛋白的活化。
     4、镉对大鼠大脑皮质神经细胞线粒体氧化损伤的影响
     为研究镉对大鼠大脑皮质神经细胞线粒体的氧化损伤,用不同浓度(0、5、10、20μmol/L)醋酸镉染毒大鼠大脑皮质神经细胞6h,透射电子显微镜观察线粒体超微结构的变化,比色法测定MDA含量,实时荧光定量PCR从转录水平检测线粒体细胞色素氧化酶亚基COX I、COX Ⅱ COX Ⅲ表达的变化。结果表明:与对照组相比,各染毒组细胞超微结构变化明显,表现线粒体肿胀,嵴断裂、部分或完全消失,MDA含量均极显著升高(P<0.01), COX Ⅰ、COX Ⅱ基因表达量均显著或极显著降低(P<0.05或P<0.01),10和20μmol/L染毒组COX Ⅲ基因表达量极显著降低(P<0.01)。说明镉可引起线粒体损伤,COX Ⅰ、 COX Ⅱ、COX Ⅲ基因表达量显著下降可能与镉暴露导致的线粒体脂质过氧化损伤有关。
     5、镉对大鼠大脑皮质神经细胞Bcl-2和Bax表达的影响
     为研究镉对大鼠大脑皮质神经细胞凋亡相关基因Bcl-2和Bax表达的影响,用不同浓度(0、5、10、20μmol/L)醋酸镉染毒大鼠大脑皮质神经细胞12h,实时荧光定量PCR检测Bcl-2和Bax mRNA转录水平,并计算Bcl-2/Bax的比值,免疫印迹检测Bcl-2和Bax蛋白表达情况。结果表明:与对照组相比,各染毒组细胞Bax mRNA转录水平均极显著升高(P<0.01),而Bcl-2mRNA转录水平均显著降低(P<0.05),Bcl-2/Bax的比值均极显著降低(P<0.01)。此外,免疫印迹的结果也显示,随镉浓度的增加,Bcl-2蛋白表达水平下降,Bax蛋白表达水平升高。提示镉能通过调节凋亡相关基因Bcl-2和Bax mRNA转录和蛋白表达,从而促进细胞凋亡
     6、镉对大鼠大脑皮质神经细胞一氧化氮合酶基因mRNA转录的影响
     为研究镉对大鼠大脑皮质神经细胞一氧化氮合酶基因mRNA转录的影响,用不同浓度(0、5、10、20μmol/L)醋酸镉染毒大鼠大脑皮质神经细胞12h,实时荧光定量PCR检测神经型一氧化氮合酶(nNOS)、诱导型一氧化氮合酶(iNOS) mRNA转录水平。结果表明:与对照组相比,5、10μmol/L组nNOS mRNA转录水平显著和极显著升高(P<0.05和P<0.01);20μmol/L组iNOS mRNA转录水平极显著升高(P<0.01)。说明镉可诱导调节nNOS和iNOS mRNA的转录。
Cadmium (Cd) is an extremely toxic metal commonly found in industrial workplaces, food contaminants and cigarette smoke. It is toxic even at low doses since the metal accumulates and has a long biological half-life in humans (10-30years). Cd has been shown to cause severe damage to a variety of organs, including the lung, liver, kidney, testis, brain and even to the placenta. Cd can enter into the brain parenchyma and neurons causing neurological alterations in humans and animal models, leading to lower attention, hypeociception, olfactory dysfunction and memory deficits. Moreover, there are studies showing the neurotoxicity of Cd at μM range on cell culture models like neurons and glial cells, and the Cd-mediated toxicity is thought to involve, at least in part, the induction of apoptosis. Furthermore, previous study demonstrated that apoptosis of cortical neurons caused by Cd is the main reason of abnormality in central nervous system, leading to memory deficits and mental retardation. However, the mechanisms of Cd-induced apoptosis have not been well elucidated. In the current experiment, the model of cerebral cortical neurons cultured in vitro was used, which were obtained from foetal Sprague-Dawley rats at18-19days of gestation, and the potential mechanism of Cd-induced cytotoxicity and apoptosis in rat's cerebral cortical neurons was investigated, which will offer theoretic evidences for future exploring the mechanism in neurotoxicity of Cd.
     1. Mitochondrial pathway in cadmium-induced apoptosis of rat's primary cultured cerebral cortical neurons
     To explore the mechamism of Cd-induced apoptosis in rat's cerebral cortical neurons from mitochondrial pathway, the model of rat's primary cerebral cortical neurons in vitro was established successfully. The neurons were exposured to cadmium acetate of different concentrations (0,5,10,20μmol/L) for12h. Then, the morphological changes of apoptosis in neurons with Cd treatment was observed by Hoechst33258staining, and the level of reactive oxygen species (ROS), mitochondrial membrane potential (AΨm) were detected by flow cytometry, meanwhile, the transcriptional level of Caspase-3mRNA was detected by real-time fluorescent quantitative PCR. In addition, the neurons were exposured to10μmol/L cadmium acetate for0,12,24,48h. Then, the Cleaved Caspase-9and Cleaved PARP were detected by immunoblot at each time-point. With immunocytochemical detection, the cultured cells were affirmed as neurons, which are positive to neurons specific enolase (NSE) antibody and represent classical features of neurons. After Cd exposure, in comparison with the control group, the cells in Cd-treated groups showed typical morphological changes of apoptosis with nucleus crimpled and chromatin condensedation, even nucleus disintegratation, on the other hand, ROS level were increased significantly (P<0.05or P<0.01), ΔΨm were decreased significantly (P<0.05or P<0.01), and the transcriptional level of Caspase-3mRNA increased significantly (P<0.01). Caspase-9was activated early at12h after treatment of10μmol/L Cd and PARP was cleaved subsequently. It was suggested that Cd-induced apoptosis involves mitochondrial pathway in rat's cerebral cortical neurons.
     2. Effect of the disequilibrium of calcium homeostasis on the apoptosis in rat's primary cultured cerebral cortical neurons induced by cadmium
     To investigate the effect of the disequilibrium of calcium homeostasis on the apoptosis in rat's cerebral cortical neurons induced by Cd and ER-released calcium on the disequilibrium of calcium homeostasis induced by Cd, the neurons were exposured to cadmium acetate of different concentrations (0,5,10,20μmol/L), in the absence or the presence of10μmol/L BAPTA-AM [1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-tetraacetoxymethyl ester], a specific intracellular Ca2+chelator and the inositol1,4,5tri-sphosphate receptor (IP3R) inhibitor,50μmol/L2-APB (2-aminoethoxydiphenyl borate) for12h. Then, the morphological changes of apoptosis in neurons with Cd treatment were observed by Hoechst33258staining and the intracellular [Ca+]i was detected by flow cytometry. Meanwhile, the activities of Na+-K+-ATPase as well as Ca2+-Mg2+-ATPase were measured by ATPase test kits, and the transcriptional level of CaM mRNA was detected by real-time fluorescent quantitative PCR. In comparison with the control group, the results showed that typical morphological changes of apoptosis were observed in cerebral cortical neurons with Hoechst33258staining after Cd treatment, intracellular [Ca2+]iwas increased significantly (P<0.01), in contrast, the activities of Na+-K+-ATPase and Ca2+-Mg2+-ATPase were decreased significantly (P<0.05or P<0.01) in the Cd-treated groups, and the transcriptional level of CaM mRNA was decreased significantly (P<0.01) in20μmol/L Cd group. Compared to the poisoning groups, apoptosis induced by cadmium can be efficiently prevented by BAPTA-AM, furthermore, the intracelluar [Ca2+]i were decreased significantly (P<0.05or P<0.01) in the presence of BAPTA-AM and2-APB groups. It was suggested that Cd could disturb intracellular Ca2+homeostasis by affecting the transcriptional level of CaM mRNA as well as the activities of Na+-K+-ATPase and Ca2+-Mg2+-ATPase and ER-released calcium, the disequilibrium of calcium homeostasis played a vital role in the Cd-induced apoptosis of rat's cerebral cortical neurons.
     3. Influence of cadmium on MAPK signaling pathway in rat's primary cultured cerebral cortical neurons.
     To observe the effect of Cd on the levels of the phosphorylation of extracellular signal regulated kinase1/2(ERK1/2), c-Jun NH2-terminal kinases(JNK), p38mitogen-activated protein kinases (p38MAPK) in rat's primary cultured cerebral cortical neurons, the neurons were exposured to cadmium acetate of different concentrations (0,5,10,20μmol/L) for3h and10μmol/L cadmium acetate for different time points (0,1,2,3,4,5,6h). The total and phosphorylated protein of ERK1/2, JNK and p38MAPK were assayed by immunoblots. The result showed that after treatment of5,10,20μmol/L Cd for3h the phosphorylation of ERK1/2, JNK1and p38MAPK was increased in all other Cd-treated groups with the exception of ERK1/2in5μmol/L Cd-treated group, while the total protein had no obvious changes. Following the treatment of10μmol/L Cd, the phosphorylation of ERKl/2begin to increase from2h and keeps to6h, at the same time, the phosphorylation of JNK and p38MAPK begin to be activated from1h with a peak at3h and decreased gradually. However, the phosphorylation of JNK and p38MAPK was also higher than that in the control within6h. The total expression of ERK1/2, JNK and p38MAPK had no obvious changes with the Cd exposure. It was suggested that cadmium can activate the key proteins in the MAPK signaling pathway.
     4. Effect of cadmium on the oxidative damage of mitochondria in rat's primary cultured cerebral cortical neurons
     To investigate the oxidative damage of mitochondria in rat's cerebral cortical neurons caused by Cd. The neurons were exposured to cadmium acetate of different concentrations (0,5,10,20μmol/L) for6h. Then, changes in ultrastructure of mitochondria were detected by transmission electron-microscope and the contents of malon-dialdehyde (MDA) were detected by colorimetric method. In addition, the relative gene expression levels of cytochrome oxidase submits (COX Ⅰ/Ⅱ/Ⅲ) were quantified by real-time fluorescent quantitative PCR. In comparison with the control group, the results showed that the changes of ultrastructure in the Cd-treated groups are obvious, the most ultrastructural modifications involved mitochondrial swelling, fragmentation and disappearance of mitochondrial cristae. The contents of MDA were significantly increased in the poisoning groups (P<0.01). The relative expression levels of COX Ⅰ and COX Ⅱ in the three exposed groups were significantly decreased (P<0.05or P<0.01), the relative expression levels of COX Ⅲ were also significantly decreased (P<0.01) in10,20μmol/L groups. Therefore, the damage of mitochondria may be medicated by cadmium. Moreover, the decreased expression levels of COX Ⅰ, COX Ⅱ, COX Ⅲ may be related to the mitochondrial lipid peroxidation.
     5. Influence of cadmium on Bcl-2and Bax expression in rat's primary cultured cerebral cortical neurons.
     To investigate the effects of Cd on the expressions of apoptosis-related genes Bcl-2, Bax in rat's primary cerebral cortical neurons, the neurons were exposured to Cd of different concentrations (0,5,10,20μmol/L) for12h. Real-time quantitative PCR was used to detect the mRNA transcriptional levels of Bcl-2and Bax. Furthermore, the protein expressions of Bcl-2and Bax were also detected by immunoblots. In comparison with the control group, the results showed that transcriptional levels of Bax mRNA in Cd-treated groups increased significantly (P<0.01). On the contrary, the transcriptional levels of Bcl-2mRNA and the ratios of Bcl-2/Bax decreased significantly (P<0.05or P<0.01). Correspondingly, the decreased Bcl-2and increased Bax protein expression levels were obtained by immunoblots detection with the increasing concentration of Cd. These results together indicating that cadmium can promote apoptosis by regulating the transcription and protein expression of apoptosis-related genes, including Bcl-2and Bax.
     6. Effect of cadmium on mRNA transcription of nitric oxide synthase in rat's primary cultured cerebral cortical neurons
     To study the impact of Cd on mRNA transcriptional levels of nitric oxide synthase in rat's primary cultured cerebral cortical neurons, the neurons were exposured to Cd of different concentrations (0,5,10,20μmol/L) for12h. Then, transcriptional levels of neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) mRNA were detected by real-time quantitative PCR. In comparison with the control group, the results showed that the transcriptional levels of nNOS mRNA increased significantly (P<0.05and P<0.01) in5,10μmol/L groups and transcriptional levels of iNOS mRNA increased significantly (P<0.01) in20μmol/L group. It was concluded that cadmium can regulate the transcription of nNOS and iNOS.
引文
[1]Nordberg GF. Cadmium and health in the 21st century--historical remarks and trends for the future[J]. Biometals,2004,17(5):485-489.
    [2]Saldivar L, Luna M, Reyes E, et al. Cadmium determination in Mexican-produced tobacco[J]. Environ Res,1991,55(1):91-96.
    [3]Manca D, Ricard AC, Trottier B, et al. Studies on lipid peroxidation in rat tissues following administration of low and moderate doses of cadmium chloride[J]. Toxicology,1991,67(3):303-323.
    [4]Casalino E, Calzaretti G, Sblano C, et al. Molecular inhibitory mechanisms of antioxidant enzymes in rat liver and kidney by cadmium[J]. Toxicology,2002,179(1-2):37-50.
    [5]Morselt AF. Environmental pollutants and diseases. A cell biological approach using chronic cadmium exposure in the animal model as a paradigm case[J]. Toxicology,1991,70(1):1-132.
    [6]Mendez-Armenta M, Villeda-Hernandez J, Barroso-Moguel R, et al. Brain regional lipid peroxidation and metallothionein levels of developing rats exposed to cadmium and dexamethasone[J]. Toxicol Lett,2003, 144(2):151-157.
    [7]Mendez-Armenta M, Barroso-Moguel R, Villeda-Hernandez J, et al. Histopathological alterations in the brain regions of rats after perinatal combined treatment with cadmium and dexamethasone[J]. Toxicology, 2001,161(3):189-199.
    [8]Hazelhoff Roelfzema W, Roelofsen AM, Copius Peereboom-Stegeman JH. Light microscopic aspects of the rat placenta after chronic cadmium administration[J]. Sci Total Environ,1985,42(1-2):181-184.
    [9]Wier PJ, Miller RK, Maulik D, et al. Toxicity of cadmium in the perfused human placenta[J]. Toxicol Appl Pharmacol,1990,105(1):156-171.
    [10]Viaene MK, Masschelein R, Leenders J, et al. Neurobehavioural effects of occupational exposure to cadmium:a cross sectional epidemiological study[J]. Occup Environ Med,2000,57(1):19-27.
    [11]Gutierrez-Reyes EY, Albores A, Rios C. Increase of striatal dopamine release by cadmium in nursing rats and its prevention by dexamethasone-induced metallothionein [J]. Toxicology,1998,131(2-3):145-154.
    [12]Gabbiani G, Baic D, Deziel C. Toxicity of cadmium for the central nervous system[J]. Exp Neurol,1967, 18(2):154-160.
    [13]Wong KL, Klaassen CD. Neurotoxic effects of cadmium in young rats[J]. Toxicol Appl Pharmacol,1982, 63(3):330-337.
    [14]Jolliet-Riant P, Tillement JP. Drug transfer across the blood-brain barrier and improvement of brain delivery[J]. Fundam Clin Pharmacol,1999,13(1):16-26.
    [15]Pal R, Nath R, Gill KD. Influence of ethanol on cadmium accumulation and its impact on lipid peroxidation and membrane bound functional enzymes (Na+, K(+)-ATPase and acetylcholinesterase) in various regions of adult rat brain[J]. Neurochem Int,1993,23(5):451-458.
    [16]Nolan CV, Shaikh ZA. The vascular endothelium as a target tissue in acute cadmium toxicity[J]. Life Sci, 1986,39(16):1403-1409.
    [17]Shukla A, Shukla GS, Srimal RC. Cadmium-induced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat[J]. Hum Exp Toxicol,1996, 15(5):400-405.
    [18]Benoff S, Jacob A, Hurley IR. Male infertility and environmental exposure to lead and cadmium[J]. Hum Reprod Update,2000,6(2):107-121.
    [19]Lafuente A, Marquez N, Perez-Lorenzo M, et al. Cadmium effects on hypothalamic-pituitary-testicular axis in male rats[J]. Exp Biol Med (Maywood),2001,226(6):605-611.
    [20]Provias JP, Ackerley CA, Smith C, et al. Cadmium encephalopathy:a report with elemental analysis and pathological findings[J]. Acta Neuropathol,1994,88(6):583-586.
    [21]Zheng W, Perry DF, Nelson DL, et al. Choroid plexus protects cerebrospinal fluid against toxic metals[J]. Faseb J,1991,5(8):2188-2193.
    [22]马明月,徐兆发,李北利,等.脉络丛对镉的屏护作用及其病理形态学改变[J].卫生研究,2002,31(5):335-339.
    [23]Sun TJ, Miller ML, Hastings L. Effects of inhalation of cadmium on the rat olfactory system:behavior and morphology[J].Neurotoxicol Teratol,1996,18(1):89-98.
    [24]Andersson H, Petersson-Grawe K, Lindqvist E, et al. Low-level cadmium exposure of lactating rats causes alterations in brain serotonin levels in the offspring[J]. Neurotoxicol Teratol,1997,19(2):105-115.
    [25]路浩.铅镉联合对新生大鼠中枢神经系统的毒性损伤及NAC保护效应的研究[D].扬州:扬州大学,2008.
    [26]Fern R, Black JA, Ransom BR, et al. Cd(2+)-induced injury in CNS white matter[J]. J Neurophysiol, 1996,76(5):3264-3273.
    [27]Yoshida S. Re-evaluation of acute neurotoxic effects of Cd2- on mesencephalic trigeminal neurons of the adult rat[J]. Brain Res,2001,892(1):102-110.
    [28]Lopez E, Figueroa S, Oset-Gasque MJ, et al. Apoptosis and necrosis:two distinct events induced by cadmium in cortical neurons in culture[J]. Br J Pharmacol,2003,138(5):901-911.
    [29]张英.镉对体外培养大鼠大脑皮质神经细胞的毒性损伤及NAC的保护效应研究[D].扬州:扬州大学,2009.
    [30]Viaene MK, Roels HA, Leenders J, et al. Cadmium:a possible etiological factor in peripheral polyneuropathy[J]. Neurotoxicology,1999,20(1):7-16.
    [31]韩国安,姜会敏,崔晞,等.胎儿神经管缺损与母体血清铜锌镉水平相关性研究[J].山东医科大学学报,1991,29(2):159-161.
    [32]Johnson S. Gradual micronutrient accumulation and depletion in Alzheimer's disease[J]. Med Hypotheses, 2001,56(6):595-597.
    [33]Okuda B, Iwamoto Y, Tachibana H, et al. Parkinsonism after acute cadmium poisoning[J]. Clin Neurol Neurosurg,1997,99(4):263-265.
    [34]Panayi AE, Spyrou NM, Iversen BS, et al. Determination of cadmium and zinc in Alzheimer's brain tissue using inductively coupled plasma mass spectrometry[J]. J Neurol Sci,2002,195(1):1-10.
    [35]Hart RP, Rose CS, Hamer RM. Neuropsychological effects of occupational exposure to cadmium[J]. J Clin Exp Neuropsychol,1989,11(6):933-943.
    [36]刘伟成,李明云.镉毒性毒理学研究进展[J].广东微量元素科学,2005,12(12):1-5.
    [37]党卫红.镉的毒性及镉损害的营养干预[J].郑州轻工业学院学报(自然科学版),2008,23(4):10-12.
    [38]Wu X, Jin T, Wang Z, et al. Urinary calcium as a biomarker of renal dysfunction in a general population exposed to cadmium[J]. J Occup Environ Med,2001,43(10):898-904.
    [39]张依秋.儿童缺锌高镉可致智商低下[J].药物与人,1995,(4):21.
    [40]刘利娟,唐玲,丁熊,等.39例颅脑疾病患儿脑脊液中锌镉含量变化[J].微量元素与健康研究,1996,1(3):19-20.
    [41]马军,斯欣,叶广俊.环境镉污染对儿童学习记忆的影响[J].中国学校卫生,2000,21(6):440-441.
    [42]刘利娟,丁熊,唐玲,等.镉与儿童中枢神经系统疾病51例分析[J].微量元素与健康研究,1994,11(4):59.
    [43]Sutoo D, Akiyama K. Effect of cadmium or magnesium on calcium-dependent central function that reduces blood pressure[J]. Arch Toxicol,2000,74(1):1-4.
    [44]Kumar R, Agarwal AK, Seth PK. Oxidative stress-mediated neurotoxicity of cadmium[J]. Toxicol Lett, 1996,89(1):65-69.
    [45]El-Maraghy SA, Gad MZ, Fahim AT, et al. Effect of cadmium and aluminum intake on the antioxidant status and lipid peroxidation in rat tissues[J]. J Biochem Mol Toxicol,2001,15(4):207-214.
    [46]Lopez E, Arce C, Oset-Gasque MJ, et al. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture[J]. Free Radic Biol Med,2006,40(6):940-951.
    [47]Gutteridge JM, Halliwell B. The measurement and mechanism of lipid peroxidation in biological systems[J]. Trends Biochem Sci,1990,15(4):129-135.
    [48]Nakazawa H, Genka C, Fujishima M. Pathological aspects of active oxygens/free radicals[J]. Jpn J Physiol,1996,46(1):15-32.
    [49]Fridovich I. Oxygen toxicity:a radical explanation[J]. J Exp Biol,1998,201(Pt 8):1203-1209.
    [50]Antonio MT, Corredor L, Leret ML. Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/or cadmium[J]. Toxicol Lett,2003,143(3):331-340.
    [51]Monroe RK, Halvorsen SW. Cadmium blocks receptor-mediated Jak/STAT signaling in neurons by oxidative stress[J]. Free Radic Biol Med,2006,41(3):493-502.
    [52]Shukla GS, Hussain T, Chandra SV. Possible role of regional superoxide dismutase activity and lipid peroxide levels in cadmium neurotoxicity:in vivo and in vitro studies in growing rats[J]. Life Sci,1987, 41(19):2215-2221.
    [53]El-Demerdash FM, Yousef MI, Kedwany FS, et al. Cadmium-induced changes in lipid peroxidation, blood hematology, biochemical parameters and semen quality of male rats:protective role of vitamin E and beta-carotene[J]. Food Chem Toxicol,2004,42(10):1563-1571.
    [54]Acan NL, Tezcan EF. Inhibition kinetics of sheep brain glutathione reductase by cadmium ion[J]. Biochem Mol Med,1995,54(1):33-37.
    [55]Gupta A, Gupta A, Shukla GS. Development of brain free radical scavenging system and lipid peroxidation under the influence of gestational and lactational cadmium exposure[J]. Hum Exp Toxicol,1995, 14(5):428-433.
    [56]张岩,程爱国.神经细胞凋亡与细胞内钙离子生理病理机制[J].中国煤炭工业医学杂志,2007,10(6):631-633.
    [57]王莎莎.镉诱发肝细胞毒性及其胞内钙信号失调相互关系和硒的保护作用研究[D].南京:南京师范大学,2006.
    [58]Szumilo J, Chibowski D, A Db. Assessment of the predictive value of clinical and histopathological factors as well as the immunoexpression of p53 and bcl-2 proteins in response to preoperative chemotherapy for esophageal squamous cell carcinoma[J]. Dis Esophagus,2000,13(3):191-197.
    [59]肖银霞,吉增涛,李金龙,等.镉对体外培养鸡脾淋巴细胞钙稳态的影响[J].环境科学学报,2008,28(11):2343-2346.
    [60]李文军,赵兰,徐世文.钙稳态失衡在镉致鸡脑神经元线粒体损伤中的作用[J].畜牧兽医学报,2008,39(8):1122-1126.
    [61]许锋,毛伟平,石晓娟,等.镉引起SD大鼠肾细胞的凋亡及钙稳态的火调[J].环境与职业医学,2003,20(6):407-410.
    [62]毛伟平,许锋,石晓娟,等.镉诱导HEK293细胞胞内钙稳态的失调引发细胞凋亡[J].中国药理学与毒理学杂志,2004,18(2):103-108.
    [63]Orrenius S, Nicotera P. The calcium ion and cell death[J]. J Neural Transm Suppl,1994,43:1-11.
    [64]Alshuaib WB, Byerly L. Modulation of membrane currents by cyclic AMP in cleavage-arrested Drosophila neurons[J]. J Exp Biol,1996,199(Pt 3):537-548.
    [65]马军,欺欣,叶广俊.镉对神经细胞内游离钙的浓度的影响[J].中国公共卫生学报,1996,15(1):21-23.
    [66]袁燕,张英,卞建春,等.镉致大鼠大脑皮质神经细胞凋亡的机理及N-乙酰半胱氨酸的保护作用[J].中国兽医学报,2010,30(8):1107-1110.
    [67]Siesjo BK. Calcium-mediated processes in neuronal degeneration [J]. Ann N Y Acad Sci,1994,747: 140-161.
    [68]Alshuaib WB, Cherian SP, Hasan MY, et al. Drug effects on calcium homeostasis in mouse CA1 hippocampal neurons[J]. Int J Neurosci,2003,113(10):1317-1332.
    [69]Viarengo A, Nicotera P. Possible role of Ca2+ in heavy metal cytotoxicity[J]. Comp Biochem Physiol C, 1991,100(1-2):81-84.
    [70]Guan YY, Quastel DM, Saint DA. Single Ca2- entry and transmitter release systems at the neuromuscular synapse[J]. Synapse,1988,2(5):558-564.
    [71]Usai C, Barberis A, Moccagatta L, et al. Pathways of cadmium influx in mammalian neurons [J]. J Neurochem,1999,72(5):2154-2161.
    [72]Beyersmann D, Hechtenberg S. Cadmium, gene regulation, and cellular signalling in mammalian cells[J]. Toxicol Appl Pharmacol,1997,144(2):247-261.
    [73]Thevenod F, Jones SW. Cadmium block of calcium current in frog sympathetic neurons[J]. Biophys J, 1992,63(1):162-168.
    [74]Papp A, Nagymajtenyi L, Desi I. A study on electrophysiological effects of subchronic cadmium treatment in rats[J]. Environ Toxicol Pharmacol,2003,13(3):181-186.
    [75]刘艳.硒对镉抑制LLC-pKI细胞生长及其诱导细胞凋亡保护机制的研究[D].南京:南京医科大学,2007.
    [76]Blazka ME, Shaikh ZA. Differences in cadmium and mercury uptakes by hepatocytes:role of calcium channels[J]. Toxicol Appl Pharmacol,1991,110(2):355-363.
    [77]Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death:the calcium-apoptosis link[J]. Nat Rev Mol Cell Biol,2003,4(7):552-565.
    [78]Xu B, Chen S, Luo Y, et al. Calcium signaling is involved in cadmium-induced neuronal apoptosis via induction of reactive oxygen species and activation of MAPK/mTOR network[J]. PLoS One,2011,6(4): el9052.
    [79]Lohmann RD, Beyersmann D. Cadmium and zinc mediated changes of the Ca(2+)-dependent endonuclease in apoptosis[J]. Biochem Biophys Res Commun,1993,190(3):1097-1103.
    [80]Herabutya Y, P OP. Mid-trimester abortion using hypertonic saline or prostaglandin E2 gel:an analysis of efficacy and complications [J]. J Med Assoc Thai,1994,77(3):148-152.
    [81]Yamagami K, Nishimura S, Sorimachi M. Cd2+ and Co2+ at micromolar concentrations stimulate catecholamine secretion by increasing the cytosolic free Ca2- concentration in cat adrenal chromaffin cells[J]. Brain Res,1994,646(2):295-298.
    [82]喻道军.α-硫辛酸、牛磺酸对镉致大鼠氧化损伤和Bax、JNK基因ⅠRNAi对镉致293细胞凋亡影响的实验研究[D].沈阳:中国医科大学,2006.
    [83]Antonio MT, Corpas I, Leret ML. Neurochemical changes in newborn rat's brain after gestational cadmium and lead exposure[J]. Toxicol Lett,1999,104(1-2):1-9.
    [84]Antonio MT, Benito MJ, Leret ML, et al. Gestational administration of cadmium alters the neurotransmitter levels in newborn rat brains[J]. J Appl Toxicol,1998,18(2):83-88.
    [85]Gupta A, Gupta A, Murthy RC, et al. Comparative neurotoxicity of cadmium in growing and adult rats after repeated administration[J]. Biochem Int,1990,21(1):97-105.
    [86]Gupta A, Gupta A, Murthy RC, et al. Neurochemical changes in developing rat brain after pre- and postnatal cadmium exposure[J]. Bull Environ Contain Toxicol,1993,51(1):12-17.
    [87]Lafuente A, Gonzalez-Carracedo A, Romero A, et al. Effect of cadmium on 24-h variations in hypothalamic dopamine and serotonin metabolism in adult male rats[J]. Exp Brain Res,2003,149(2): 200-206.
    [88]Lafuente A, Marquez N, Pazo D, et al. Effects of subchronic alternating cadmium exposure on dopamine turnover and plasma levels of prolactin, GH and ACTH[J]. Biometals,2000,13(1):47-55.
    [89]Esquifino AI, Seara R, Fernandez-Rey E, et al. Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats[J]. Arch Toxicol,2001,75(3):127-133.
    [90]Minami A, Takeda A, Nishibaba D, et al. Cadmium toxicity in synaptic neurotransmission in the brain[J]. Brain Res,2001,894(2):336-339.
    [91]Kagi JH, Valee BL. Metallothionein:a cadmium- and zinc-containing protein from equine renal cortex[J]. J Biol Chem,1961,236:3460-3465.
    [92]Kagi JH, Kojima Y. Chemistry and biochemistry of metallothionein[J]. Experientia Suppl,1987,52: 25-61.
    [93]Kille P, Hemmings A, Lunney EA. Memories of metallothionein[J]. Biochim Biophys Acta,1994, 1205(2):151-161.
    [94]Ebadi M, Iversen PL, Hao R, et al. Expression and regulation of brain metallothionein[J]. Neurochem Int, 1995,27(1):1-22.
    [95]Nordberg M, Nordberg GF. Toxicological aspects of metallothionein[J]. Cell Mol Biol (Noisy-le-grand), 2000,46(2):451-463.
    [96]Hidalgo J, Aschner M, Zatta P, et al. Roles of the metallothionein family of proteins in the central nervous system[J]. Brain Res Bull,2001,55(2):133-145.
    [97]Templeton DM, Cherian MG. Toxicological significance of metallothionein[J]. Methods Enzymol,1991, 205:11-24.
    [98]Coyle P, Philcox JC, Carey LC, et al. Metallothionein:the multipurpose protein[J]. Cell Mol Life Sci, 2002,59(4):627-647.
    [99]Betz AL, Goldstein GW. Specialized properties and solute transport in brain capillaries [J]. Annu Rev Physiol,1986,48:241-250.
    [100]Sato M, Bremner I. Oxygen free radicals and metallothionein[J]. Free Radic Biol Med,1993,14(3): 325-337.
    [101]Maret W, Vallee BL. Thiolate ligands in metallothionein confer redox activity on zinc clusters[J]. Proc Natl Acad Sci U S A,1998,95(7):3478-3482.
    [102]Kang YJ. The antioxidant function of metallothionein in the heart[J]. Proc Soc Exp Biol Med,1999, 222(3):263-273.
    [103]Cai L, Satoh M, Tohyama C, et al. Metallothionein in radiation exposure:its induction and protective role[J]. Toxicology,1999,132(2-3):85-98.
    [104]Andrews GK. Regulation of metallothionein gene expression by oxidative stress and metal ions[J]. Biochem Pharmacol,2000,59(1):95-104.
    [105]DeMoor JM, Koropatnick DJ. Metals and cellular signaling in mammalian cells[J]. Cell Mol Biol (Noisy-le-grand),2000,46(2):367-381.
    [106]Kondo T, Sharp FR, Honkaniemi J, et al. DNA fragmentation and Prolonged expression of c-fos, c-jun, and hsp70 in kainic acid-induced neuronal cell death in transgenic mice overexpressing human CuZn-superoxide dismutase[J]. J Cereb Blood Flow Metab,1997,17(3):241-256.
    [107]Deng DX, Chakrabarti S, Waalkes MP, et al. Metallothionein and apoptosis in primary human hepatocellular carcinoma and metastatic adenocarcinoma[J]. Histopathology,1998,32(4):340-347.
    [108]Abdel-Mageed AB, Agrawal KC. Activation of nuclear factor kappaB:potential role in metallothionein-mediated mitogenic response[J]. Cancer Res,1998,58(11):2335-2338.
    [109]Kobayashi H, Uchida Y, Ihara Y, et al. Molecular cloning of rat growth inhibitory factor cDNA and the expression in the central nervous system[J]. Brain Res Mol Brain Res,1993,19(3):188-194.
    [110]Masters BA, Quaife CJ, Erickson JC, et al. Metallothionein III is expressed in neurons that sequester zinc in synaptic vesicles [J]. J Neurosci,1994,14(10):5844-5857.
    [111]Anezaki T, Ishiguro H, Hozumi I, et al. Expression of growth inhibitory factor (GIF) in normal and injured rat brains[J]. Neurochem Int,1995,27(1):89-94.
    [112]Yamada M, Hayashi S, Hozumi I, et al. Subcellular localization of growth inhibitory factor in rat brain: light and electron microscopic immunohistochemical studies[J]. Brain Res,1996,735(2):257-264.
    [113]Hozumi I, Inuzuka T, Hiraiwa M, et al. Changes of growth inhibitory factor after stab wounds in rat brain[J]. Brain Res,1995,688(1-2):143-148.
    [114]Yanagitani S, Miyazaki H, Nakahashi Y, et al. Ischemia induces metallothionein III expression in neurons of rat brain[J]. Life Sci,1999,64(8):707-715.
    [115]Palmiter RD, Findley SD, Whitmore TE, et al. MT-Ⅲ, a brain-specific member of the metallothionein gene family[J]. Proc Natl Acad Sci U S A,1992,89(14):6333-6337.
    [116]Nishimura N, Nishimura H, Ghaffar A, et al. Localization of metallothionein in the brain of rat and mouse[J]. J Histochem Cytochem,1992,40(2):309-315.
    [117]Aschner M, Cherian MG, Klaassen CD, et al. Metallothioneins in brain--the role in physiology and pathology[J]. Toxicol Appl Pharmacol,1997,142(2):229-242.
    [118]Klaassen CD, Liu J, Choudhuri S. Metallothionein:an intracellular protein to protect against cadmium toxicity[J]. Annu Rev Pharmacol Toxicol,1999,39:267-294.
    [119]Dabrio M, Rodriguez AR, Bordin G, et al. Recent developments in quantification methods for metallothionein[J]. J Inorg Biochem,2002,88(2):123-134.
    [120]Choudhuri S, McKim JM Jr, Klaassen CD. Differential expression of the metallothionein gene in liver and brain of mice and rats[J]. Toxicol Appl Pharmacol,1993,119(1):1-10.
    [121]Choudhuri S, Liu WL, Berman NE, et al. Cadmium accumulation and metallothionein expression in brain of mice at different stages of development[J]. Toxicol Lett,1996,84(3):127-133.
    [122]Waalkes MP, Coogan TP, Barter RA. Toxicological principles of metal carcinogenesis with special emphasis on cadmium[J]. Crit Rev Toxicol,1992,22(3-4):175-201.
    [123]Shimoda R, Achanzar WE, Qu W, et al. Metallothionein is a potential negative regulator of apoptosis [J]. Toxicol Sci,2003,73(2):294-300.
    [124]Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases:structure, activation, substrates, and functions during apoptosis[J]. Annu Rev Biochem,1999,68:383-424.
    [125]Hengartner MO. The biochemistry of apoptosis[J]. Nature,2000,407(6805):770-776.
    [126]Robertson JD, Orrenius S. Molecular mechanisms of apoptosis induced by cytotoxic chemicals[J]. Crit Rev Toxicol,2000,30(5):609-627.
    [127]Marani M, Tenev T, Hancock D, et al. Identification of novel isoforms of the BH3 domain protein Bim which directly activate Bax to trigger apoptosis[J]. Mol Cell Biol,2002,22(11):3577-3589.
    [128]Chatterjee S, Kundu S, Bhattacharyya A. Mechanism of cadmium induced apoptosis in the immunocyte[J]. Toxicol Lett,2008,177(2):83-89.
    [129]Lag M, Refsnes M, Lilleaas EM, et al. Role of mitogen activated protein kinases and protein kinase C in cadmium-induced apoptosis of primary epithelial lung cells[J]. Toxicology,2005,211(3):253-264.
    [130]Wang L, Cao J, Chen D, et al. Role of oxidative stress, apoptosis, and intracellular homeostasis in primary cultures of rat proximal tubular cells exposed to cadmium[J]. Biol Trace Elem Res,2009,127(1): 53-68.
    [131]Pham TN, Marion M, Denizeau F, et al. Cadmium-induced apoptosis in rat hepatocytes does not necessarily involve caspase-dependent pathways[J]. Toxicol In Vitro,2006,20(8):1331-1342.
    [132]李文军.镉致体外培养鸡胚脑神经元凋亡机理的研究[D].哈尔滨:东北农业大学,2008.
    [133]Hossain S, Liu HN, Nguyen M, et al. Cadmium exposure induces mitochondria-dependent apoptosis in oligodendrocytes[J]. Neurotoxicology,2009,30(4):544-554.
    [134]Watjen W, Cox M, Biagioli M, et al. Cadmium-induced apoptosis in C6 glioma cells:mediation by caspase 9-activation[J]. Biometals,2002,15(1):15-25.
    [135]Adrain C, Martin SJ. The mitochondrial apoptosome:a killer unleashed by the cytochrome seas[J]. Trends Biochem Sci,2001,26(6):390-397.
    [136]Dlamini Z, Mbita Z, Zungu M. Genealogy, expression, and molecular mechanisms in apoptosis[J]. Pharmacol Ther,2004,101(1):1-15.
    [137]Bossy-Wetzel E, Green DR. Apoptosis:checkpoint at the mitochondrial frontier[J]. Mutat Res,1999, 434(3):243-251.
    [138]Green DR, Reed JC. Mitochondria and apoptosis[J]. Science,1998,281(5381):1309-1312.
    [139]金伯泉.细胞和分子免疫学[M].北京:科学出版社,2001.
    [140]Mehmet H. Caspases find a new place to hide[J]. Nature,2000,403(6765):29-30.
    [141]Lemarie A, Lagadic-Gossmann D, Morzadec C, et al. Cadmium induces caspase-independent apoptosis in liver Hep3B cells:role for calcium in signaling oxidative stress-related impairment of mitochondria and relocation of endonuclease G and apoptosis-inducing factor[J]. Free Radic Biol Med,2004,36(12): 1517-1531.
    [142]Shih CM, Wu JS, Ko WC, et al. Mitochondria-mediated caspase-independent apoptosis induced by cadmium in normal human lung cells[J]. J Cell Biochem,2003,89(2):335-347.
    [143]Daugas E, Susin SA, Zamzami N, et al. Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis[J]. Faseb J,2000,14(5):729-739.
    [144]王昌正,曹诚,马清钧.凋亡诱导因子(AIF)对细胞凋亡的调控[J].生命的化学,2005,25(6):454-456.
    [145]Risso-de Faverney C, Orsini N, de Sousa G, et al. Cadmium-induced apoptosis through the mitochondrial pathway in rainbow trout hepatocytes:involvement of oxidative stress [J]. Aquat Toxicol,2004, 69(3):247-258.
    [146]Lasfer M, Vadrot N, Aoudjehane L, et al. Cadmium induces mitochondria-dependent apoptosis of normal human hepatocytes[J]. Cell Biol Toxicol,2008,24(1):55-62.
    [147]叶记林,毛伟平,吴爱莲,等.镉诱导HEK293细胞凋亡及其线粒体凋亡途径[J].分子细胞生物学报,2007,14(1):7-16.
    [148]Li M, Kondo T, Zhao QL, et al. Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+-calpain and caspase-mitochondria- dependent pathways[J]. J Biol Chem,2000,275(50):39702-39709.
    [149]Oh SH, Lim SC. A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation[J]. Toxicol Appl Pharmacol,2006,212(3):212-223.
    [150]Coutant A, Lebeau J, Bidon-Wagner N, et al. Cadmium-induced apoptosis in lymphoblastoid cell line: involvement of caspase-dependent and -independent pathways[J]. Biochimie,2006,88(11):1815-1822.
    [151]Lee WK, Abouhamed M, Thevenod F. Caspase-dependent and -independent pathways for cadmium-induced apoptosis in cultured kidney proximal tubule cells[J]. Am J Physiol Renal Physiol,2006, 291(4):F823-832.
    [152]Mao WP, Ye JL, Guan ZB, et al. Cadmium induces apoptosis in human embryonic kidney (HEK) 293 cells by caspase-dependent and -independent pathways acting on mitochondria[J]. Toxicol In Vitro,2007, 21(3):343-354.
    [153]Chen L, Liu L, Huang S. Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5[J]. Free Radic Biol Med, 2008,45(7):1035-1044.
    [154]Pellegrini M, Bath S, Marsden VS, et al. FADD and caspase-8 are required for cytokine-induced proliferation of hemopoietic progenitor cells[J]. Blood,2005,106(5):1581-1589.
    [155]Nagata S. Apoptosis by death factor[J]. Cell,1997,88(3):355-365.
    [156]Ashkenazi A, Dixit VM. Death receptors:signaling and modulation[J]. Science,1998,281(5381): 1305-1308.
    [157]Creagh EM, Conroy H, Martin SJ. Caspase-activation pathways in apoptosis and immunity[J]. Immunol Rev,2003,193:10-21.
    [158]Li H, Zhu H, Xu CJ, et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis[J]. Cell,1998,94(4):491-501.
    [159]Eichler T, Ma Q, Kelly C, et al. Single and combination toxic metal exposures induce apoptosis in cultured murine podocytes exclusively via the extrinsic caspase 8 pathway[J]. Toxicol Sci,2006,90(2): 392-399.
    [160]贾广乐,王众,吴绍强,等.镉诱导大鼠肾细胞凋亡及其机理的研究[J].生态毒理学报,2008,3(3):268-273.
    [161]Nakamura K, Bossy-Wetzel E, Burns K, et al. Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis[J]. J Cell Biol,2000,150(4):731-740.
    [162]Lei X, Zhang S, Emani B, et al. A link between endoplasmic reticulum stress-induced beta-cell apoptosis and the group VIA Ca2+-independent phospholipase A2 (iPLA2beta)[J]. Diabetes Obes Metab,2010,12 Suppl 2:93-98.
    [163]Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling[J]. Nat Rev Mol Cell Biol,2000,1(1):11-21.
    [164]Swerdlow S, McColl K, Rong Y, et al. Apoptosis inhibition by Bcl-2 gives way to autophagy in glucocorticoid-treated lymphocytes [J]. Autophagy,2008,4(5):612-620.
    [165]Rong Y, Distelhorst CW. Bcl-2 protein family members:versatile regulators of calcium signaling in cell survival and apoptosis[J]. Annu Rev Physiol,2008,70:73-91.
    [166]Walter L, Hajnoczky G. Mitochondria and endoplasmic reticulum:the lethal interorganelle cross-talk[J]. J Bioenerg Biomembr,2005,37(3):191-206.
    [167]Biagioli M, Pifferi S, Ragghianti M, et al. Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis[J]. Cell Calcium,2008,43(2):184-195.
    [168]Wang SH, Shih YL, Lee CC, et al. The role of endoplasmic reticulum in cadmium-induced mesangial cell apoptosis[J]. Chem Biol Interact,2009,181(1):45-51.
    [169]Yokouchi M, Hiramatsu N, Hayakawa K, et al. Atypical, bidirectional regulation of cadmium-induced apoptosis via distinct signaling of unfolded protein response[J]. Cell Death Differ,2007,14(8):1467-1474.
    [170]Tagawa Y, Hiramatsu N, Kasai A, et al. Induction of apoptosis by cigarette smoke via ROS-dependent endoplasmic reticulum stress and CCAAT/enhancer-binding protein-homologous protein (CHOP)[J]. Free Radic Biol Med,2008,45(1):50-59.
    [171]Ji RR, Gereau RWt, Malcangio M, et al. MAP kinase and pain[J]. Brain Res Rev,2009,60(1):135-148.
    [172]Gao YJ, Ji RR. Activation of JNK pathway in persistent pain[J]. Neurosci Lett,2008,437(3):180-183.
    [173]Huang S, Jiang Y, Li Z, et al. Apoptosis signaling pathway in T cells is composed of ICE/Ced-3 family proteases and MAP kinase kinase 6b[J]. Immunity,1997,6(6):739-749.
    [174]Xia Z, Dickens M, Raingeaud J, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis[J]. Science,1995,270(5240):1326-1331.
    [175]Park JM, Greten FR, Li ZW, et al. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition[J]. Science,2002,297(5589):2048-2051.
    [176]Chen YR, Meyer CF, Tan TH. Persistent activation of c-Jun N-terminal kinase 1 (JNK1) in gamma radiation-induced apoptosis[J]. J Biol Chem,1996,271(2):631-634.
    [177]Misra UK, Gawdi G, Akabani G, et al. Cadmium-induced DNA synthesis and cell proliferation in macrophages:the role of intracellular calcium and signal transduction mechanisms[J]. Cell Signal,2002,14(4): 327-340.
    [178]Ding W, Templeton DM. Activation of parallel mitogen-activated protein kinase cascades and induction of c-fos by cadmium[J]. Toxicol Appl Pharmacol,2000,162(2):93-99.
    [179]Iryo Y, Matsuoka M, Wispriyono B, et al. Involvement of the extracellular signal-regulated protein kinase (ERK) pathway in the induction of apoptosis by cadmium chloride in CCRF-CEM cells[J]. Biochem Pharmacol,2000,60(12):1875-1882.
    [180]Chuang SM, Wang IC, Yang JL. Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium[J], Carcinogenesis,2000,21(7):1423-1432.
    [181]Kim J, Sharma RP. Calcium-mediated activation of c-Jun NH2-terminal kinase (JNK) and apoptosis in response to cadmium in murine macrophages [J]. Toxicol Sci,2004,81(2):518-527.
    [182]Kim SD, Moon CK, Eun SY, et al. Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis [J]. Biochem Biophys Res Commun, 2005,328(1):326-334.
    [183]Miguel BG, Rodriguez ME, Aller P, et al. Regulation of cadmium-induced apoptosis by PKCdelta in U937 human promonocytic cells[J]. Biochim Biophys Acta,2005,1743(3):215-222.
    [184]Martin P, Poggi MC, Chambard JC, et al. Low dose cadmium poisoning results in sustained ERK phosphorylation and caspase activation[J]. Biochem Biophys Res Commun,2006,350(3):803-807.
    [185]Hung JJ, Cheng TJ, Lai YK, et al. Differential activation of p38 mitogen-activated protein kinase and extracellular signal-regulated protein kinases confers cadmium-induced HSP70 expression in 9L rat brain tumor cells [J]. J Biol Chem,1998,273(48):31924-31931.
    [186]Rockwell P, Martinez J, Papa L, et al. Redox regulates COX-2 upregulation and cell death in the neuronal response to cadmium[J]. Cell Signal,2004,16(3):343-353.
    [187]Chen L, Liu L, Luo Y, et al. MAPK and mTOR pathways are involved in cadmium-induced neuronal apoptosis[J]. J Neurochem,2008,105(1):251-261.
    [1]Goyer RA. Mechanisms of lead and cadmium nephrotoxicity[J]. Toxicol Lett,1989,46(1-3):153-162.
    [2]Goering PL, Fisher BR, Kish CL. Stress protein synthesis induced in rat liver by cadmium precedes hepatotoxicity[J]. Toxicol Appl Pharmacol,1993,122(1):139-148.
    [3]Shukla GS, Chiu J, Hart BA. Cadmium-induced elevations in the gene expression of the regulatory subunit of gamma-glutamylcysteine synthetase in rat lung and alveolar epithelial cells[J]. Toxicology,2000, 151(1-3):45-54.
    [4]Viaene MK, Roels HA, Leenders J, et al. Cadmium:a possible etiological factor in peripheral polyneuropathy[J]. Neurotoxicology,1999,20(1):7-16.
    [5]Chatterjee S, Kundu S, Bhattacharyya A. Mechanism of cadmium induced apoptosis in the immunocyte[J]. Toxicol Lett,2008,177(2):83-89.
    [6]Lag M, Refsnes M, Lilleaas EM, et al. Role of mitogen activated protein kinases and protein kinase C in cadmium-induced apoptosis of primary epithelial lung cells[J]. Toxicology,2005,211(3):253-264.
    [7]Wang L, Cao J, Chen D, et al. Role of oxidative stress, apoptosis, and intracellular homeostasis in primary cultures of rat proximal tubular cells exposed to cadmium[J]. Biol Trace Elem Res,2009,127(1):53-68.
    [8]Pham TN, Marion M, Denizeau F, et al. Cadmium-induced apoptosis in rat hepatocytes does not necessarily involve caspase-dependent pathways[J]. Toxicol In Vitro,2006,20(8):1331-1342.
    [9]Oh SH, Lim SC. A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation[J]. Toxicol Appl Pharmacol,2006,212(3):212-223.
    [10]李文军.镉致体外培养鸡胚脑神经元凋亡机理的研究[D].哈尔滨:东北农业大学,2008.
    [11]路浩.前镉联合对新生大鼠中枢神经系统的毒性损伤及NAC保护效应的研究[D].扬州:扬州大学.2008.
    [12]Lopez E, Figueroa S, Oset-Gasque MJ, et al. Apoptosis and necrosis:two distinct events induced by cadmium in cortical neurons in culture[J]. Br J Pharmacol,2003,138(5):901-911.
    [13]Xu B, Chen S, Luo Y, et al. Calcium signaling is involved in cadmium-induced neuronal apoptosis via induction of reactive oxygen species and activation of MAPK/mTOR network[J]. PLoS One,2011,6(4): el9052.
    [14]Hossain S, Liu HN, Nguyen M, et al. Cadmium exposure induces mitochondria-dependent apoptosis in oligodendrocytes[J]. Neurotoxicology,2009,30(4):544-554.
    [15]Watjen W, Cox M, Biagioli M, et al. Cadmium-induced apoptosis in C6 glioma cells:mediation by caspase 9-activation[J]. Biometals,2002,15(1):15-25.
    [16]Yang SH, Chien CM, Lu MC, et al. Cardiotoxin III induces apoptosis in K562 cells through a mitochondrial-mediated pathway[J]. Clin Exp Pharmacol Physiol,2005,32(7):515-520.
    [17]Jambrina E, Alonso R, Alcalde M, et al. Calcium influx through receptor-operated channel induces mitochondria-triggered paraptotic cell death[J]. J Biol Chem,2003,278(16):14134-14145.
    [18]Mattel J, Marion M, Denizeau F. Effect of cadmium on membrane potential in isolated rat hepatocytes[J]. Toxicology,1990,60(1-2):161-172.
    [19]Bossy-Wetzel E, Green DR. Apoptosis:checkpoint at the mitochondrial frontier[J]. Mutat Res,1999, 434(3):243-251.
    [20]Koizumi T, Yokota T, Shirakura H, et al. Potential mechanism of cadmium-induced cytotoxicity in rat hepatocytes:inhibitory action of cadmium on mitochondrial respiratory activity[J]. Toxicology,1994,92(1-3): 115-125.
    [21]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods,2001,25(4):402-408.
    [22]Koh JY, Choi DW. Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay[J]. J Neurosci Methods,1987,20(1):83-90.
    [23]Mandell JW, Banker GA. Selective blockade of axonogenesis in cultured hippocampal neurons by the tyrosine phosphatase inhibitor orthovanadate[J]. J Neurobiol,1998,35(1):17-28.
    [24]赵林普,肖定华,陈十英.脑神经细胞的培养[J].生理科学,1983,3(1):8-9.
    [25]罗湘颖,杨志敏,王廷华.胎鼠大脑皮质神经元的体外培养及鉴定[J].神经解剖学杂志,2004,20(5):505-508.
    [26]Silva RF, Falcao AS, Fernandes A, et al. Dissociated primary nerve cell cultures as models for assessment of neurotoxicity[J].Toxicol Lett,2006,163(1):1-9.
    [27]Haberstroh KM, Kapron CM. Activation of c-Jun N-terminal kinase by cadmium in mouse embryo neural cells in vitro[J]. Environ Toxicol Pharmacol,2006,22(1):1-7.
    [28]吴丽蓉,罗勇.大鼠大脑皮质神经元氧糖剥夺/复氧模型的建立[J].中风与神经疾病杂志,2008,25(1):22-26.
    [29]张英.镉对大脑皮质神经细胞的毒性损伤及NAC保护效应的研究[D].扬州:扬州大学,2009.
    [30]Antonio MT, Corpas I, Leret ML. Neurochemical changes in newborn rat's brain after gestational cadmium and lead exposure[J]. Toxicol Lett,1999,104(1-2):1-9.
    [31]Lopez E, Arce C, Oset-Gasque MJ, et al. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture[J]. Free Radic Biol Med,2006,40(6):940-951.
    [32]Adrain C, Martin SJ. The mitochondrial apoptosome:a killer unleashed by the cytochrome seas[J]. Trends Biochem Sci,2001,26(6):390-397.
    [33]Vande Velde C, Cizeau J, Dubik D, et al. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore[J]. Mol Cell Biol,2000,20(15):5454-5468.
    [34]Dlamini Z, Mbita Z, Zungu M. Genealogy, expression, and molecular mechanisms in apoptosis[J]. Pharmacol Ther,2004,101(1):1-15.
    [35]Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer[J]. Nature,2001,411(6835): 342-348.
    [36]Petit PX, Zamzami N, Vayssiere JL, et al. Implication of mitochondria in apoptosis[J]. Mol Cell Biochem, 1997,174(1-2):185-188.
    [37]Green DR, Reed JC. Mitochondria and apoptosis[J]. Science,1998,281(5381):1309-1312.
    [38]Risso-de Faverney C, Orsini N, de Sousa G, et al. Cadmium-induced apoptosis through the mitochondrial pathway in rainbow trout hepatocytes:involvement of oxidative stress[J]. Aquat Toxicol,2004,69(3): 247-258.
    [39]Lasfer M, Vadrot N, Aoudjehane L, et al. Cadmium induces mitochondria-dependent apoptosis of normal human hepatocytes [J]. Cell Biol Toxicol,2008,24(1):55-62.
    [40]叶记林,毛伟平,吴爱莲,等.镉诱导HEK293细胞凋亡及其线粒体凋亡途径[J].分子细胞生物学 报,2007,14(1):7-16.
    [41]Chen L, Liu L, Huang S. Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5[J]. Free Radic Biol Med, 2008,45(7):1035-1044.
    [42]Green D, Reed J. Mitochondria and apoptosis[J]. Science,1998,281(5381):1309-1312.
    [43]Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis[J]. Immunol Today,1997,18(1): 44-51.
    [44]Chandra D, Liu JW, Tang DG. Early mitochondrial activation and cytochrome c up-regulation during apoptosis[J]. J Biol Chem,2002,277(52):50842-50854.
    [45]Ichas F, Mazat JP. From calcium signaling to cell death:two conformations for the mitochondrial permeability transition pore. Switching from low-to high-conductance state[J]. Biochim Biophys Acta,1998, 1366(1-2):33-50.
    [46]Scarlett JL, Sheard PW, Hughes G, et al. Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells[J]. FEBS Lett,2000,475(3):267-272.
    [47]Crompton M. The mitochondrial permeability transition pore and its role in cell death[J]. Biochem J, 1999,341 (Pt 2):233-249.
    [48]Susin SA, Zamzami N, Kroemer G. Mitochondria as regulators of apoptosis:doubt no more[J]. Biochim Biophys Acta,1998,1366(1-2):151-165.
    [49]Bolduc JS, Denizeau F, Jumarie C. Cadmium-induced mitochondrial membrane-potential dissipation does not necessarily require cytosolic oxidative stress:studies using rhodamine-123 fluorescence unquenching[J]. Toxicol Sci,2004,77(2):299-306.
    [50]Dorta DJ, Leite S, DeMarco KC, et al. A proposed sequence of events for cadmium-induced mitochondrial impairment[J]. J Inorg Biochem,2003,97(3):251-257.
    [51]Peng TI, Jou MJ. Mitochondrial swelling and generation of reactive oxygen species induced by photoirradiation are heterogeneously distributed[J]. Ann N Y Acad Sci,2004,1011:112-122.
    [52]Ding WX, Shen HM, Ong CN. Critical role of reactive oxygen species and mitochondrial permeability transition in microcystin-induced rapid apoptosis in rat hepatocytes[J]. Hepatology,2000,32(3):547-555.
    [53]Boonstra J, Post JA. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells[J]. Gene,2004,337:1-13.
    [54]Turrens JF. Mitochondrial formation of reactive oxygen species[J]. J Physiol,2003,552(Pt 2):335-344.
    [55]Mignotte B, Vayssiere JL. Mitochondria and apoptosis[J]. Eur J Biochem,1998,252(1):1-15.
    [56]Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions[J]. Free Radic Biol Med,1995, 18(2):321-336.
    [57]Hengartner MO. The biochemistry of apoptosis[J]. Nature,2000,407(6805):770-776.
    [58]Kasper M, Seidel D, Knels L, et al. Early signs of lung fibrosis after in vitro treatment of rat lung slices with CdCl2 and TGF-betal[J]. Histochem Cell Biol,2004,121(2):131-140.
    [59]Poliandri AH, Cabilla JP, Velardez MO, et al. Cadmium induces apoptosis in anterior pituitary cells that can be reversed by treatment with antioxidants[J]. Toxicol Appl Pharmacol,2003,190(1):17-24.
    [60]朱伟,杨杏芬,魏青,等.镉诱导腺垂体细胞凋亡与半胱天冬酶信号变化初探[J].中华预防医学杂志,2005,39(2):115-116.
    [61]Lavrik IN, Golks A, Krammer PH. Caspases:pharmacological manipulation of cell death[J]. J Clin Invest, 2005,115(10):2665-2672.
    [62]Cheng Y, Deshmukh M, D'Costa A, et al. Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury[J]. J Clin Invest,1998,101(9): 1992-1999.
    [63]Mao WP, Ye JL, Guan ZB, et al. Cadmium induces apoptosis in human embryonic kidney (HEK) 293 cells by caspase-dependent and -independent pathways acting on mitochondria[J]. Toxicol In Vitro,2007, 21(3):343-354.
    [64]Gennari A, Cortese E, Boveri M, et al. Sensitive endpoints for evaluating cadmium-induced acute toxicity in LLC-PK1 cells[J]. Toxicology,2003,183(1-3):211-220.
    [1]Hu Q, Chang J, Tao L, et al. Endoplasmic reticulum mediated necrosis-like apoptosis of HeLa cells induced by Ca2+ oscillation[J]. J Biochem Mol Biol,2005,38(6):709-716.
    [2]Rekasi Z, Czompoly T, Schally AV, et al. Antagonist of growth hormone-releasing hormone induces apoptosis in LNCaP human prostate cancer cells through a Ca2+-dependent pathway[J]. Proc Natl Acad Sci U S A,2005,102(9):3435-3440.
    [3]Orrenius S, McCabe MJ Jr, Nicotera P. Ca2+-dependent mechanisms of cytotoxicity and programmed cell death[J]. Toxicol Lett,1992,64-65:357-364.
    [4]Bezprozvanny I. Calcium signaling and neurodegenerative diseases[J]. Trends Mol Med,2009,15(3): 89-100.
    [5]Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death:the calcium-apoptosis link[J]. Nat Rev Mol Cell Biol,2003,4(7):552-565.
    [6]Shen HM, Dong SY, Ong CN. Critical role of calcium overloading in cadmium-induced apoptosis in mouse thymocytes[J]. Toxicol Appl Pharmacol,2001,171(1):12-19.
    [7]毛伟平,许锋,石晓娟,等.镉诱导HEK293细胞胞内钙稳态的失调引发细胞凋亡[J].中国药理学与毒理学杂志,2004,18(2):103-108.
    [8]Wang SH, Shih YL, Ko WC, et al. Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway[J]. Cell Mol Life Sci,2008,65(22):3640-3652.
    [9]Wang SH, Shih YL, Lee CC, et al. The role of endoplasmic reticulum in cadmium-induced mesangial cell apoptosis[J]. Chem Biol Interact,2009,181(1):45-51.
    [10]Gogvadze V, Norberg E, Orrenius S, et al. Involvement of Ca2- and ROS in alpha-tocopheryl succinate-induced mitochondrial permeabilization[J]. Int J Cancer,127(8):1823-1832.
    [11]Xu B, Chen S, Luo Y, et al. Calcium signaling is involved in cadmium-induced neuronal apoptosis via induction of reactive oxygen species and activation of MAPK/mTOR network[J]. PLoS One,2011,6(4): el 9052.
    [12]袁燕,张英,卞建春,等.镉致大鼠大脑皮质神经细胞凋亡的机理及N-乙酰半胱氨酸的保护作用[J].中国兽医学报,2010,30(8):1107-1110.
    [13]Jan CR, Cheng JS, Roan CJ, et al. Effect of diethylstilbestrol (DES) on intracellular Ca(2+) levels in renal tubular cells [J]. Steroids,2001,66(6):505-510.
    [14]Szabadkai G, Rizzuto R. Participation of endoplasmic reticulum and mitochondrial calcium handling in apoptosis:more than just neighborhood?[J]. FEBS Lett,2004,567(1):111-115.
    [15]Verkhratsky A, Toescu EC. Endoplasmic reticulum Ca(2+) homeostasis and neuronal death[J]. J Cell Mol Med,2003,7(4):351-361.
    [16]Breckenridge DG, Germain M, Mathai JP, et al. Regulation of apoptosis by endoplasmic reticulum pathways[J]. Oncogene,2003,22(53):8608-8618.
    [17]Vazquez-Martinez O, Canedo-Merino R, Diaz-Munoz M, et al. Biochemical characterization, distribution and phylogenetic analysis of Drosophila melanogaster ryanodine and IP3 receptors, and thapsigargin-sensitive Ca2+ ATPase[J]. J Cell Sci,2003,116(Pt 12):2483-2494.
    [18]Bootman MD, Collins TJ, Peppiatt CM, et al. Calcium signalling--an overview[J]. Semin Cell Dev Biol, 2001,12(1):3-10.
    [19]李石,郭芳,董惠,等.Na+, K+-ATP酶参与缺氧所致大鼠皮质元内钙升高[J].第二军医大学学报,2007,28(1):4447.
    [20]Weber H, Roesner JP, Nebe B, et al. Increased cytosolic Ca2+ amplifies oxygen radical-induced alterations of the ultrastructure and the energy metabolism of isolated rat pancreatic acinar cells[J]. Digestion, 1998,59(3):175-185.
    [21]Parkinson NA, James AF, Hendry BM. Actions of endothelin-1 on calcium homeostasis in Madin-Darby canine kidney tubule cells[J]. Nephrol Dial Transplant,1996,11(8):1532-1537.
    [22]Barber D, Hunt J, Ehrich M. Inhibition of calcium-stimulated ATPase in the hen brain P2 synaptosomal fraction by organophosphorus esters:relevance to delayed neuropathy[J]. J Toxicol Environ Health A,2001, 63(2):101-113.
    [23]Yang T, Poovaiah BW. Calcium/calmodulin-mediated signal network in plants[J]. Trends Plant Sci,2003, 8(10):505-512.
    [24]Gordillo E, Ayala A, M FL, et al. Possible involvement of histidine residues in the loss of enzymatic activity of rat liver malic enzyme during aging[J]. J Biol Chem,1988,263(17):8053-8057.
    [25]肖银霞,吉增涛,李金龙,等.镉对体外培养鸡脾淋巴细胞钙稳态的影响[J].环境科学学报,2008,28(11):2343-2346.
    [26]Hajnoczky G, Thomas AP. Minimal requirements for calcium oscillations driven by the IP3 receptor[J]. Embo J,1997,16(12):3533-3543.
    [27]Li M, Kondo T, Zhao QL, et al. Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+-calpain and caspase-mitochondria-dependent pathways[J]. J Biol Chem,2000,275(50):39702-39709.
    [28]Harnick DJ, Jayaraman T, Ma Y, et al. The human type 1 inositol 1,4,5-trisphosphate receptor from T lymphocytes. Structure, localization, and tyrosine phosphorylation[J]. J Biol Chem,1995,270(6):2833-2840.
    [29]Ma HT, Patterson RL, van Rossum DB, et al. Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+channels[J]. Science,2000,287(5458):1647-1651.
    [30]Broad LM, Braun FJ, Lievremont JP, et al. Role of the phospholipase C-inositol 1,4,5-trisphosphate pathway in calcium release-activated calcium current and capacitative calcium entry [J]. J Biol Chem,2001, 276(19):15945-15952.
    [31]Gregory RB, Rychkov G, Barritt GJ. Evidence that 2-aminoethyl diphenylborate is a novel inhibitor of store-operated Ca2+channels in liver cells, and acts through a mechanism which does not involve inositol trisphosphate receptors[J]. Biochem J,2001,354(Pt 2):285-290.
    [32]Furuta A, Tanaka M, Omata W, et al. Microtubule disruption with BAPTA and dimethyl BAPTA by a calcium chelation-independent mechanism in 3T3-L1 adipocytes[J]. Endocr J,2009,56(2):235-243.
    [33]宋必卫,储昭兴.BAPTA-AM的研究现状[J].中国药理学通报,2009,25(7):851-853.
    [34]Tsien RY. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures [J]. Biochemistry,1980,19(11):2396-2404.
    [35]Spigelman I, Tymianski M, Wallace CM, et al. Modulation of hippocampal synaptic transmission by low concentrations of cell-permeant Ca2+chelators:effects of Ca2+affinity, chelator structure and binding kinetics[J]. Neuroscience,1996,75(2):559-572.
    [36]Liu X, Kim CN, Yang J, et al. Induction of apoptotic program in cell-free extracts:requirement for dATP and cytochrome c[J]. Cell,1996,86(1):147-157.
    [37]Fang M, Zhang H, Xue S. Differential effects of ca2+and Mg2+ on endonuclease activation in isolated promyelocytic HL-60 cell nuclei[J]. Sci China C Life Sci,1998,41(4):351-359.
    [38]Jang MH, Shin MC, Cho YW, et al. 1,2-bis(2-aminophenoxy)ethane-N,N,N'N'-tetraacetic acid (BAPTA-AM) inhibits caffeine-induced apoptosis in human neuroblastoma cells[J]. Neurosci Lett,2004, 358(3):189-192.
    [39]Zhang M, Li Y, Zhang H, et al. BAPTA blocks DNA fragmentation and chromatin condensation downstream of caspase-3 and DFF activation in HT-induced apoptosis in HL-60 cells[J]. Apoptosis,2001,6(4): 291-297.
    [40]李文军,赵兰,徐世文.钙稳态失衡在镉致鸡脑神经元线粒体损伤中的作用[J].畜牧兽医学报, 2008,39(8):1122-1126.
    [41]Dupont G, Swillens S, Clair C, et al. Hierarchical organization of calcium signals in hepatocytes:from experiments to models[J]. Biochim Biophys Acta,2000,1498(2-3):134-152.
    [42]Jan CR, Kuo SY, Cheng JS, et al. Effect of NPC-14686 (Fmoc-L-homophenylalanine) on intracellular Ca2+levels in human hepatoma cells[J]. Life Sci,2003,72(23):2571-2580.
    [43]Kasri NN, Sienaert I, Parys JB, et al. A novel Ca2+-induced Ca2- release mechanism in A7r5 cells regulated by calmodulin-like proteins[J]. J Biol Chem,2003,278(30):27548-27555.
    [44]Wissing F, Nerou EP, Taylor CW. A novel Ca2--induced Ca2+ release mechanism mediated by neither inositol trisphosphate nor ryanodine receptors[J]. Biochem J,2002,361(Pt 3):605-611.
    [45]Martinez-Sanchez M, Striggow F, Schroder UH, et al. Na(+) and Ca(2+) homeostasis pathways, cell death and protection after oxygen-glucose-deprivation in organotypic hippocampal slice cultures[J]. Neuroscience, 2004,128(4):729-740.
    [46]Qiu Y, Li YY, Li SG, et al. Effect of Qingyitang on activity of intracellular Ca2+-Mg2+-ATPase in rats with acute pancreatitis [J]. World J Gastroenterol,2004,10(1):100-104.
    [47]Gunter TE, Gunter KK, Sheu SS, et al. Mitochondrial calcium transport:physiological and pathological relevance[J]. Am J Physiol,1994,267(2):C313-C339.
    [48]Hajnoczky G, Hager R, Thomas AP. Mitochondria suppress local feedback activation of inositol 1,4, 5-trisphosphate receptors by Ca2+[J]. J Biol Chem,1999,274(20):14157-14162.
    [49]Szabadkai G, Simoni AM, Rizzuto R. Mitochondrial Ca2+ uptake requires sustained Ca2+ release from the endoplasmic reticulum[J]. J Biol Chem,2003,278(17):15153-15161.
    [1]Tian W, Zhang Z, Cohen DM. MAPK signaling and the kidney[J]. Am J Physiol Renal Physiol,2000, 279(4):F593-604.
    [2]Widmann C, Gibson S, Jarpe MB, et al. Mitogen-activated protein kinase:conservation of a three-kinase module from yeast to human [J]. Physiol Rev,1999,79(1):143-180.
    [3]Ji RR, Gereau RWt, Malcangio M, et al. MAP kinase and pain[J]. Brain Res Rev,2009,60(1):135-148.
    [4]Wang X, Wang H, Xu L, et al. Significant neuroprotection against ischemic brain injury by inhibition of the MEK1 protein kinase in mice:exploration of potential mechanism associated with apoptosis[J]. J Pharmacol Exp Ther,2003,304(1):172-178.
    [5]Borsello T, Clarke PG, Hirt L, et al. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia[J]. Nat Med,2003,9(9):1180-1186.
    [6]Otani N, Nawashiro H, Yano A, et al. Characteristic phosphorylation of the extracellular signal-regulated kinase pathway after kainate-induced seizures in the rat hippocampus [J]. Acta Neurochir Suppl,2003,86: 571-573.
    [7]Otth C, Mendoza-Naranjo A, Mujica L, et al. Modulation of the JNK. and p38 pathways by cdk5 protein kinase in a transgenic mouse model of Alzheimer's disease[J]. Neuroreport,2003,14(18):2403-2409.
    [8]Sun A, Liu M, Nguyen XV, et al. P38 MAP kinase is activated at early stages in Alzheimer's disease brain[J]. Exp Neurol,2003,183(2):394-405.
    [9]Wilms H, Rosenstiel P, Sievers J, et al. Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase:implications for Parkinson's disease[J]. Faseb J, 2003,17(3):500-502.
    [10]Hartzler AW, Zhu X, Siedlak SL, et al. The p38 pathway is activated in Pick disease and progressive supranuclear palsy:a mechanistic link between mitogenic pathways, oxidative stress, and tau[J]. Neurobiol Aging,2002,23(5):855-859.
    [11]Kuida K, Boucher D. Functions of MAP kinases:insights from gene-targeting studies[J]. Journal of Biochemistry,2004,135(6):653-656.
    [12]Torii S, Nakayama K, Yamamoto T, et al. Regulatory mechanisms and function of ERK MAP kinases[J]. Journal of Biochemistry,2004,136(5):557-561.
    [13]Gao YJ, Ji RR. Activation of JNK pathway in persistent pain[J]. Neurosci Lett,2008,437(3):180-183.
    [14]Zarubin T, Jiahuai H. Activation and signaling of the p38 MAP kinase pathway[J]. Cell research,2005, 15(1):11-18.
    [15]Jing L, Anning L. Role of JNK activation in apoptosis:a double-edged sword[J]. Cell research,2005, 15(1):36-42.
    [16]Xia Z, Dickens M, Raingeaud J, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis[J]. Science,1995,270(5240):1326-1331.
    [17]Yang Y, Zhu X, Chen Y, et al. p38 and JNK MAPK, but not ERK1/2 MAPK, play important role in colchicine-induced cortical neurons apoptosis[J]. Eur J Pharmacol,2007,576(1-3):26-33.
    [18]Xie N, Wang C, Lin Y, et al. The role of p38 MAPK in valproic acid induced microglia apoptosis[J]. Neurosci Lett,482(1):51-56.
    [19]Chen L, Liu L, Yin J, et al. Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway[J]. Int J Biochem Cell Biol,2009, 41(6):1284-1295.
    [20]Chen L, Liu L, Luo Y, et al. MAPK and mTOR pathways are involved in cadmium-induced neuronal apoptosis[J]. J Neurochem,2008,105(1):251-261.
    [21]Chuang SM, Wang IC, Yang JL. Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium[J]. Carcinogenesis,2000,21(7):1423-1432.
    [22]Hung JJ, Cheng TJ, Lai YK, et al. Differential activation of p38 mitogen-activated protein kinase and extracellular signal-regulated protein kinases confers cadmium-induced HSP70 expression in 9L rat brain tumor cells[J]. J Biol Chem,1998,273(48):31924-31931.
    [23]Rockwell P, Martinez J, Papa L, et al. Redox regulates COX-2 upregulation and cell death in the neuronal response to cadmium[J]. Cell Signal,2004,16(3):343-353.
    [24]Kim SD, Moon CK, Eun SY, et al. Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis[J]. Biochem Biophys Res Commun, 2005,328(1):326-334.
    [25]Xu B, Chen S, Luo Y, et al. Calcium signaling is involved in cadmium-induced neuronal apoptosis via induction of reactive oxygen species and activation of MAPK/mTOR network[J]. PLoS One,2011,6(4): el9052.
    [26]Junttila MR, Li SP, Westermarck J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival[J]. Faseb J,2008,22(4):954-965.
    [27]Seger R, Krebs EG. The MAPK signaling cascade[J]. Faseb J,1995,9(9):726-735.
    [28]Page C, Doubell AF. Mitogen-activated protein kinase (MAPK) in cardiac tissues[J]. Mol Cell Biochem, 1996,157(1-2):49-57.
    [29]Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases[J]. Science,2002,298(5600):1911-1912.
    [30]Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation[J]. Oncogene,2004, 23(16):2838-2849.
    [31]Dent P, Yacoub A, Fisher PB, et al. MAPK pathways in radiation responses[J]. Oncogene,2003,22(37): 5885-5896.
    [32]Segal RA, Greenberg ME. Intracellular signaling pathways activated by neurotrophic factors[J]. Annu Rev Neurosci,1996,19:463-489.
    [33]Torii S, Nakayama K, Yamamoto T, et al. Regulatory mechanisms and function of ERK MAP kinases[J]. J Biochem,2004,136(5):557-561.
    [34]Skaper SD, Facci L, Strijbos PJ. Neuronal protein kinase signaling cascades and excitotoxic cell death[J]. Ann N Y Acad Sci,2001,939:11-22.
    [35]Stanciu M, DeFranco DB. Prolonged nuclear retention of activated extracellular signal-regulated protein kinase promotes cell death generated by oxidative toxicity or proteasome inhibition in a neuronal cell line[J]. J Biol Chem,2002,277(6):4010-4017.
    [36]Stanciu M, Wang Y, Kentor R, et al. Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures[J]. J Biol Chem,2000,275(16): 12200-12206.
    [37]Davis RJ. Signal transduction by the JNK group of MAP kinases[J]. Cell,2000,103(2):239-252.
    [38]Misra UK, Gawdi G, Akabani G, et al. Cadmium-induced DNA synthesis and cell proliferation in macrophages:the role of intracellular calcium and signal transduction mechanisms[J]. Cell Signal,2002,14(4): 327-340.
    [39]Iryo Y, Matsuoka M, Wispriyono B, et al. Involvement of the extracellular signal-regulated protein kinase (ERK) pathway in the induction of apoptosis by cadmium chloride in CCRF-CEM cells [J]. Biochem Pharmacol,2000,60(12):1875-1882.
    [40]Chen L, Liu L, Huang S. Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5[J]. Free Radic Biol Med, 2008,45(7):1035-1044.
    [41]Kim J, Sharma RP. Calcium-mediated activation of c-Jun NH2-terminal kinase (JNK) and apoptosis in response to cadmium in murine macrophages[J]. Toxicol Sci,2004,81(2):518-527.
    [42]Chuang SM, Yang JL. Comparison of roles of three mitogen-activated protein kinases induced by chromium(VI) and cadmium in non-small-cell lung carcinoma cells[J]. Mol Cell Biochem,2001,222(1-2): 85-95.
    [43]Lag M, Refsnes M, Lilleaas EM, et al. Role of mitogen activated protein kinases and protein kinase C in cadmium-induced apoptosis of primary epithelial lung cells[J]. Toxicology,2005,211(3):253-264.
    [44]Chao JI, Yang JL. Opposite roles of ERK and p38 mitogen-activated protein kinases in cadmium-induced genotoxicity and mitotic arrest[J]. Chem Res Toxicol,2001,14(9):1193-1202.
    [45]Galan A, Garcia-Bermejo ML, Troyano A, et al. Stimulation of p38 mitogen-activated protein kinase is an early regulatory event for the cadmium-induced apoptosis in human promonocytic cells[J]. J Biol Chem,2000, 275(15):11418-11424.
    [1]Foster KA, Galeffi F, Gerich FJ, et al. Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration[J]. Prog Neurobiol,2006,79(3):136-171.
    [2]Capaldi RA. Structure and function of cytochrome c oxidase[J]. Annu Rev Biochem,1990,59:569-596.
    [3]Hong WK, Han EH, Kim DG, et al. Amyloid-beta-peptide reduces the expression level of mitochondrial cytochrome oxidase subunits[J]. Neurochem Res,2007,32(9):1483-1488.
    [4]柳君泽.线粒体与能量转换[M].北京:中国协和医科大学出版社,2002.
    [5]唐涛.细胞色素C氧化酶与缺血性神经损伤[J].国外医学神经病学神经外科学分册,2001,28(2): 71-74.
    [6]Gennis R, Ferguson-Miller S. Structure of cytochrome c oxidase, energy generator of aerobic life[J]. Science,1995,269(5227):1063-1064.
    [7]张英.镉对体外培养大鼠大脑皮质神经细胞的毒性损伤及NAC的保护效应研究[D].扬州:扬州大学,2009.
    [8]Niki E, Yoshida Y, Saito Y, et al. Lipid peroxidation:mechanisms, inhibition, and biological effects[J]. Biochem Biophys Res Commun,2005,338(1):668-676.
    [9]Koizumi T, Shirakura H, Kumagai H, et al. Mechanism of cadmium-induced cytotoxicity in rat hepatocytes:cadmium-induced active oxygen-related permeability changes of the plasma membrane[J]. Toxicology,1996,114(2):125-134.
    [10]Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part Ⅰ:mechanisms involved in metal-induced oxidative damage[J]. Curr Top Med Chem,2001,1(6):529-539.
    [11]Sen T, Sen N, Tripathi G, et al. Lipid peroxidation associated cardiolipin loss and membrane depolarization in rat brain mitochondria[J]. Neurochem Int,2006,49(1):20-27.
    [12]Forsmark-Andree P, Lee CP, Dallner G, et al. Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles[J]. Free Radic Biol Med,1997,22(3): 391-400.
    [13]Kim HL, Choi YK, Kim do H, et al. Tetrahydropteridine deficiency impairs mitochondrial function in Dictyostelium discoideum Ax2[J]. FEBS Lett,2007,581(28):5430-5434.
    [14]Ostermeier C, Iwata S, Michel H. Cytochrome c oxidase[J]. Curr Opin Struct Biol,1996,6(4):460-466.
    [15]Sohal RS, Toroser D, Bregere C, et al. Age-related decrease in expression of mitochondrial DNA encoded subunits of cytochrome c oxidase in Drosophila melanogaster[J]. Mech Ageing Dev,2008,129(9):558-561.
    [16]Ferguson M, Mockett RJ, Shen Y, et al. Age-associated decline in mitochondrial respiration and electron transport in Drosophila melanogaster[J]. Biochem J,2005,390(Pt 2):501-511.
    [17]Huttemann M, Schmidt TR, Grossman LI. A third isoform of cytochrome c oxidase subunit VIII is present in mammals[J]. Gene,2003,312:95-102.
    [18]Hosier JP, Ferguson-Miller S, Mills DA. Energy transduction:proton transfer through the respiratory complexes[J]. Annu Rev Biochem,2006,75:165-187.
    [19]Riepe MW, Hori N, Ludolph AC, et al. Failure of neuronal ion exchange, not potentiated excitation, causes excitotoxicity after inhibition of oxidative phosphorylation[J]. Neuroscience,1995,64(1):91-97.
    [20]Mennerick S, Zorumski CF. Glial contributions to excitatory neurotransmission in cultured hippocampal cells[J]. Nature,1994,368(6466):59-62.
    [21]Zhang C, Wong-Riley MT. Synthesis and degradation of cytochrome oxidase subunit mRNAs in neurons: differential bigenomic regulation by neuronal activity[J], J Neurosci Res,2000,60(3):338-344.
    [1]Cheng ZD, Liu MY, Chen G, et al. Anti-vascular permeability of the cleaved reactive center loop within the carboxyl-terminal domain of C1 inhibitor[J]. Mol Immunol,2008,45(6):1743-1751.
    [2]Davis AE 3rd, Cai S, Liu D. C1 inhibitor:biologic activities that are independent of protease inhibition[J]. Immunobiology,2007,212(4-5):313-323.
    [3]Foster KA, Galeffi F, Gerich FJ, et al. Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration[J]. Prog Neurobiol,2006,79(3):136-171.
    [4]Feng Y, Lu Y, Lin X, et al. Endomorphins and morphine limit anoxia-reoxygenation-induced brain mitochondrial dysfunction in the mouse[J]. Life Sci,2008,82(13-14):752-763.
    [5]Orrenius S. Mitochondrial regulation of apoptotic cell death[J]. Toxicol Lett,2004,149(1-3):19-23.
    [6]Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2:release of cytochrome c from mitochondria blocked[J]. Science,1997,275(5303):1129-1132.
    [7]Zou H, Henzel WJ, Liu X, et al. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3[J]. Cell,1997,90(3):405-413.
    [8]Mertens HJ, Heineman MJ, Evers JL. The expression of apoptosis-related proteins Bcl-2 and Ki67 in endometrium of ovulatory menstrual cycles[J]. Gynecol Obstet Invest,2002,53(4):224-230.
    [9]Lopez E, Arce C, Oset-Gasque MJ, et al. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture[J]. Free Radic Biol Med,2006,40(6):940-951.
    [10]王卫东Bcl-2/Bax比率与细胞“命运”[J].中国肿瘤生物治疗学杂志,2007,14(4):393-396.
    [11]Le Bras M, Rouy I, Brenner C. The modulation of inter-organelle cross-talk to control apoptosis[J]. Med Chem,2006,2(1):1-12.
    [12]周伟,吴圣楣,陈惠全.Bcl-2, Bax mRNA在新生大鼠缺血缺氧后的表达及其与脑细胞凋亡的关系[J].新生儿杂志,2001,16(2):69-72.
    [13]Parsadanian AS, Cheng Y, Keller-Peck CR, et al. Bcl-xL is an antiapoptotic regulator for postnatal CNS neurons[J]. J Neurosci,1998,18(3):1009-1019.
    [14]路浩,达剑森,梅莉,等.母鼠妊娠期铅镉联合暴露对新生鼠大脑bcl-2, Bax和c-fos mRNA表达的影响及NAC保护效应[J].中国农业科学,2010,43(2):417-423.
    [15]袁燕,张英,卞建春,等.镉致大鼠大脑皮质神经细胞凋亡的机理及N-乙酰半胱氨酸的保护作用[J].中国兽医学报,2010,30(8):1107-1110.
    [1]朱家恺,罗永湘,陈统一.现代周围神经外科学[M].上海:上海科学技术出版社,2007.
    [2]候春林,顾玉东.皮瓣外科学[M].上海:上海科学技术出版社,2006.
    [3]Palluy O, Rigaud M. Nitric oxide induces cultured cortical neuron apoptosis[J]. Neurosci Lett,1996, 208(1):1-4.
    [4]Guix FX, Uribesalgo I, Coma M, et al. The physiology and pathophysiology of nitric oxide in the brain[J]. Prog Neurobiol,2005,76(2):126-152.
    [5]Cantarella G, Lempereur L, D'Alcamo MA, et al. Trail interacts redundantly with nitric oxide in rat astrocytes:potential contribution to neurodegenerative processes[J]. J Neuroimmunol,2007,182(1-2):41-47.
    [6]张春阳,卫涛涛,马辉,等.活性氧参与一氧化氮诱导的神经细胞凋亡[J].生物化学与生物物理学进展,2001,28(1):82-85.
    [7]周春艺,李国君.一氧化氮的神经毒性作用[J].卫生毒理学杂志,2002,16(2):124-126.
    [8]Brown GC, Borutaite V. Nitric oxide, mitochondria, and cell death [J]. IUBMB Life,2001,52(3-5): 189-195.
    [9]Greenspan HC, Aruoma OI. Oxidative stress and apoptosis in HIV infection:a role for plant-derived metabolites with synergistic antioxidant activity[J]. Immunol Today,1994,15(5):209-213.
    [10]Szabo C. Alterations in nitric oxide production in various forms of circulatory shock[J]. New Horiz,1995, 3(1):2-32.
    [11]Hansen PR. Inflammatory alterations in the myocardial microcirculation[J]. J Mol Cell Cardiol,1998, 30(12):2555-2559.
    [12]Gilbert ME, Mack CM, Lasley SM. Chronic developmental lead exposure increases the threshold for long-term potentiation in rat dentate gyrus in vivo[J]. Brain Res,1996,736(1-2):118-124.
    [13]Ramirez DC, Gimenez MS. Induction of redox changes, inducible nitric oxide synthase and cyclooxygenase-2 by chronic cadmium exposure in mouse peritoneal macrophages[J]. Toxicol Lett,2003, 145(2):121-132.
    [14]张春红.镉致体外培养鸡支持-生精细胞凋亡机理的研究[D].哈尔滨:东北农业大学,2006.
    [15]袁燕,张英,卞建春,等.镉致大鼠大脑皮质神经细胞凋亡的机理及N-乙酰半胱氨酸的保护作用[J].中国兽医学报,2010,30(8):1107-1110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700