用户名: 密码: 验证码:
兴凯湖翘嘴鲌肌肉品质及相关候选基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
兴凯湖翘嘴鲌(Culter alburnus in Xingkai Lake)又名兴凯湖大白鱼,其肉色亮白如玉,肉质细嫩鲜美,是我国四大淡水名鱼之一,具有很高的经济价值。近年来,由于过度捕捞及产卵场环境恶化,野生兴凯湖大白鱼已日渐濒危,人工养殖应运而生。但在人工养殖条件下,由于片面追求高生长速度、高产量,养殖群体的肉质风味急剧下降,失去了野生大白鱼的鲜嫩口感,导致其价格远低于野生群体,严重影响了经济效益。
     本研究针对这一问题,以兴凯湖翘嘴鲌为试验对象,采用常规分析方法测定并比较不同年龄兴凯湖翘嘴鲌野生与养殖群体肌肉物理指标(pH值、肉色和质构特性)、常规营养指标、氨基酸含量、脂肪酸含量、部分血液生化指标和组织学特征,对其肌肉品质进行初步评定。采用生物化学和分子生物学的方法,利用RACE和RT-PCR等技术,克隆与肉质相关的重链肌球蛋白基因(MYHs)、生肌分化因子(MyoD)、肥胖基因产物(Leptin)和钙蛋白酶抑制蛋白(CAST),并对基因的结构和功能进行解析;采用Real Time PCR技术,从mRNA水平研究上述基因在不同年龄野生与养殖群体表达差异,探索基因表达与肉质性状之间的关系,从分子水平对肌肉品质差异的形成进行初步分析。试验结果如下:
     1.从2龄后野生兴凯湖翘嘴鲌肌肉pH值均显著高于养殖群体,L*和b*值均显著高于养殖群体,a*值显著低于养殖群体(P<0.05),肉色更加洁白,晶莹剔透。兴凯湖翘嘴鲌野生群体硬度、弹性、回复性等方面高于养殖群体(P<0.05),肌肉口感更好。兴凯湖翘嘴鲌野生和养殖群体的肌纤维基本结构相同,均为不规则多边形,但野生群体比养殖群体的肌纤维直径更小,肌纤维密度更大(P<0.05)。这说明在肌肉物理特性和组织学特征方面,野生兴凯湖翘嘴鲌肉质表现更为优异。
     2.2龄野生和养殖群体兴凯湖翘嘴鲌肌肉常规营养成分含量无显著差异(P>0.05);4龄、6龄野生翘嘴鲌肌肉水分和粗蛋白含量显著高于养殖群体(P<0.05),脂肪含量明显低于养殖群体(P<0.05)。野生兴凯湖翘嘴鲌钙和磷含量比一般常见养殖鱼类高。野生和养殖兴凯湖翘嘴鲌的氨基酸组成一致,甘氨酸(Gly)含量最高,谷氨酸(Glu)和赖氨酸(Lys)次之。野生兴凯湖翘嘴鲌氨基酸总量、必需氨基酸总量和鲜味氨基酸含量明显高于养殖群体(P<0.05)。说明野生兴凯湖翘嘴鲌食用价值和肉味鲜美程度明显优于养殖群体,且随年龄增长愈加明显。
     3.野生兴凯湖翘嘴鲌与养殖群体脂肪酸组成一致,以油酸(C18:1)、亚油酸(C18:2n-6)和棕桐酸(C16:0)为主。但其多不饱和脂肪酸(PUFA)、二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)总量显著高于养殖群体(P<0.05)。这也是兴凯湖翘嘴鲌野生群体肉质风味和营养保健功能优于养殖群体的重要原因之一。兴凯湖翘嘴鲌野生群体血清中的胆固醇(TC)、甘油三酯(TG)、血糖(Glu)、总蛋白(TP)和白蛋白(ALB)含量明显低于养殖群体,高密度脂蛋白(HDLC)含量高于养殖群体,说明野生兴凯湖翘嘴鲌的能量代谢正常,血脂水平较低,体现了血脂和体脂的正相关,从而表现出更优良的健康水平。
     4.克隆分离出兴凯湖翘嘴鲌MYHs两个亚型(MYHa和MYHb),其中MYHa cDNA全长6003bp,开放阅读框(ORF)长5802bp,编码1933个氨基酸;MYHb cDNA全长为5990bp,开放阅读框为5793bp,编码1930个氨基酸。将其提交到Genbank上,其登录号分别为JX272926和JX402919。通过比对,这两个基因同源性低(73%),且3’非翻译区有很大的差异,因此,这是一个基因的两个同型异构体,既是结构蛋白又是功能蛋白。MYHa和MYHb分别与鲢(Hypophthalmichthys molitrix)快速骨骼肌MYH typel型和MYH type3型同源性最高,分别为98%和97%,与其他鱼类同源性达到90%以上,说明兴凯湖翘嘴鲌MYHs具有较高的保守性。
     5.克隆分离兴凯湖翘嘴鲌MyoD基因,其cDNA全长1096bp,开放阅读框为828bp,编码275个氨基酸,将其提交到Genbank上,其登录号分别为KC782835。通过对其结构分析发现,该氨基酸具有该家族的典型结构域碱性螺旋-环-螺旋(bHLH),其中1-84个氨基酸为碱性区域,第98-141个氨基酸为螺旋环螺旋(HLH)结构。兴凯湖翘嘴鲌MyoD与草鱼同源性最高,达99.3%,与哺乳动物相比也有大于60%的同源性,说明兴凯湖翘嘴鲌MyoD相当保守。
     6.克隆分离兴凯湖翘嘴鲌肥胖基因产物Leptin,其cDNA全长1208bp,开放阅读框522bp,编码173个氨基酸,将其提交到Genbank上,其登录号为KC782834。分析表明翘嘴鲌LeptinN端第20-21位为酶切位点,形成信号肽。
     7.克隆分离出兴凯湖翘嘴鲌CAST部分序列共1997bp。通过NCBI Blast在线分析软件比对,结果发现该序列与己公布的斑马鱼和草鱼CAST相似性分别为90%和83%,说明CAST基因相对保守。
     8.对不同时期野生与养殖群体兴凯湖翘嘴鲌肌肉组织MYHs、MyoD、Leptin和CAST基因的表达研究表明,从2龄到6龄,野生群体MYHa表达量明显低于养殖群体(P<0.05), MYHb明显高于养殖群体,鱼体越大差异越明显,两种基因型共同作用影响肉质性状。从2龄后MyoD基因表达呈现出上调趋势,Leptin基因表现出下调性表达,而CAST基因下调趋势从4龄开始明显。因此,MYHs和MyoD是控制肌肉发育的主效基因,Leptin基因与机体脂肪代谢有关,推测CAST基因不是影响鱼肉嫩度形成的唯一主效基因,可能更多的是与钙蛋白酶系统其它基因一起参与调控肌肉的嫩度。
Culter alburnus in Xingkai Lake, also known as Xingkai large white fish, the color of which is white as jade, and the meat quality is delicate and delicious, is one of China's four major freshwater fish, and of high economic value. In recent years, due to overfishing and the deterioration of the environment of spawning grounds, wild Culter alburnus in Xingkai Lake has been increasingly endangering, when artificial breeding emerged as the times require. However, the one-sided pursuit of high growth rate, high yield brought the problem that the meat flavor of cultured population is in steep decline, lost in the taste of fresh and tender, which led the price far lower than the wild population and influenced its economic benefit seriously.
     In this study, in order to solve this problem, we use Culter alburnus in Xingkai Lake as the experimental object. Firstly, determine and compare Culter alburnus in Xingkai Lake of wild and cultured populations of different ages in muscle physical index (pH value, color and texture characteristics), characteristics of conventional nutritional index, amino acids, fatty acids, blood biochemical index and tissue in conventional analysis methods, and then make a preliminary assessment of the quality of muscle. Secondly, by using the method of Biochemistry and molecular biology and RACE and RT-PCR technology, clone the heavy chain myosin gene (MYHs), myogenic differentiation factor (MyoD), production of the obese gene (Leptin) and calpastatin (CAST) which are related to the meat quality, and then analyzes the structure and function of the gene. Adopting Real Time PCR, from the mRNA level of the gene in different age of wild and cultivated populations of expression, explore the relationship between gene expression and meat quality traits. From the molecular level, differences of the formation of muscle quality give preliminary explanation. The results are as follows:
     1. From2years old, the muscle pH of wild Culter alburnus in Xingkai Lake were significantly higher than cultured population (P<0.05), whose color were whiter, glittering and translucent, and its hardness, elasticity, recovery were also higher than cultured population (p<0.05), whose muscle taste better. The basic structure of muscle fiber of Culter alburnus in Xingkai Lake of wild and cultured populations are of the same, both in irregular polygon. However, the muscle fiber diameter of wild populations is smaller than cultured population, but its density is greater (p<0.05). This is explained in terms of features in muscle properties and organization of Culter alburnus in Xingkai Lake, wild meat is more excellent performance, so consumers' desire to purchase is stronger.
     2. There is no significant difference in nutrition o fmuscle from2instar of wild and cultured populations of Culter alburnus in Xingkai Lake(P>0.05); in age4and moisture6instar wild Culters Albumus muscle and crude protein content was significantly higher than cultured population(P<0.05), but the fat content was lower than cultured population (P<0.05). The calcium and phosphorus content of wild fish are higher than the common ones. The composition of amino acids in wild and farmed Culter alburnus in Xingkai Lake is the same, that is, glycine (Gly) was the highest, glutamate (Glu) and lysine (Lys) times. Total amino acid, essential amino acid contents of wild flavor of Culter alburnus in Xingkai Lake and umami total amino acid was higher than cultured population (P<0.05). Consequencely, the edible value and delicious meat of wild Culter alburnus in Xingkai Lake was significantly better than cultured population, with age more obvious.
     3. The composition of fatty acids of the wild and cultivated population of Culter alburnus in Xingkai Lake is the same, mainly with oleic acid (C18:1), linoleic acid (C18:2n6) and palmitic acid (C16:0). But the polyunsaturated fatty acid (PUFA), twenty C five acid (EPA) and twenty-two carbon six acid (DHA) was significantly higher than cultured population total (P<0.05). This is also one of main reasons why the meat flavor and nutritional function Culter alburnus in Xingkai Lake wild populations of is better than that of the cultured population. The cholesterol (TC) in serum, triglyceride (TG), blood glucose (Glu) content, total protein (TP) and albumin (ALB) in the wild population of Culter alburnus in Xingkai Lakewas significantly lower than cultured population, while the high density lipoprotein (HDLC)was higher than cultured population. Energy metabolism of wild Alice mouth Culter in Xingkai Lake is normal and blood lipid level is low, which reflects that the blood lipid and body fat is related, showing more excellent health level.
     4. Though the first time cloning isolated there were two subtypes of Culter alburnus in Xingkai Lake MYHs,(MYHa and MYHb), where MYHa cDNA was6003bp in length, open reading frame (ORF) is5802bp long, encoding1933amino acids; MYHb cDNA was5990bp, open reading frame of5793bp, encoding1930amino acids. They will be submitted to Genbank, the accession numbers of which are JX272926and JX402919. By comparison, the holomogy of the two gene homology is low (73%), and the3has the very big difference in 'untranslated regions. Therefore, this is the two isoforms of a gene.not only a structural protein but also a function of protein. MYHa and MYHb are respectively connected with the silver carp Hypophthalmichthys molitrix fast skeletal muscle MYH typel type and MYH type type3the highest homology with other fish, homology above90%, that of Culter alburnus in Xingkai Lake MYHs is more conservative.
     5. From the first isolation of Culter alburnus in Xingkai Lake, the MyoD gene's full-length cDNA was of1096bp, an open reading frame of828bp, encoding275amino acids. Submit it to Genbank, and the accession number was KC782835. Through the analysis of its structure, the amino acid had the typical domains of bHLH with the family, in which1-84amino acids alkaline region, ninety-eighth-141amino acids for the helix-loop-helix (HLH) structure. Culter alburnus in Xingkai Lake and grass carp MyoD' shomology is the highest, up to99.3%. Compared with mammals, there is also more than60%homologous, description of Culter alburnus in Xingkai Lake MyoD quite conservative.
     6. The obesity gene product from the first isolation of Culter alburnus in Xingkai Lake is Leptin, whose cDNA was1208BP in length, open reading frame of522bp, encoding173amino acids. Submitted it to Genbank, and the accession number is KC782835. Analysis shows that the culter leptin N end20-21for restriction enzyme sites, forming a signal peptide.
     7. There are totally1997bp from the first clone isolated from a partial sequence of Culter alburnus in Xingkai Lake CAST. Through the NCBI online Blast analysis software comparison, it is found that the sequences with the published zebrafish and grass carp CAST similarity were90%and83%, indicating that CAST gene is relatively conservative.
     8. Having made the research of expression of different periods of wild and cultivated population of Culter alburnus in Xingkai Lake muscle tissue MYHs, MyoD, Leptin and CAST gene, The research showed that from age2to age6, the expression of wild populations of MYHa was significantly lower than cultured population (P<0.05), while MYHb was significantly higher than cultured population, for it is related with the size of fish. The two effect the characters of meat at the same time. The up-regulated from MyoD gene expression after2years of age, Leptin genes showed down regulation of expression of CAST gene, and a downward trend from age4began to clear. MYHs and MyoD is a major gene controlling muscle development, Leptin gene and body fat metabolism, the only major gene speculated that CAST gene did not affect the meat tenderness formation, is more likely to participate in the regulation of muscle tenderness together with other genes of calpain system.
引文
[1]孙冬,孙晓俊.兴凯湖水文特性[J].东北水利水电,2006,24(2):21-27.
    [2]姜作发,董崇智,战培荣,等.大兴凯湖浮游动物群落结构及生物多样性[J].大连水产学院学报,2003,18(4):292-295.
    [3]柳宝琦.网箱养殖兴凯湖大白鱼试验总结[J].黑龙江水产,2012,4(1):15-18.
    [5]王红卫,高士杰,尹海富.兴凯湖翘嘴鲌的研究进展[J].渔业经济研究,2009,(4):19-22.
    [5]张觉民.黑龙江省鱼类志[M].哈尔滨:黑龙江科学技术出版社,1995.
    [6]朱华平,黄樟翰,谢刚,等.翘嘴红鲌鱼苗耗氧量和窒息点的初步研究[J].水利渔业,2003,4:23-25.
    [7]张觉民.黑龙江省渔业资源[M].哈尔滨:黑龙江朝鲜民族出版社,1985.
    [8]战培荣,赵吉伟,董崇智,等.兴凯湖翘嘴鲌(Culter albarnus)的生长特性[J].海洋与湖沼,2005,36(3):147-151.
    [9]韩英,王昕阳,尹海富.兴凯湖翘嘴红鲌生长式型的研究[J].大连水产学院学报,2005,20(3):218-221.
    [10]赵吉伟,战培荣,刘永,等.兴凯湖翘嘴红鲌渔业生物学研究[J].水产学杂志,2002,2:15-20.
    [11]冯波,张晓光.兴凯湖大白鱼苗种培育试验[J].黑龙江水产,2004,3:12-13.
    [12]尹家胜,夏重志,徐伟,等.兴凯湖翘嘴红鲌种群结构的变化[J].水生生物学报,200428(5):490-494.
    [13]战培荣,赵吉伟,刘永,等.兴凯湖鱼类与捕捞现状调查[J].黑龙江水产,2003,6:15-20.
    [14]杨富亿,吕宪国,娄彦景,等.黑龙江兴凯湖国家级自然保护区的鱼类资源动物学杂志[J].2012,47(6):44-53.
    [15]寻明华,于洪贤,聂文龙,等.中国兴凯湖鱼类资源调查及保护策略研究[J].野生动物杂志,2009,30(1):30-33.
    [16]王伟,陈立侨,顾志敏,等.六个群体翘嘴鲌肌肉生化组成的比较[J].水生生物学学报,2007,31(1):92-99.
    [17]杨虹.兴凯湖翘嘴鲌生物学特性及人工繁殖研究[D].哈尔滨:东北农业大学,2009.
    [18]李池陶,徐伟,王进,等.池塘养殖兴凯湖翘嘴鲌的人工繁殖和胚胎发育观察[J].大连水产学院学报,2008,23(2):88-91.
    [19]尹洪滨,尹家胜,徐伟,等.兴凯湖翘嘴鲌肌肉营养成分分析[J].中国水产科学,2003,10(1):82-84.
    [20]陈清华.兴凯湖四种鲌消化酶活力和肌肉营养成分的季节变化研究[D].上海:上海海洋大学,2011.
    [21]马波,石连玉,尹家胜.兴凯湖翘嘴鲌同工酶的研究[J].水产学杂志,2002,1(2): 45-50.
    [22]伊西庆.中国东部6个大型湖泊翘嘴鲌(Culter alburnus)遗传多样性的线粒体ND2基因序列分析[D].广州:暨南大学,2009.
    [23]HOFMANN. What is quality? Definitions, measurement and evaluation of meat quality[J]. Meat Focus International,1994,3:73-82.
    [24]CHOUBERT G, BLANC J M, VALLEE F. Colour measurement, using the CIELCH colour space, of muscle of rainbowtrout, Oncorhynchus mykiss(Walbaum), fed astaxanthin:effects of family, ploidy, sex, and location of reading[J]. Aquaculture Research,1997,28:15-22.
    [25]柳明,朱晓鸣,雷武,等.不同饲料营养对池塘养殖长吻鮠生长性能和鱼肉品质的影响[J].水生生物学报,2010,34(3):598-610.
    [26]林婉玲,关熔,曾庆孝,等.影响脆肉鲩鱼背肌质构特性的因素[J].华南理工大学学报:自然科学版,2009,37(4):134-137.
    [27]吕进宏,刘华贵,马立保,等.营养对肉鸡肉质影响的研究进展[J].动物学与动物医学2004,21(8):37-39.
    [28]刘正远,袁缨.影响肉质的生物化学和组织学因素[J].饲料工业,2005,26(11):44-46.
    [29]关文静,朱艺峰,陈芝丹.鱼类肌纤维特性与鱼肉品质关系[J].水产科学,2008,27(2):101-104.
    [30]SATO K, YOSHINAKA R, SATO M, et al. Collagen content in the muscle of fishes with their swimming movement and meat texture[J]. Nippon Suisan Gakkaishi,1986,52:1595-1600.
    [31]MINOR L J, PEARSON A M, DAWSON L, et al. Separation and identification of carbonyl and sulfur compounds in the volatile fraction of cooking chicken[J]. Journal of Agricultural and Food Chemistry,1965a,13 (4):298-230.
    [32]MINOR L J. Chicken flavor:the identification of some chemical components and the importance of sulfur compounds in the cooked volatiles fraction[J]. Journal of Food Science.1965b,30 (4):686-696.
    [33]CROSS C K, ZIEGLER P A. Comparison of the volatile fractions from cured and uncured meats[J]. Journal of Food Science.1965,30 (4):610-614.
    [34]莫意平,娄永江,薛长湖.水产品风味研究综述[J].水利渔业,2005,25(1):82-84.
    [35]LOVE R M, ROBERTSON J, SMITH G L, et al. The texture of cod muscle[J]. Texture Studies,1974,5:201-212.
    [36]李池陶,关海红,胡雪松,等.大头鲤、黑龙江鲤、德国镜鲤及其杂种F3肌肉品质的比较[J].水产学报,2008,32(1):45-50.
    [37]欧阳敏,喻晓,陈道印,等.鄱阳湖团头鲂肌肉营养分析[J].江西农业学报,1999,11(2):6-9.
    [38]杨四秀,蒋艾青.斑鳢含肉率及肌肉营养成分的测定[J].水产科学,2008,27(12):662-664.
    [39]黎祖福,付倩倩,张以顺.鞍带石斑鱼肌肉营养成分及氨基酸含量分析[J].南方水产, 2008,4(5):61-64.
    [40]韩小丽,杜劲松,刘立志,等.白斑狗鱼含肉率及其营养价值的分析[J].动物学杂志,2009,44(3):70-75.
    [41]温小波,李伟国,周永平.野生乌鳢、鲶、黄颡鱼和黄鳝的脂类及脂肪酸组成比较[J].湖北农业学院学报,2003,23(3):169-173.
    [42]胡芬,李小定,熊善柏,等.5种淡水鱼肉的质构特性及与营养成分的相关性分析[J].基础研究,2011,32(11):69-73.
    [43]丁玉琴,刘友明,熊善柏.鳃与草鱼肌肉营养成分的比较研究[J].营养学报,2011,33(2):196-198.
    [44]苏胜齐,张海琪,何中央.翘嘴鳜和斑鳜肌肉营养成分及氨基酸组成比较[J].西南农业大学学报,2005,27(6):898-901.
    [45]刘俊利,熊邦喜,吕光俊,等.两种不同营养类型水库鲢、鳙肌肉营养成分的比较[J].水产学报,2011,35(7):1098-1104.
    [46]陈学豪,林利民,洪惠馨.野生与饲养赤点石斑鱼肌肉营养成分的比较研究[J].厦门水产学院学报,1994,16(1):1-4.
    [47]杨兴丽,周晓林,常东洲,等.池养与野生黄颡鱼肌肉营养成分分析[J].水利渔业,2004,24(5):17-18.
    [48]姜作发,刘永,李永发,等.野生、人工养殖哲罗鱼生化成分分析和营养品质评价[J].东北林业大学学报,2005,33(4):34-36.
    [49]马爱军,刘新富,翟毓秀,等.野生及人工养殖半滑舌鳎肌肉营养成分分析研究[J].海洋水产研究,2006,27(2):49-54.
    [50]黄权,孙晓雨,谢从新.野生与养殖花羔红点鲑肌肉营养成分的比较分析[J].华中农业大学学报,2010,31(1):75-78.
    [51]杨培民,赵晓临,夏大明,等.野生与人工养殖鸭绿江斑鳜肌肉营养成分及品质评价[J].水生生态杂志,2010,3(1):142-145.
    [52]李行先,陆清儿,赵芸,等.丁鱼岁不同发育阶段鱼体营养成分和氨基酸组成的比较分析[J].淡水渔业,2005,35(2):23-24.
    [53]徐梅英,陈云仙,吴常文.网箱养殖与野生黄姑鱼肌肉营养成份比较[J].浙江海洋学院学报(自然科学版),2010,29(4):340-345.
    [54]邹礼根,冯晓宇,王宇希,等.杂交鳢(斑鳢♀×乌鳢♂)与乌鳢肌肉品质比较研究[J].上海海洋大学学报,2011,20(2):303-307.
    [55]闫学春,梁利群,曹顶臣,等.转基因鲤与普通鲤的肌肉营养成分比较[J].农业生物技术学报,2005,13(4):528-532.
    [56]SELLERS J R. A myosin family reunion[J]. Journal of Muscle Research & Cell Motility, 1996,17:7-22.
    [57]王镜岩,朱圣庚,徐长法.生物化学[M].第三版,北京:高等教育出版社.2002
    [58]FOTH B J, GOEDECKE M C, SOLDATI D. New insights into myosin evolution and classification [J]. PNAS,2006,103 (10):3681-3686.
    [59]GOODSON H V.DAWSON S C. Multiplying myosins[J].PNAS,2006,103(10):3498-3499.
    [60]KNIGHT A E, MOLLOY J E. Muscle, myosin and single molecules[J]. Essays in Biochemistry,2000,35:43-59.
    [61]赵青春,彭增起.肌球蛋白功能特性的研究进展[J].肉类研究,2002,(1):17-20.
    [62]舒适,刘爱校,刘国琴,等.肌球蛋白研究进展[J].生命的化学,1999,19(2):65-68.
    [63]王元火,姚斌,赵发清.植物肌球蛋白的研究进展[J].江西科学,2001,19(6):124-130.
    [64]张绮琼,刘为民,张发良,等.优质肉鸡肌肉品质的组织学特性研究[J].安徽农业科学,2006,34(11):2426-2427.
    [65]刘志军,董佩佩,贾俊静,等.肌球蛋白重链基因与肉品质的关系[J].畜牧与饲料科学,2009,30(3):24-27.
    [66]KIKUCHI K, MURAMATSU M, HIRAYAMA Y, et al. Characterization of the carp myosin heavy chain multigene family [J]. Gene,228:189-196.
    [67]MURAMATSU-UNO M, KIKUCHI K, SUETAKE H, et al. The complete genomic sequence of the carp fast skeletal myosin heavy chain gene[J]. Gene,2005,349:143-151.
    [68]FUKUSHIMA H, IKEDA D, TAO Y, et al. Myosin heavy chain genes expressed in juvenile and adult silver carp Hypopthalmichthys molitrix:Novel fast-type myosin heavy chain genes of silver carp[J]. Gene,2009,432:102-111.
    [69]BRYSON-RICHARDSON R J, AGGETT D F, CORTES F, et al. Myosin heavy chain expression in zebra fish and slow muscle composition[J]. Developmental Dynamics,2005, 233 (33):1018-1022.
    [70]LIANG C S, OBIYAMA A, HIMIZU A, et al. Fast skeletal muscle myosin heavy chain gene cluster of medaka Oryzias latipes enrolled in temperature adaptation[J]. Physiology Genomics, 2007,29:201-214.
    [71]IKEDA D, CLARK M S, LIANG C S, et al. Genomic structural analysis of the pufferfish (Takifugu rubripes) skeletal myosin heavy chain genes [J]. Marine Biotechnology,2004, 6:462-467.
    [72]IWAMI Y, OJIMA T, INOUE A, et al. Primary structure of myosin heavy chain from fast skeletal muscle of Chum salmon Oncorhynchus keta [J]. Comparative Biochemistry and Physiology b-Biochemistry & Molecular biology,2002,133 (2):257-267.
    [73]符贵红,褚武英,成嘉,等.鳜鱼(S. Keneri)肌球蛋白重链基因cDNA的克隆及其特征分析[J]. 自然科学进展,2008,18(11):1325-1330.
    [74]马俊凯,谭训刚,张培军,等.青岛文昌鱼肌球蛋白重链基因片段的重组表达[J]. 海洋科学,2007,31(6):52-56.
    [75]TAO Y, KOBAYASHI M, LIANG C S, et al. Temperature-dependent expression patterns of grass carp fast skeletal myosin heavy chain genes [J]. Comparative Biochemistry and Physiology b-Biochemistry & Molecular biology,2004,139(4):649-656.
    [76]ENNION S, WILKES D, GAUVRY L, et al. Identification and expression analysis of two developmentally regulated myosin heavy chain gene transcripts in carp (Cyprinus carpio) [J]. Journal of Experimental Biology,1999,202(99):1081-1090.
    [77]WEAVER F E, STAUFFER K A, COUGHLIN D J. Myosin heavy chain expression in the red, white, and ventricular muscle of juvenile stages of rainbow trout[J]. Journal of Experimental Zoology,2001,290 (7):751-758.
    [78]IMAI J, HIRAYAMA Y, KIKUCHI K, et al. cDNA cloning of myosin heavy chain isoforms from carp fast skeletal muscle and their gene expression associated with temperature acclimation[J]. Journal of Experimental Biology,1997,200 (11):27-34.
    [79]HIRAYAMA Y, WATABE S. Structural differences in the cross bridge head of temperature-associated myosin sub fragment-1 isoforms from carp fast skeletal muscle [J]. European Journal of Biochemistry,1997,246 (2):380-387.
    [80]NIHEI Y, KOBIYAMA A, IKEDA D, et al. Molecular cloning and mRNA expression analysis of carp embryonic, slow and cardiac myosin heavy chain isoforms[J]. Journal of Experimental Biology,2006,209:188-198.
    [81]党静,陶妍,王孙勇,等.鲢鱼骨骼肌肌球蛋白重链基因的cDNA克隆与表达[J].水生生物学报,2010,34(1):215-219.
    [82]党喜同,贾弘褆,张蘅.生肌蛋白的功能与调节[J].生理科学进展,1996,27(2):146-148.
    [83]刘丑生,赵兴波,李宁,等.动物肌肉生长发育调控的功能基因研究进展[J].中国畜牧杂志,2003,5(39):48-49.
    [84]YUN K AND WOLD B. Skeletal muscle determination and differentiation story of a core regulatory network and its context[J]. Current Opinion in Cell Biology,1996,8:877-889.
    [85]DAVIS R L, CHENG P F, LASSAR A B, et al. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation[J]. Cell,1990,60 (5):733.
    [86]KONLL A, NEBOLA M, DVORAK J, et al. Detection of a Ddel PCR-RFLP within intron 1 of the porcine MyoD 1 (MYF3) locus [J]. Animal Genetics,1997,28 (4):321.
    [87]田璐,MyoD和DGAT1基因对牛胴体性状影响的分析[D].太原:山西农业大学,2005.
    [88]王琼MyoD、MyoG基因的多态性及其与鸡屠宰性状和肉质性状的相关性研究[D].成都:四川农业大学,2007.
    [89]RAWLS A, VALDEZ M R, ZHANG W, et al. Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice[J]. Development,1998,125 (13): 2349-2358.
    [90]WEATHERLEY AH, GILL H S. The role of muscle in determining growth and size in teleost fish[J]. Cellular and Molecular Life Sciences,1989,9(4):875-878.
    [91]王立新,白俊杰,陈宏.斑马鱼MyoD部分序列的克隆与分析[J].2004,9(1):184-188.
    [92]王立新,白俊杰,叶星.草鱼My5oD cDNA的克隆和序列分析[J].中国农业科学,2005,38(10):2134-2138.
    [93]卢中华,俞菊华,李红霞.奥利亚罗非鱼、尼罗罗非鱼MyoD1和MyoD2基因特征及差 异.中国水产科学,2000,17(5):903-912.
    [94]XU C, WU G, ZOHAR Y, et al. Analysis of myostatin gene structure, expression and function in zebrafish[J]. Journal of Experimental Biology,2003,206:4067-4080.
    [95]TAN X, DU SJ. Differential expression of two MyoD genes in fast and slow muscles of gilthead seabream (Sparus aurata) [J]. Development Genes and Evolution.2002,212(8): 207-217.
    [96]TAN X, HOANG L, DU SJ. Characterization of muscle-regulatory genes, Myf5 and myogenin, from striped bass and promoter analysis of muscle-specific expression[J]. Marine Biotechnology,2002, (NY) 4:537-545.
    [97]COUTELLE O, BLAGDEN CS, HAMPSON R, et al. Hughes SM Hedgehog signaling is required for maintenance of Myf5and MyoD expression and timely terminal differentiation in zebrafish adaxial myogenesis[J]. Developmental Biology,2001,236:136-150.
    [98]OBIYAMA A, NIHE Y, HIRAYAMA Y, et al. Molecular cloning and developmental expression patterns of the MyoD and MEF2 families of muscle transcription factors in the carp[J]. Journal of Experimental Biology,1998,201:2801-2813.
    [99]RESCAN P Y, GAUVRY L, PABOEUF G, et al. Identification of a muscle factor related to MyoD in a fish species[J]. Biochimica Et Biophysica Acta-Gene Structure and Expression, 1994,1218 (2):202-204.
    [100]DELALANDE J M, RESCAN P Y. Differential expression of two nonallelic MyoD genes in developing and adult myotomal musculature of the trout (Oncorhynchus mykiss) [J]. Development Genes and Evolution,1999,209:432-437.
    [101]ZHANG Y Y, PROENCA R, MAFFEI M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature,1994,372 (6505):425-432.
    [102]PELLEYMOUNTER M A, CULLEN MJ, BAKER M B, et al. Effects of the obese gene product on body weight regulation in ob/ob mice [J]. Science,1995,269:540-5431.
    [103]JOHNSON R M, JOHNSON T M, LONDRAVILLE R L. Evidence for Leptin expression in fishes[J]. Journal of Experimental Zoology,2000,286 (7):718-724.
    [104]KUROKAWA T, UJI S, SUZUKI T. Identification of cDNA coding for a homologue to mammalian Leptin from puffer fish, Takifugu rubripes[S]. Peptides,2005,26(5):745-750.
    [105]HUISING M O, GEVEN E J W, KRUISWIJK C P, et al. Increased Leptin expression in Common Carp (Cyprinus carpio) after food intake but not after fasting or feeding to satiation[J]. Endocrinology,2006,147 (12):5786-5797.
    [106]MURASHITA K, UJI S, YAMAMOTO T, et al. Production of recombinant Leptin and its effects on food intake in rainbow trout (Oncorhynchus mykiss) [J]. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology,2008,150(4):377-384.
    [107]FROILAND E K, MURASHITA E H, JORGENSEN, et al. Leptin and ghrelin in anadromous Arctic charr: Cloning and change in expressions during a seasonal feeding cycle[J]. General and Comparative Endocrinology,2010,165:136-143.
    [108]KUROKAWA T, MURASHITA K, SUZUKI T, et al. Genomic characterization and tissue distribution of Leptin receptor and Leptin receptor over-lapping transcript genes in the puffer fish, Takifugu rubripes[J]. General and Comparative Endocrinology,2008,158(1):108-114.
    [109]YU Y, LIANG X F, LI G G, et al. Molecular Cloning and Analysis of Leptin Gene in Grass Carp (Ctenopharyngodon idellus) and Silver Carp (Hypophthalmichthys molitrix) [J]. Zoological Research,2009,30 (5):480-486.
    [110]戴汉川,龙良启,丁光.鲤鱼肥胖基因的分子克隆及在大肠杆菌中的表达[J].动物学报,2005,51(1):95-100.
    [111]唐永凯,菊华,徐跑.吉富罗非鱼Leptin基因的克隆及其表达[J].动物学杂志,2012,47(3):89-94.
    [112]BAKER DM, LARSEN DA, SWANSON P, et al. Long-term peripheral treatment of immature coho salmon (Oncorhynchus kisutch) with human Leptin has no clear physiologic effect. General and Comparative Endocrinology,2000,118:134-138.
    [113]LONDRAVILLE RL, DUVALL CS. Murine Leptin injections increase intracellular fatty acid-binding protein in green sunfish (Lepomis cyanellus) [J]. General and Comparative Endocrinology,2002,129 (1):56-62.
    [114]VOLKOFF H, EYKELBOSH AJ, PETER R E. Role of Leptin in the control of feeding of goldfish (Carassius auratus):interactions with cholecystokinin, neuropeptide Y and orexin A, and modulation by fasting[J]. Brain Research,2003,962(1-2):90-109.
    [115]DE PEDRO N, MARTINEZ-ALVAREZ R, DELGADO M J. Acute and chronic Leptin reduces food intake and bodyweight in goldfish (Carassius auratus) [J]. Journal of Endocrinology,2006,188:513-520.
    [116]HUANG J, NEIL E F. Role of calpain in skeletal muscle protein degradation[J]. Proceedings of The National Academy of Sciences of The United States of America,1998,95: 12100-12105.
    [117]KOOHMARAIE M, M P KENT, S D SHACKELFORD, et al. Meat tenderness and muscle growth:is there any relationship?[J]. Meat Science,2002,62:345-352.
    [118]申晓亮,何永梅,贺晓丽,等.钙蛋白酶系统研究进展[J].畜牧与饲料科学,2012,33(5-6):35-36.
    [119]DELGADO E F, GEESINK G H, MARCHELLO J A, et al. Properties of myofibril-bound calpain activity in longissimus muscle of callipyge and normal sheep[J]. Animal Science, 2001,79 (8):20097-20107.
    [120]KILLEFER J, KOOHMARAIE M. Bovine skeletal muscle analysis, and steady state mRNA expression[J]. Animal Science,1994,72 (3):606-614.
    [121]KOOHMARAIE M. Muscle proteinases and meat aging[J]. Meat Science,1994,36:93-104.
    [122]ROBERTS N, PALMER B, HICKFORD J G, et al. PCR-SSCP in the ovine calpastatin gene[J]. Animal Gene,1996,27:211.
    [123]PALMER BR, ROBERTS N,HICKFORD JGH, et al. Rapid communication:PCR-RFLP for MspI and NcoI in the ovine calpastatin gene[J]. Animal Science,1998,76:1499-1500.
    [124]PALMER B R, SUHY, ROBERTS N, et al. Single nucleotide polymorphisms in an intron of the ovine calpastatin gene[J]. Animal Biotechnology,2000,11:63-70.
    [125]KENDALL TL, THOMPSON V F, GOLL D E. Changes in the calpains and calpastatin during postmortem storage of bovine muscle[J]. Journal of Animal Science,1998,76: 2415-2434.
    [126]MOHAMED SALEM, JIANBO YAO, CAIRD E REXROAD, et al. Characterization of calpastatin gene in fish:Its potential muscle growth and fillet quality[J]. Comparative Biochemistry and Physiology, (Part B),2005,141:488-497.
    [127]孙立彬,孟和,王起山,等.猪2型钙蛋白酶抑制蛋白基因cDNA的克隆序列分析[J].上海交通大学学报,农业科学版,2005,23(3):66-69.
    [128]程丰,赵云焕,易本驰,等.猪CAST基因PCR-RFLPs与肉质相关性的分析[J].河南农业科学,2006,2:103-106.
    [129]STEPHANIE E L, ASHLEY E E. Characterization and Comparative Expression of Zebrafish Calpain System Genes During Early Development[J]. Developmental Dynamics,2008,237: 819-829.
    [130]MASATAKA S, HONGQI L, VALERY F T, et al. Purification and characterization of calpain and calpastatin from rainbow trout, Oncorhynchus mykiss. [J]Omparative Biochemistry and Physiology, Part B,146 (2007):445-455.
    [131]PELLETT PL, YONG VR. Nutritional Evaluation of Protein Foods[J]. Tokyo:The United National University Publishing Company,1980,26-29.
    [132]CAI WQ (Translated). Fisheries Feed[M]. (In Chinese) Beijing:Agriculture Publishing Company.1980,114-115.
    [133]CHRISTIE W. Lipid analysis-isolation, separation, identification and structural analysis of lipids[M]. The Oily Press.2003:205-300
    [134]刘丽,余红心.肖维等鱼肉品质的研究进展[J].内陆水产,2008,8:9-12.
    [135]PERI AGE MJ, AYALA MD. Muscle cellularity and flesh quality of wild and farmed sea bass Dicentrarchus Labrax L. [J]. Aquaculture,2005,249:175-188.
    [136]吴桂苹.肉的颜色变化机理及肉色稳定性因素研究进展[J].肉类工业,2006,6:32-34
    [137]李志琼,杜宗君,范林君. 饲料营养对水产品肉质风味的影响[J].水产科学,2002,21(2):38-41.
    [138]李里特.食品物性学[M].北京:中国农业出版社,2001.
    [139]林婉玲,关熔,曾庆孝,等.彩鲷和普通罗非鱼不同部位营养及质构特性的研究[J].现代食品科技,2011,27(1)16-21.
    [140]BOURNE M C. Texture profile analysis [J]. Food Technology,1978,32:62-66.
    [141]朱志伟,李汴生,阮征,等.脆肉鲩鱼肉与普通鲩鱼鱼肉理化特性比较研究[J].现代食品科技,2007,24(2):109-119.
    [142]戴志远,崔雁娜,王宏海.不同冻藏条件下养殖大黄鱼鱼肉质构变[J].食品发酵与工业.2008,34(8)188-191
    [143]陈伟兴,刘清振,范兆廷.鱼类肉质评价及影响因素研究进展[J].肉类研究.2012,26(10):34-40.
    [144]魏振邦,史建全,孙新,等.6个地区青海湖裸鲤肌肉营养成分分析[J].动物学杂志,2008,43(1):96-101.
    [145]尹洪滨,孙中武,沈希顺,等.山女鳟营养成分分析[J].水生生物报,2004,28(5):578-580.
    [146]张昌吉,刘哲,王世银,等.虹鳟含肉率及肌肉营养成分分析[J].水利渔业,2006,26(4):83-85.
    [147]安生,熊传喜,钱健旺,等.鳜鱼含肉率及鱼肉营养价值的研究[J].华中农业大学学报,1995,14(1):80-84.
    [148]林利民,王秋荣,王志勇,等.不同家系大黄鱼肌肉营养成分的比较[J].中国水产科学,2006,13(2):286-291.
    [149]孟繁伊,黄权,郝凤奇,不同年龄花羔红点鲑肌肉成分和血液指标的比较研究[J].中国水产科学,2009,16(1):113-118.
    [150]周兴华,郑曙明,吴青,等.齐口裂腹鱼肌肉营养成分的分析[J].大连水产学院学报,2005,20(1):20-24.
    [151]戴阳军;刘峥兆;王雪锋,等.野生与养殖鳃鱼肌肉的营养成分比较[J].食品科学,2012,33(17):258-262.
    [152]聂国兴,傅艳茹,张浩,等.乌鳢肌肉营养成分分析[J].淡水渔业,2002,32(2):46-47.
    [153]袁琪.养殖史氏鲟不同部位氨基酸组成[J].氨基酸和生物资源,2006,28(1):25-28.
    [154]青木隆子.六种天然鱼与养殖鱼的成分比较[J].日本水产学会志,1991,57(10):1927-1934.
    [155]陈佳毅,叶文生,郭建林,等.梭鲈、河鲈和加州鲈的肌肉营养成分分析[J].饲料研究,2007(9):52-54.
    [156]马爱军,陈四清,雷霁霖,等.大菱鲆鱼体生化组成及营养价值的初步探讨[J].海洋水产研究,2003,24(1):11-14.
    [157]杭晓敏,唐涌濂,柳向龙.多不饱和脂肪酸的研究进展[J].生物工程进展,2001,21(4):18-21.
    [158]张强,王永利.尖海龙和日本海马脂肪的提取和分析[J].分析化学,1996,24(2):139-143.
    [159]邴旭文,王进波.池养南美蓝对虾与南美白对虾肌肉营养品质的比较[J].水生生物学报,2006,30(4):453-458.
    [160]宋超,庄平,章龙珍,等.野生及人工养殖中华鲟幼鱼肌肉营养成分的比较[J].动物 学报,2007,53(3):502-510.
    [161]罗永康.7种淡水鱼肌肉和内脏脂肪酸组成的分析[J].中国农业大学学报,2001.6(4):108-111.
    [162]范亚苇,邓泽元,张爱芳,等.鄱阳湖野生鱼类脂肪酸含量的比较研究[J].食品科学,2006,27(12):597-600.
    [163]邴旭文.中华倒刺鲃和光倒刺鲃肌肉营养品质的比较[J].大连水产学院学报,2005,20(3):233-237.
    [164]周兴华,向枭,陈建.重口裂腹鱼肌肉营养成分的分析[J].营养学报,2006,28(6):536-537.
    [165]庄平,宋超,章龙珍,等.野生中华鲟成鱼与幼鱼肌肉成分比较[J].营养学报,2010,32(4):385-389.
    [166]NAKAGAWA H. Classification of albumin and globulin in yellow tail plasma [J]. Bull Japan Society Science Fish,1978,44(3):251-257.
    [167]HIRAOKA Y, NAKAGAWA H, MURACHI S, et al. Blood properties of rainbow trout in acute hepatotoxity (sic) by carbon tetrachloride[J]. Bull Japan Society Science Fish,1979, 45 (4):527-532.
    [168]EISENBRG S. High density lipoprotein metabolism[J]. Journal of Lipid Research,1984, 25:1017.
    [169]唐传核,徐建祥,彭志英.脂肪酸营养与功能的最新研究[J].中国油脂,2000,25(6):20-25.
    [170]LUND E D, SULLIVAN C V, PLACE A R. Annual cycle of plasma lipids in captive reared striped bass:effects of environment conditions and reproductive cycle[J]. Fish Physiology Biochemistry,2000,22:263-275.
    [171]KANJANAPRUTHIPONG J. Supplementation of milk replacers containing soy protein with threonine, methionine, and lysine in the diets of calves[J]. Journal of Dairy Science,1998, 81 (11):2912-2915.
    [172]PASCUAL C, SANCHEZ A, ZENTENO E, et al. Biochemical physiological and immunological changes during starvation in juveniles of Litopenaeus vannamei[J]. Aquaculture,2006,251:416-429.
    [173]许品诚,曹萃禾.湖泊围养鱼类血液学指标的初步研究[J].水产学报,1989,13(4):346-352.
    [174]贝念湘,杨红建,李新平,等.额河银卿血液生化及血液流变学参数[J].中国兽医学报,1999,19(1):43-45.
    [175]STICKLAND N C, HANDEL S E. The numbers and types of muscle fibres in large and small breeds of pigs[J]. Journal of Anatomy,1986,147-181.
    [176]吴德,杨风,周国安,等.不同比例梅山猪血缘生长育肥猪肉质及肌纤维组织学特性研究[J].四川农业大学学报,2001,19(3):252-255.
    [177]朱砺,李学伟,李芳琼,等.肌纤维生长发育规律的研究[J].四川农业大学学报,2002,20(1):46-48.
    [178]吴信生,陈国宏,陈宽维,等.中国部分地方鸡种肌肉组织学特点及其肉品质的比较研究[J].江苏农学院学报,1998,19(4):52-58.
    [179]陈宽维,李慧芳,张学余,等.肉鸡肌纤维与肉质关系研究[J].中国畜牧杂志,2002,38(6):6-7.
    [180]岳永生,陈宝磊.四种不同类型鸡肉组织学特性的研究[J].中国畜牧杂志,1996(2):30-32.
    [181]孙竹珑,钟光辉,等.九拢牦牛肌肉组织学特性研究[J].西南民族学院学报:自然科学版,1990,16(3):31-36.
    [182]杨博辉,姚军,王敏强,等.大通牦牛肌肉纤维组织学特性研究[J].中国草食动物,2001,3(5):34-35.
    [183]RIVERO J L, TALMADGER J, EDGERTONVR. Fibre size and metabolic properties of myosin heavy chain-based fibre types in rat skeletal muscle[J]. Journal of Muscle Re-search and Cel Motility,1998,19:733-742.
    [184]KOHN T A, KRITZINGER B. Characteristics of impala (Aepyceros melampus) skeletal muscles[J]. Meat Science,2005,69:277-282.
    [185]关文静,朱艺峰,陈芝丹.鱼类肌纤维特性与鱼肉品质关系[J].水产科学,2008,27(2):101-104.
    [186]赵应安,杨飞云.长×荣杂交猪肌纤维面积生长规律研究四川畜牧兽医[J].2003,30(7):22-23.
    [187]JOHNSTON I A, ALDERSON D, SANDEHAM C, et al. Paterns of muscle growth in early and late maturing populations of Atlantic salmon (Salmo salar L.) [J]. Aquaculture,2000, (189):307-333.
    [188]李文倩,李小勤,冷向军.鳜鱼肌肉品质的初步评价[J].食品工业科技.2010,31(9)114-121
    [189]HURLING R, RODELL J B, HUNT H D. Fibre diameter and fibres texture[J]. Journal of Texture Studies,1996,27 (6):679-685.
    [190]HATAE K, YOSHIMATSU F, MATSUMOTO J J. Role of muscle fibres in contributing firmness of cooked fish[J]. Journal of Food Science,1990,55(3):693-696.
    [191]仇雪梅,李宁,邓学梅,等.影响动物肉质性状主要候选基因的研究进展遗传[J].2002,24(5):571-574.
    [192]张建社,刘臻.鱼类功能基因表达的营养调控[J].长沙大学学报,2005,19(5):31-35.
    [193]PETTE D, STARON R S. Myosin isoform, muscle fiber types, and transitions[J]. Microscopy Research and Technique,2000,50 (6):500-509.
    [194]KARLSSON A H, KLONT R E, FMANDEZ X. Skeletal muscle fibres as factors for pork quality [J]. Livestock Production Science,1999,60:255-269.
    [195]Campion L A, Choi S, Mistry H.L, et al. Myosin heavy chain and parvalbumin expression in swimming and feeding muscles of centrarchid fishes:The molecular basis of the scaling of contractile properties. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2012,6,1-8.
    [196]IRVING M, PIAZZESI G. Motions of myosin heads that drive muscle contraction[J]. News Physiology Science,1997,12:249-254.
    [197]HIRAYAMA Y, SUTOH K, WATABE S. Structure-function relationships of the two surface loops of myosin heavy chain isoforms from thermally acclimated carp[J]. Biochemical and Biophysical Research Communications,2000,269:237-241.
    [198]JOWETT T. Analysis of protein and gene expression[J]. Methods Cell Biology,1999,59: 63-85.
    [199]ZHANG J S, FU G H, CHU W Y, et al. cDN A cloning and expression analysis of the myosin heavy chain (MYH) gene of the mandarin fish Siniperca kneri[5]. Aquaculture Research, 2009,40:412-418.
    [200]呼红梅,王继英,朱荣生.莱芜猪和杜洛克猪肌肉肌球蛋白重链组成对肉质性状的影响[J].中国科学C辑:生命科学,2008,38(1):60-65.
    [201]OVERTURF K, HARDY RW. Myosin expression levels in trout muscle:a new method for monitoring specific growth rates for rainbow trout Oncorhynchus mykiss (Walbaum) on varied planes of nutrition[J]. Aquaculture Research,2001,32:315-322.
    [202]WILKES D, XIE S Q, STICKLAND N C, et al. Temperature and myogenic factor transcript levels during early development determines muscle growth potential in rainbow trout(Oncorhynchus mykiss) and sea bass (Dicentrarchus labrax). The Journal of Experimental Biology,2001,204,2763-2771.
    [203]COUGHLIN DJ, BURDICK J, STAUFFER KE, et al. Rainbow trout display a developmental shift in red muscle kinetics, swimming kinematics and myosin heavy chain isoform[J]. Journal of Fish Biology,2001,58:701-715.
    [204]BUCKINGHAM M. Making muscle in animals[J]. Trends in Genetics,1992,8:144-149.
    [205]TAPSCOTT S, DAVIS RL, THAYER MJ, et al. MyoD1:a nuclear phosphoprotein requiring a myo homology region to convert fibroblasts to myoblasts[J]. Science,1988,242,405-411.
    [206]WEINBERG ES, ALLENDE ML, KELLY CS, et al. Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos[J]. Development,1996,22,271-280.
    [207]SCHWARZ J, CHAKRABORTY T, MARTIN J, et al. The basic region of myogenin cooperates with two transcription activation domains to induce muscle-specific transcription[J], Molecular Biology of The Cell,1992,12:266-275.
    [208]VANDROMME M, CAVADORE JC, BONNIEU A, et al. Two nuclear localization signals present in the basic-helix 1 domains of MyoD promote its active nuclear translocation and can function independently[J]. Proceedings of The National Academy of Sciences of The United States of America,1995,92:4646-4650.
    [209]GERBER A, KLESERT TR, BERGSTROM DA, et al. Two domains of MyoD mediate transcriptional activation of genes in repressive chromatin:a mechanism for lineage determination in myogenesis[J]. Genes & Development,1997,11,436-450.
    [210]LASSAR A, BUSKIN JN, LOCKSHON D, et al. MyoD is a sequence specific DNA binding protein requiring a region of myo homology to bind to the muscle creatine kinase enhancer[J]. Cell,1989,58,823-831.
    [211]WEINTRAUB H, DWARKI VJ, VERMA I, et al. Muscle specific transcriptional activation by MyoD[J]. Genes & Development,1991,5:1377-1386.
    [212]RUDNICKI M, JAENISCH R. The MyoD family of transcription factors and skeletal myogenesis[J]. Biology Essays,1995.17:203-209.
    [213]MEGENEY L, RUDNICKI M A. Determination versus differentiation and the MyoD family of transcription factors[J]. Biochemistry and Cell Biology,1995,73:723-732.
    [214]RUDNICKI M A, SCHNEGELSBERG P N, STEAD R H, et al. MyoD or Myf-5is required for the formation of skeletal muscle[J]. Cell,1993,75:1351-1359.
    [215]SOLNICA K L, STEMPLE D L, MOUNTCASTLE S E, et al. Mutations affecting cell fates and cellular rearrangements during gastrulation in zebrafish [J]. Development,1996,123: 67-80.
    [216]URANO A, SUZUKI M M, ZHANG P, et al. Expression of muscle-related genes and two MyoD genes during amphioxus notochord development [J]. Evolution & Development, 2003,5 (5):447-458.
    [217]GALLOWAY T F, BARDAL T, KVAM S N, et al. Somite formation and expression of MyoD, myogenin and myosin in Atlantic halibut (Hippoglossus hippoglossus L.) embryos incubated at different temperatures:transient asymmetric expression of MyoD [J]. Journal of Experimental Biology,2006,209 (13):2432-2441.
    [218]FERNANDES J M, KINGHORN J R, JOHNSTON I A. Differential regulation of multiple alternatively spliced transcripts of MyoD [J]. Gene,2007,391 (1-2):178-185.
    [219]BRENNAN T J, CHAKRABORTY T, OLSON E N. Mutagenesis of the myogenin basic region identifies an ancient protein motif critical for activation of myogenesis[J]. Proceedings of The National Academy of Sciences of The United States of America,1991,5675-5679.
    [220]KABLAR B, KRASTEL K, TAJBAKHSH S, et al. Myf5 and MyoD activation define independent myogenic compartments during embryonic development[J]. Development Biology,2003,2(58):307-318.
    [221]HUANG J, WEINTRAUB H, KEDES L. Intermolecular regulation of MyoD activation domain conformation and function[J]. Molecular Biology of The Cell,1998,18:5478-5484.
    [222]ZHANG Y Q, TAN X G, ZHANG P J, et al. Characterization of Muscle-Regulatory Gene, MyoD, from Flounder (Paralichthys olivaceus) and Analysis of Its Expression Patterns During Embryogenesis [J]. Marine Biotechnology,2006,8:139-148.
    [223]JOHANSEN K A, OVERTURF K. Quantitative expression analysis of genes affecting muscle growth during development of rainbow trout (Oncorhynchus mykiss) [J]. Marine Biotechnology,2005,7 (6):576-587.
    [224]WATABE S. Myogenic regulatory factors. [J]. Fish Physiology,2001,18,19-41.
    [225]OLDHAM J M, MARTYN J A, SHARMA M, et al. Molecular expression of myostatin and MyoD is greater in double-muscled than normal-muscled cattle fetuses[J]. American Journal of Physiology Regulatory, Integrative and Comparative Physiology,2001,280 (5): 1488-1493.
    [226]FERNANDA L, ROBSON F, MAELI D, et al. Differential expression of myogenic regulatory factor MyoD in pacu skeletal muscle (Piaractus mesopotamicus Holmberg 1887: Serrasalminae, Characidae, Teleostei) during juvenile and adult growth phases[J]. Micron 2008,39:1306-1311.
    [227]Boswell T, Dunn I C, Wilson P W, et al. Identification of a non-mammalian Leptin-like gene: characterization and expression in the tiger salamander(Ambystoma tigrinum)[J]. General and Comparative Endocrinology.2006,146:157-166.
    [228]GORISSEN M, BERNIER N J, NABUURS S B, et al. Two divergent Leptin paralogues in zebrafish (Danio rerio) that originate early in teleostean evolution[J]. Journal of Endocrinology,2009,201 (3):329-339.
    [229]GUAN-GUI LI, XU-FANG LIANG, QIULING XIE, et al. Gene structure, recombinant expression and functional characterization of grass carp Leptin[J]. General and Comparative Endocrinology,2010,166:117-127.
    [230]KUROKAWA T, MURASHITA K. Genomic characterization of multiple Leptin genes and a Leptin receptor gene in the Japanese medaka, Oryzias latipes[J]. General and Comparative Endocrinology,2009,161:229-237.
    [231]KUMAR S, HEDGES SB. A molecular timescale for vertebrate evolution[J]. Nature,1998, 392:917-920.
    [232]TAYLOR JS, BRAASCH I, FRICKEY T, et al. Genome duplication, a trait shared by 22000 species of ray-finned fish[J]. Genome Research,2003,13:382-390.
    [233]HOOUSENECHT K L, PORTTTOCARRRERO C P. Leptin and its receptors:regulators of whole-body energy homeostasis[J]. Domestic Animal Endocrinology,1998,15:457-475.
    [234]IVAR RONNESTAD, TOM OLE NILSEN, KOJI MURASHITA. Leptin and Leptin receptor genes in Atlantic salmon:Cloning, phylogeny, tissue distribution and expression correlated to long-term feeding status[J]. General and Comparative Endocrinology,2010,168 (1): 55-70.
    [235]FRIEDMAN JM, HALAAS JL. Leptin and the regulation of body weight in mammals[J]. Nature,1998,395 (6704):763-770.
    [236]N DE PEDRO, R MARTINEZ-ALVAREZ, M J DELGADO. Acute and chronic Leptin reduces food intake and body weight in goldfish (Carassius auratus) [J]. Journal of Endocrinology,2006,188:513-520.
    [237]H. VOLKOFF, A JOY EYKELBOSH, R ECTOR PETER, Role of Leptin in the control of feeding of goldfish Carassius auratus:interactions with cholecystokinin, neuropeptide Y and orexin A, and modulation by fasting[J]. Brain Research,2003,972:90-109.
    [238]BURGUER AB, COUCE ME, CURRAN GL, et al. Obesity is associated with a decreased Leptin transport across the blood-brain barrier in rats[J]. Diabetes,2000,49:1219-1223.
    [239]GOLL DE, THOMPSON VF, LI H, et al. The calpain system[J]. Physiological Reviews, 2003,83:731-801.
    [240]DOURDIN N, BHATT AK, DUTT P, et al. Reduced cell migration and disruption of the actin cytoskeleton in calpain deficient embryonic fibroblasts[J]. Journal of Biological Chemistry (JBC),2001,276:48382-48388.
    [241]LI G, IYENGAR R. Calpain as an effector of the Gq signaling pathway for inhibition of WNT/β-catenin regulated cell proliferation[J]. Proceedings of The National Academy of Sciences of The United States of America,2002,99:13254-13259.
    [242]GEERT H, GEESINK G H, KOOHMARAIE M. Effect of calpastatin on degradation of myofibrillar proteins by mucalpain under postmortem conditions[J]. Journal of Animal Science,1999,77 (9):2685-2692.
    [243]HIAN M A, MORTON J D, KENT M P. Intermuscular variation in tenderness:Association with the ubiquitous and muscle-specific calpains[J]. Journal of Animal Science,2001,79: 122-132.
    [244]DUTT P, SPRIGGS C N, DAVIES P L, et al. Origins of the difference in Ca2+ requirement for activation of μ-and m-calpain[J]. Biochemical Journal,2002,367:263-269.
    [245]燕凤.绵羊CAPN1. CAST基因mRNA的发育性表达规律及其对肉品质的影响[D].西安:西北农林科技大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700