用户名: 密码: 验证码:
转基因抗虫、耐除草剂低酚棉近等基因系生理特性与蛋白表达差异及抗虫杂交棉生理与产量性状的遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虫害和草害是制约棉花生产的两大重要因素,防治虫害和杂草的用工投入大,而培育抗虫、耐除草剂棉花新品种将有助于进一步简化棉花栽培体系,降低植棉投入,提高棉农收入具有重要意义。低酚棉的诞生使棉花成为“棉、油、粮、饲”四位一体的新型作物,但低酚棉因棉酚和其它萜醛缺乏而易遭虫害。因此,培育转基因抗虫和耐除草剂低酚棉品种对发展低酚棉生产具有重要的现实意义。转基因抗虫杂交棉因兼具抗虫高产优质等特点得到广泛应用,因此加速选育新的转基因抗虫杂交棉也成为热点。基于棉花生长变化和遗传发育,结合生理生化指标评估外源基因导入对低酚棉品系影响以及为选育潜力亲本和杂交组合提供生育期筛选指标。本研究通过分析比较转Bt基因抗虫低酚棉和转1EPsPS-G6基因低酚棉近等基因系在生育、生理代谢上的差异,以期从形态学、生理学及蛋白表达谱方面探讨外源基因导入对低酚棉农艺与生理性状及蛋白表达谱的影响。另外,利用转基因抗虫棉和常规品种(系)进行双列杂交研究杂种F1优势利用潜力,通过多变量条件分析来评估生理生化性状对皮棉产量贡献,寻找影响皮棉产量的关键生理生化指标,以期为抗虫棉的杂种优势利用和新品种培育提供理论依据及早期筛选指标。主要研究结果如下:
     1.转Bt基因低酚棉近等基因系生理生化性状与蛋白表达差异
     以一对低酚棉近等基因系为材料(仅cry1Ac差异),分析比较生育、生理代谢的差异,结果表明,与其受体相比,转Bt低酚品系有较高的株高和有效结铃率,内围铃较多;单株结铃数、单铃重和单株产量较低。与其受体相比,转Bt低酚叶绿素含量和蒸腾速率较低、Chl a/b、初始荧光(Fo)和最大荧光(Fm)较高。转Bt低酚结铃期可溶性蛋白显著高于其受体,但初花期低于其受体;初花期Ca、Mg、Cu、Zn、Mn及Fe,结铃期P和Cu显著高于其受体,但初花期P、K和B,结铃期K.S.Zn及Fe显著低于其受体;结铃期转Bt低酚系膜脂过氧化产物丙二醛(MDA)、初花结铃期超氧化物歧化酶(SOD)均显著低于其受体。蛋白质组分析在转Bt低酚系与其受体之间检测到20个显著差异蛋白点,其中4个上调蛋白点,分别属于信号转导、能量代谢、防御响应;另有16个下调点,可归结为信号转导和蛋白合成代谢。
     2.转基因耐除草剂低酚棉近等基因系生理生化性状与蛋白表达差异
     以一对低酚棉近等基因系为材料(仅EPSPS-G6差异),分析比较光合特性、矿质元素吸收、活性氧代谢及蛋白表达谱差异,结果表明,与其受体相比,转耐除草剂低酚棉转5629结铃期显示高净光合速率和低蒸腾速率,始絮期高气孔导度、胞间CO2浓度及蒸腾速率;结铃期和始絮期叶绿素a、b及a+b含量显著低于其受体。.EPSPS基因导入改变了元素营养吸收:与其受体相比,转5629N、Mg及K含量较低,P、Ca、Fe、K、Cu、Mn及Zn含量较高。结铃期和始絮期可溶性糖含量、盛花结铃期可溶性蛋白含量显著高于其受体,但盛花期可溶性糖和蕾期可溶性蛋白低于其受体;与其受体相比,转5629盛花始絮期SOD和过氧化氢酶(CAT)活性较高、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)活性较低;除盛花期外,其它三个时期转5629MDA含量显著高于其受体;蛋白质表达谱分析结果显示,转5629与其受体之间共检测到11个差异蛋白点,其中7个蛋白点上调、4个下调。转5629显示上调了核酮糖-1,5-二磷酸羧化酶/加氧酶(RuBisCO)大亚基、CP4EPSPS及ATP合成酶,下调了谷氨酸-1-半醛转氨酶-2,1氨基酸变位酶以及锰稳定蛋白。
     3.转Bt抗虫棉与常规棉不完全双列杂交生理生化与产量性状的遗传效应分析
     2010年以6个常规陆地棉品系(P1-6)和3个转基因抗虫棉品系(P7-9)为亲本进行不完全双列杂交设计配置16个组合,分析测定生理生化、农艺与纤维品质性状,以AD模型和条件分析方法进行数据分析,结果表明,苗蕾期和初花期功能叶Chl a和Chl b含量可以考虑用于F1组合选择,盛花始絮期可用选择亲本:苗蕾、初花期和始絮期功能叶C/N可以用于筛选F1组合,盛花期选择亲本指标:初花盛花始絮期功能叶N含量以显性为主,可以用于选择F1组合;P和K含量四个时期均以显性为主,可以用于选择F1组合;抗氧化酶系(SOD、POD、APX及CAT)及MDA含量可考虑用于选择F1组合。盛花期K含量表现正向极显著超亲优势。选择Chl a、苗蕾初花盛花期C/N和N、初花盛花始絮期K加性效应高的亲本有利于获得皮棉产量高的F1杂交组合。单株总铃数、衣分、麦克隆值及纤维长度主要受加性效应控制,可以通过选择纯系来改良。皮棉产量的加性贡献率主要来自衣分,显性贡献率最大的是单铃重。衣分对比强度、麦克隆值及纤维长度的加性贡献率最高,表明选择衣分高的亲本可以提高后代纤维主要品质。亲本1(P1,31)可以作为常规棉亲本来提高后代皮棉产量和纤维品质,亲本8(P8,B7抗)可以作为转Bt基因亲本来提高后代衣分和皮棉产量。16个杂交组合中,皮棉产量正向达显著或极显著显性效应的组合有8个:H18(P1×P8)、H28(F2×P8),H29(P2×P9),H37(P3×P7),H48(P4×P8)、H59(P5×P9)、H67(P6×P7)及H69(P6×P9)。
     4.转Bt抗虫棉与常规棉双列杂交生理生化与产量性状的遗传效应分析
     2011年以4个常规陆地棉品系和5个转基因抗虫棉品系为亲本进行NC Ⅱ设计配置20个组合,遗传分析表明,参试的12个生理生化指标三个时期均以显性效应为主;杂交组合K含量均有显著的平均优势和超亲优势;C/N对皮棉产量在三个时期均有显著的加性贡献率。果枝数、铃数、铃重及皮棉产量主要受加性效应控制,可以通过选择纯系来改良。单株总铃数加性贡献率主要来自外围铃和中下部铃,而显性贡献主要来自于外围铃和中部铃。皮棉产量的加性贡献率主要来自铃数和衣分,显性贡献率主要来茎粗、株高和铃重。衣分对比强度的加性贡献率最大,株高和铃数对麦克隆值的加性贡献率最高,茎粗对纤维长度的加性贡献率最大。P3(慈96-21)可以作为常规棉亲本来提高后代的皮棉产量,P9(黄岗抗)可以作为转Bt基因亲本来提高后代的皮棉产量。20个杂交组合中,皮棉产量正向达显著或极显著显性效应的组合有:H39、H16、H35、H28、H47、H45。
     5.转Bt基因抗虫杂棉与常规棉正反交生理生化与产量性状的遗传效应分析
     常规陆地棉品系(慈-ZJ6,P1)和5个转基因抗虫棉品系(外4、B9抗、E29、太抗、黄岗抗)进行正反交,遗传分析表明,Chl a初花始絮期以加性为主,盛花期以显性为主;Chl b初花以显性为主,盛花始絮以加性为主;Ch1a/b三个时期均以加性为主;N初花盛花以加性为主,始絮期以显性为主;P初花始絮期以显性为主,盛花以加性为主;K初花以显性为主,盛花始絮以加性为主;C/N初花始絮以加性为主,盛花以显性为主。抗氧化酶系和MDA三个时期均以加性为主。F1杂交组合参试12个生理生化指标在三个时期均有不同程度显著的平均优势,但没有正向显著的超亲优势。茎粗、外围铃数、上部铃数、单株铃重、衣分、纤维长度、麦克隆值及纤维比强度主要受加性效应控制,可以通过选择纯系来改良。对于亲本而言,铃数加性方差比率主要来自上部和外围铃。对于杂交组合而言,铃数加性方差比率主要来自外围铃及中下部铃。皮棉产量的加性贡献率主要来果枝数、茎粗、上部铃及衣分。衣分对比强度和麦克隆值的加性贡献率最大。常规棉亲本P1具有衣分、单铃重、纤维长度、比强度极显著加性效应,可以用来改良后代的衣分、单铃重、纤维长度、比强度,P5(太抗)可以作为转Bt基因亲本来提高后代的果枝数和单株总铃数,从而获得正向皮棉产量。P4(E29)可以作为转Bt基因亲本来提高后代的单株总铃数和纤维长度,也获得正向皮棉产量。10个杂交组合中,皮棉产量的正向达显著或极显著显性效应的组合有:H13、H15及H41。正反交组合中,H15和H51茎粗、纤维长度有平均优势,H12和H21有株高、内围铃、衣分平均优势,H13和H31有衣分平均优势,H16和H61有单铃重平均优势,说明常规亲本P1和5个抗虫亲本正反交存在极显著差异,其中以常规亲本P1为母本,抗虫亲本为父本的组合明显高于反交组合,说明转基因抗虫棉正交在农艺产量组分纤维品质性状方面存在细胞质遗传。
Insect and weeds are the two major factors affecting cotton production. It is one of cost-effective methods to breed insect-resistance and herbicide-tolerant cotton cultivars using transgenic methods. The development of glandless cotton makes upland cotton becoming a new economic crop with multi-utilization of fiber, oil, food and feed. However, glandless cotton is more susceptible to pests than normal cultivars due to the absence of gossypol and other terpenoid aldehydes. Therefore, breeding Bt transgenic glandless cotton is benifical and a cost effective approach for its commercial utilization. Transgenic Bt hybrid cotton is widely used with the feature of insect-resistance, high yield and good quality. Based on the change of cotton growth and development, researches are still limited concerning the use of biochemical parameters to assess exogenous genes effects on glandless cotton lines and screen the promising parents and crosses. The present work was carried out by comparing two pairs of near-isogenic lines (NILs) of Bt and non-Bt and EPSPS and non-EPSPS glandless upland cotton in mineral uptake, photosynthetic performance, active oxygen metabolism and protein expression. In addition, diallel crosses using conventional upland cotton lines with transgenic Bt upland cotton lines were conducted to analyze their difference in phenotypic and genetic contribution ratios of biochemical traits to lint yield and the heterosis of yield, yield components and fiber properties and to further screen the promising parents and hybrids among Bt hybrid crosses and their parents lines. The main results are as follows:
     1. Agronomic and biochemical traits and protein expression were compared using a pair of near-isogenic lines (NILs) of glandless upland cotton differing in only by the presence of cryIAc gene (non-Bt variety-Zhong5629vs its Bt-transgenic near-isoline). The results showed that Bt isoline had higher plant height and rate of effective bolls, and more internal bolls than non-Bt isoline, while being lower in yield and number of bolls. Physiological analyses indicated that Bt isoline had lower chlorophyll contents and transpiration rate relative to non-Bt isoline, but higher in Ch1a/b, F0and Fm, and no significant difference in net photosynthetic rate (Pn), intercellular CO2concentration and stomatal conductance, and Fv/Fm. Content of soluble protein in Bt isoline was significantly higher at boll setting stage (BSS) but lower at initial flowering stage (IFS) compared with non-Bt isoline. The concentrations of Ca, Mg, Cu, Zn, Mn, and Fe at IFS, P and Cu at BSS in Bt isoline were significantly higher than those in non-Bt isoline, but reversely P, K and B at IFS, K, S, Zn, and Fe at BSS, respectively. Malonaldehyde (MDA) content at BSS and superoxide dismutase (SOD, EC1.15.1.1) activity at IFS and BSS were lower in Bt-isoline.2-DE analysis of the two NILs detected20differentially expressed protein spots, with4and16being up-and down-regulated in Bt vs. non-Bt isoline, respectively. These proteins were attributed to protein metabolism, defense response, transcription, energy metabolism, and cell structure. Among them, a core-neofusion protein spot as a selectable marker and neomycin/kanamycin resistance was specific expressed in Bt isoline.
     2. Physiological traits and proteomic expression were compared between EPSPS-G6transgenic glyphosate-tolerant glandless upland cotton (GT) and its non-transgenic wild type (non-GT, cv. Zhong5629). GT showed higher net photosynthetic rate at BSS than non-GT, with higher stomatal conductance (gs), intercellular CO2concentration (Ci) and transpiration rate (Tr) at the beginning of boll open stage (BBOS), but lower in Ci at BSS. Contents of Ch1a, Ch1b and Ch1a+b in GT were uniformly significantly less than those in non-GT at BSS and BBOS. Insertion of EPSPS gene had altered uptake of mineral nutrients:GT demonstrated less concentrations in N, Mg and K, but higher in P, Ca, Fe, K, Cu, Mn and Zn compared with non-GT. Contents of soluble sugar at BSS and BBOS and soluble protein at PFS and BSS in GT were significantly higher than non-GT; but GT had lower soluble sugar content at PFS and soluble protein at squaring stage (SS). GT recorded significantly higher activities in superoxide dismutase and catalase, but lower in peroxidase and ascorbate peroxidase compared with non-GT. Proteomic alteration in leaves of GT vs. non-GT was analyzed using2-DE coupled with mass spectrometry. Eleven differentially expressed proteins were identified, of which7and4spots being up-and down-regulated, respectively. GT showed up-regulated expression of RuBisCO large subunit, CP4EPSPS, and ATP synthase, but down-regulated glutamate-1-semialdehyde-2,1-aminomutase and manganese-stabilising protein, respectively.
     3. To examine the genetic contributions of biochemical parameters to lint yield at both antioxidant enzymatic activity and nutrient levels and to determine the major indicator traits for indirect selection on lint yield in Bt hybrid cotton lines, multivariable conditional analysis was conducted using a additive-dominance model. Six conventional upland cotton lines were crossed with3transgenic Bt gene lines using diallel mating design method. Nine breeding lines and derived16F1crosses were grown at the farmland of Cixi cotton research institute in Zhejiang province, China, in2010. Biochemical parameters at different developmental stages were analyzed, agronomic and economic traits were investigated and fiber quality characters were surveyed. Chi a and Chi b at SS and IFS, C/N raton at IFS and BBOS could be used as indicative physiological traits for selecting F1crosses, while Chi a and Chi b at full flowering stage (FFS) and BBOS, C/N raton at FFS for parents lines. N content at IFS, FFS, and BBOS, P and K contents at four stages were mainly affected by dominant effects, which could be used to choose F1crosses. Similarity, Parent's lines have high additive effects in Chi a content, in C/N ratio and N content at SS, IFS and FFS, in K at IFS, FFS and BBOS, their hybrids F1have more lint yield. Bolls per plant, lint percent, micronarie and fiber length were mainly affected by additive effects, which suggested they could be improved by choosing pure lines. Additive effects contribution of lint yield was mainly from lint percent, while dominant effects contribution of lint yield from boll weight. Having high contribution ratio of additive effects to fiber strength, micronarie and fiber length, lint percent in parents could be used as indicative traits for selecting fiber quality of F1crosses. In short, Parent1(31) is an acceptable non-Bt line and parent8(B7kang) is an excellent Bt transgenic cotton with insect-resistance. Among16F1crosses, there are8F1crosses (H18, H28, H29, H37, H48, H59, H67and H69) with positive and significant lint yield.
     4. Four conventional upland cotton lines with five transgenic line using NCII design, and their20F1crosses were grown at the same location above in2011. genetic effects analysis showed that12biochemical parameters at three stages were mainly affected by dominant effects. K content in F1crosses at three stages had significant mean and better parents heterosis. C/N ratio had significant additive contribution ratio to lint yield at three stages. Branches, bolls, boll weight and lint yield were mainly controlled by additive effects, which suggested they could be improving by choosing pure lines. Additive variance contribution ratio of bolls for parents was mainly from external, middle and lower bolls on the plants, while for F1crosses from external and middle bolls. Additive contribution ratio of lint yield was from bolls and lint percent, while dominant contribution ratio from diameter, plant height and boll weight. Lint percent to fiber strength, plant height and bolls to micronarie, diameter to fiber length had largest additive contribution, respectively. In short, Parent3(Ci96-21) is an acceptable non-Bt line and parent9(huanggang kang) is an excellent Bt transgenic cotton with insect-resistance. Among20F1crosses, there are6F1crosses (H39, H16, H35,H28, H47, and H45) with positive and significant lint yield.
     5. Reciprocal crosses between one conventional upland cotton line (Ci-ZJ6) and five transgenic Bt gene lines was made to produce10F1hybrid crosses and all lines planted in2011at the same location above. Genetic analysis showed that Chl a at IFS and BBOS, Chl b at FFS and BBOS, Chl a/b ratio at three stages, N at IFS and FFS, P at FFS, K at FFS and BBOS, C/N ratio at IFS and BBOS, anti-oxidant enzyme systems (SOD, POD, CAT, APX) and MDA, were mainly affected by additive effects. While Chl a at FFS, Chl b at IFS, N at BBOS, P at IFS and BBOS, K at IFS, C/N ratio at FFS, were mainly affected by dominant effects. All12biochemical parameters in F1crosses had significant mean parents heterosis at three stages, but no positive and significant better parents heterosis. Diameter, external bolls, middle bolls, boll weight, lint percent, fiber length, micronaire and fiber strength were mainly affected by additive effects, which suggested those traits could be improved by choosing pure lines. Bolls additive variance ratio for parents was mainly from top and external bolls on the plants, while for F1crosses from central, lower, and external bolls. Additive contribution ratio of lint yield was mainly from branches, diameter, up bolls and lint percent. Lint percent to fiber strength and micronaire had largest additive contribution. Having significant additive effects in lint percent, boll weight, and fiber length and fiber strength. Parent1(Ci-ZJ6) is an acceptable non-Bt line. Parent4(E29) with better performance in bolls, fiber length and positive lint yield, and parent5(Tai kang) with more branches, bolls and positive lint yield, are excellent Bt transgenic cotton with insect-resistance. Among10F1crosses, there are3F1crosses (H13, H15and H41) with positive and significant lint yield. Among reciprocal crosses, H15and H51in diameter and fiber length, H12and H21in plant height, internal bolls and lint percent, H13and H31in lint percent had mean parents heterosis, respectively, which suggested that there were significant differences between conventional parent P1and five transgenic Bt cotton lines. Moreover, the overall performance in the crosses with female parent P1was better than in the crosses with female parents transgenic Bt cotton lines, which confirmed the possible existance of cytoplasmic inheritance in transgenic Bt hybrid lines.
引文
Askew, S. D.& J. W. Wilcut (1999) Cost and weed management with herbicide programs in glyphosate-resistant cotton (Gossypium hirsutum). Weed Technology 13(2):308-313.
    Bah, A. M., H. Sun, F. Chen, J. Zhou, H. Dai, G. Zhang & F. Wu (2010) Comparative proteomic analysis of Typha angustifolia leaf under chromium, cadmium and lead stress. Journal of Hazardous Materials 184(1-3):191-203.
    Bakhsh, A., A. Q. Rao, A. A. Shahid, T. Husnain & S. Riazuddin (2009) Insect resistance and risk assessment studies in advance lines of Bt cotton harboring crylAc and cry2A genes. American-Eurasian Journal of Agricultural & Environmental Science 6(1):1-11.
    Cakmak, I.& H. Marschner (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology 98(4):1222-1227.
    Carpentier, S. C., E. Witters, K. Laukens, P. Deckers, R. Swermen & B. Panis (2005) Preparation of protein extracts from recalcitrant plant tissues:An evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5(10):2497-2507.
    Choudhary, B.& K. Gaur (2010) Bt Cotton in India: A Country Profile:ISAAA Series of Biotech Crop Profiles. ISAAA:Ithaca, NY.
    Culpepper, A. S.& A. C. York (1999) Weed management and net returns with transgenic, herbicide-resistant, and nontransgenic cotton (Gossypium hirsutum). Weed Technology 13(2):411-420.
    Dobbs, J. H.& S. R. Oakley (2000) CPCSD Acala GLS:a glandless cotton variety for the San Joaquin Valley. San Antonio, USA,4-8
    Dong, H. Z., W. J. Li, W. Tang & D. M. Zhang (2004) Development of hybrid Bt cotton in China-A successful integration of transgenic technology and conventional techniques. Current Science 86(6): 778-782.
    Dong, H. Z., W. J. Li, W. Tang, Z. H. Li & D. M. Zhang (2007) Heterosis in yield, endotoxin expression and some physiological parameters in Bt transgenic cotton. Plant Breeding 126(2):169-175.
    Dong, J., F. Wu, Z. Jin & Y. Huang (2006) Heterosis for yield and some physiological traits in hybrid cotton Cikangza 1. Euphytica 151:71-77.
    Enami, I., A. Okumura, R. Nagao, T. Suzuki, M. Iwai & J. R. Shen (2008) Structures and functions of the extrinsic proteins of photosystem Ⅱ from different species. Photosynthesis Research 98(1-3):349-363.
    Foster, D. J., L. M. Verhalen & D. S. Murray (1994) Prometryn Tolerance in glanded versus glandless isolines of cotton. Crop Science 34(1):67-71.
    Ibrahim, R. I. H., J. Azuma & M. Sakamoto (2006) Complete Nucleotide Sequence of the Cotton (Gossypium barbadense L.) Chloroplast genome with a comparative analysis of sequences among 9 dicot plants. Genes & Genetic Systems 81(5):311-321.
    Ichikawa, K., C. Miyake, M. Iwano, M. Sekine, A. Shinmyo & K. Kato (2008) Ribulose 1,5-bisphosphate carboxylase/oxygenase large subunit translation is regulated in a small subunit-independent manner in the expanded leaves of tobacco. Plant and Cell Physiology 49(2):214-225.
    Ihrig, R. A.& W. Mullins (2001) A Case of subthreshold advantages of Bollgard cotton C.P. Dugger, D.A. Richter (Eds.), Proc. Belt. Cot. Prod. Conf., Anaheim, CA,9-13 January, National Cotton Council, Memphis, TN (CD-Rom computer file).
    Hag, L. L., A. M. Kumar & D. Soll (1994) Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in arabidopsis. Plant Cell 6(2):265-275.
    Kerby, T. A.& D. R. Buxton (1981) Competition between adjacent fruiting forms in cotton. Agronomy Journal 73(5):867-871.
    Li, Z., X. Wang, Y. Zhang, G. Zhang, L. Wu, J. Chi & Z. Ma (2008) Assessment of genetic diversity in glandless cotton germplasm resources by using agronomic traits and molecular markers:Higher Education Press, co-published with Springer-Verlag GmbH.245-252.
    Liu, D. M., Z. X. Wu, C. L. Liu, C. W. Li & F. G. Li (2007) Variations of main agronomic traits in transgenenic cotton (Gossypium hirsutum L.) lines transformed by pollen tube pathway method. Cotton Science 19(6):450-454.
    Mac Griff, J., M. Hudgins, S. M. May & L. M. Brown (2003) Evaluation of transgenic versus conventional cotton varieties (1998-2002).
    Main, C. L., M. A. Jones & E. C. Murdock (2007) Weed response and tolerance of enhanced glyphosate-resistant cotton to glyphosate. Weed Science 11(2):104-109.
    McAuslane, H. J. & H. T. Alborn (1998) Systemic induction of allelochemicals in glanded and glandless isogenic cotton by Spodoptera exigua feeding. Journal of Chemical Ecology,24(2):399-416.
    Meiri, D.& A. Breiman (2009) Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs. The Plant Journal 59(3): 387-399.
    Miyao, M.& N. Murata (1984) Role of the 33-kDa polypeptide in preserving mn in the photosynthetic oxygen-evolution system and its replacement by chloride-ions. FEBS Letters 170(2):350-354.
    Nida, D. L., S. Patzer, P. Harvey, R. Stipanovic, R. Wood & R. L. Fuchs (1996) Glyphosate-tolerant cotton: the composition of the cottonseed is equivalent to that of conventional cottonseed. Journal of Agricultural and Food Chemistry,44(7):1967-1974.
    Ohyanagi, H., T. Tanaka, H. Sakai, Y. Shigemoto, K. Yamaguchi, T. Habara, Y. Fujii, B. A. Antonio, Y. Nagamura, T. Imanishi, K. Ikeo, T. Itoh, T. Gojobori & T. Sasaki (2006) The Rice Annotation Project Database (RAP-DB):hub for Oryza sativa ssp. japonica genome information. Nucleic Acids Research 4(suppl 1):741-744.
    Palma, J. M., A. Jimenez, L. M. Sandalio, F. J. Corpas, M. Lundqvist, M. Gomez, F. Sevilla & L. A. Del Rio (2006) Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants. Journal of Experimental Botany 57(8):1747-1758.
    Perlak, F. J., R. W. Deaton, T. A. Armstrong, R. L. Fuchs, S. R. Sims, J. T. Greenplate & D. A. Fischhoff (1990) Insect resistant cotton plants. Nature Biotechnology,1990,8(10):939-943.
    Pray, C. E., J. Huang, R. Hu & S. Rozelle (2002) Five years of Bt cotton in China-the benefits continue. The Plant Journal 31(4):423-430.
    Ralston, L., S. Subramanian, M. Matsuno & O. Yu (2005) Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Plant Physiology 137(4):1375-1388.
    Rathore, K. S., S. Sundaram, G. Sunilkumar, L. M. Campbell, L. Puckhaber, S. Marcel, S. R. Palle, R. D. Stipanovic & T. C. Wedegaertner (2012) Ultra-low gossypol cottonseed:generational stability of the seed-specific, RNAi-mediated phenotype and resumption of terpenoid profile following seed germination. Plant Biotechnology Journal,10(2):174-183.
    Sadras, V. O. (1996) Cotton responses to simulated insect damage:Radiation-use efficiency, canopy architecture and leaf nitrogen content as affected by loss of reproductive organs. Field Crops Research 48(2-3):199-208.
    Schwarte, S.& H. Bauwe (2007) Identification of the photorespiratory 2-phosphoglycolate phosphatase, PGLP1, in Arabidopsis. Plant Physiology 144(3):1580-1586.
    Serrano, L., K. M. Halanych & R. P. Henry (2007) Salinity-stimulated changes in expression and activity of two carbonic anhydrase isoforms in the blue crab Callinectes sapidus. Journal of Experimental Biology, 210(13):2320-2332.
    Shevchenko, A., M. Wilm, O. Vorm & M. Mann (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Analytical Chemistry 68(5):850-858.
    Shi, C. H., J. G. Wu & P. Wu (2005) Genetic analysis of developmental behavior for amylose content in filling process of rice. Journal of the Science of Food and Agriculture 85(5):791-796.
    Song, X. S., W. H. Hu, W. H. Mao, J. O. Ogweno, Y. H. Zhou & J. Q. Yu (2005) Response of ascorbate peroxidase isoenzymes and ascorbate regeneration system to abiotic stresses in Cucumis sativus L. Plant Physiology Biochemistry 43(12):1082-1088.
    Stewart, S. D., M. B. Layton, M. R. Williams, D. Ingram & W. Maily (2001) Response of cotton to prebloom square loss. Journal of Economic Entomology 94(2):388-396.
    Udayasoorian, C.& C. Prabakaran (2010) Effect of fertigation on leaf proline, soluble protein and enzymatic activity of banana. Electronic Journal of Environmental, Agricultural and Food Chemistry 9(8):1404-1414.
    Wilcut, J. W., H. D. Coble, A. C. York & D. W. Monks (1996) The niche for herbicideresistant crops in U. S. agriculture. In Herbicide-Resistant Crops:Agricultural, Environmental, Econo Regulatory altory, and Technical Aspects. S. O. Duke:CRC Press, Inc.
    Wilkins, T. A., K. Rajasekaran & D. M. Anderson (2000) Cotton biotechnology. Critical Reviews in Plant Sciences 19(6):511-550.
    Wright. P. (1999) Premature senescence of cotton (Gossypium hirsutum L.)-Predominantly a potassium disorder caused by an imbalance of source and sink. Plant and Soil 211:231-239.
    Xiao, B. G., J. Zhu, X. P. Lu, Y. F. Bai & Y. P. Li (2007) Analysis on genetic contribution of agronomic traits to total sugar in flue-cured tobacco (Nicotiana tabacum L.). Field Crops Research 102(2):98-103.
    Yang, Y., S. Bian, Y. Yao & J. Liu (2008) Comparative proteomic analysis provides new insights into the fiber elongating process in cotton. Journal of Proteome Research 7(11):4623-4637.
    Ye, Z. H., Y. J. Mei, K. Q. Zou, X. S.Fu & L. S. Jiang (2008) Genetic dissection of net effects between yield and its components in sea island cotton (Gossypium barbadense L.). Agricultural Sciences in China 7(9):1052-1060.
    Yuan, S., M. Yang & Y. Zhao (2012) A new flavonol glycoside from glandless cotton seeds. Acta Pharmaceutica Sinica B,2(1):42-45.
    Zhang, Z., X. Tian, L. Duan, B. Wang, Z. He & Z. Li (2007) Differential responses of conventional and Bt-transgenic cotton to potassium deficiency. Journal of Plant Nutrition 30(5):659-670.
    Zhu, J.& B. S. Weir (1996) Mixed model approaches for diallel analysis based on a bio-model. Genetic Research 68(3):233-240.
    Zhu, J. (1995) Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141(4):1633-1639.
    Zhu, S. J., L. Li, J. H. Chen, Q. L. He, X. X. Fang, C. Y. Ye, S. F. Yan, Z. R. Huang & L. Mei (2011) Advance in research and utilization of cotton biotechnology in China. Plant Omics,4(6SI):329-338.
    鲍士旦(2008)土壤农化分析,北京:中国农业出版社.
    陈德华,陈源,吴云康(2005)转基因抗虫棉的生育类型及配套栽培技术,中国棉花学会2005年年会暨青年棉花学术研讨会论文汇编,281-283.
    陈冠文(2005)超高产棉田产量结构与棉铃空间分布特征,中国棉花,2005(S1).
    陈旭升(2006)抗除草剂棉花研究进展,江西农业学报,2006,18(1):94-98.
    陈旭升,狄佳春,肖松华,许乃银,刘剑光,殷剑美,吴巧娟(2007)双抗虫亲本杂交棉F2代的抗虫性及经济性状分析,江苏农业科学,(5):47-49.
    陈旭升,狄佳春,许乃银,刘剑光,肖松华(2004)双价转基因抗虫低酚棉的抗病虫特性研究,江西农业学报,16(2):20-24.
    陈于和,秦素平,张志雯(2009)转Bt抗虫棉与常规棉品种间配合力分析及杂种优势研究,棉花学报,21(1):77-80.
    董合忠,李维江,唐薇,张冬梅,李振怀,牛曰华(2005)不同基因型抗虫棉的光合生产与叶源特征,棉花学报,17(6):328-333.
    董合忠,唐薇,李振怀,张冬梅,李维江(2005)棉花缺钾引起的形态和生理异常,西北植物学报,25(3):615-624.
    范爱华(2011)2010年转基因棉花新品种试验,安徽农学通报,17(3):86,107.
    范秀华(2008)2006年浙江余姚棉花品种对比试验初报,安徽农学通报,14(4):21-22.
    韩秋成,张月辰,李存东,孙红春,刘连涛(2008)耕作方式对棉花不同部位果枝叶衰老生理特性的影响,棉花学报,20(1):29-33.
    韩祥铭,刘英欣(2002)陆地棉产量性状的遗传分析,作物学报,28(4):536-553.
    胡新燕,李卫华,丁震乾,王阶祥,杨峰(2002)转基因抗虫杂交棉F2代在生产上的应用前景,江苏农业科学,(1):23-25.
    纪家华,李红芹,王恩德,李朝晖,张循浩,韩广津(2005)转基因抗虫棉与陆地棉种质间的杂种优势和配合力分析,种子,24(11):28-33.
    纪家华,王恩德,李朝晖,张循浩,李洪琴,韩广津(2002)陆地棉优异种质间的杂种优势和配合力分析,棉花学报,14(2):104-107.
    江本利,产焰坤,杨可胜,郑曙峰(2004)抗虫杂交棉F2代杂种优势利用初探,安徽农业科学,32(5):861-862.
    李合生(2000)植物生理生化实验原理和技术,北京:高等教育出版社.
    李俊文,刘爱英,石玉真,龚举武,王涛,商海红,巩万奎,袁有禄(2010)转基因抗虫陆地棉与优质品系杂交铃重、衣分的遗传及其F1杂种优势分析,棉花学报,22(2):163-168.
    李伶俐,房卫平,谢德意,马宗斌,杜远仿,张东林(2007)不同熟性棉花品种叶片衰老特性研究,棉花学报,19(4):279-285.
    李维江,唐薇,李振怀,张冬梅,董合忠(2005)抗虫杂交棉的高产理论与栽培技术,山东农业科学,(3):21-24.
    李亚兵,许红霞,张立桢,苗玉方,杨兆生,王俊娟(2002)不同类型棉花品种根系空间生长规律的研究,华北农学报,17(1):109-113.
    李增书,赵丽芬(2007)开展优质特用低酚棉杂种优势利用研究的意义及可行性分析,安徽农业科学,35(15):4458-4459.
    李振怀,李维江,唐薇,董合忠,张冬梅,张晓洁,王胜利(2005)不同抗虫棉基因型的生长发育和产量表现,棉花学报,17(3):155-159.
    刘定富,刘立清(2011)中国棉花品种和种子市场现状分析,中国种业,(6):11-14.
    刘海荷,李瑞莲,陈金湘(2006)Bt抗虫杂交棉叶片营养元素含量变化及其与产量的关系,生态学报,26(8):2510-2515.
    刘海洋,武刚,努尔孜亚,杨森(2010)不同棉花品种早衰及红叶发生情况调查,新疆农业科学,47(6):1208-1212.
    刘连涛,孙红春,张永江,李存东(2011)不同氮营养水平对转基因棉花叶片衰老生理特征及微量元素含量的影响,河北农业科学,15(7):90.
    刘芦苇,祝水金(2007)转基因抗虫棉产量性状的遗传效应及其杂种优势分析,棉花学报,(1):33-37.
    马小艳,马艳,彭军,奚建平,马亚杰,李希风(2010)我国棉田杂草研究现状与发展趋势,棉花学报,22(4):372-380.
    马宗斌,房卫平,谢德意,李伶俐,朱伟(2008)氮肥基追比对抗虫杂交棉叶片衰老和产量的影响,西 北植物学报,28(10):2062-2066.
    毛树春(2002)我国杂交棉栽培技术研究进展:安徽省农业科学院棉花研究所汇编.
    毛树春(2009)中国棉花景气报告,北京:中国农业出版社.
    毛树春(2010)中国棉花景气报告,北京:中国农业出版社.
    毛树春,冯璐(2012)中国农业科学院2011年全国棉花种植品种监测报告——播种品种(系)567个,数量基本持平,中国棉麻流通经济,(1).
    毛树春,韩迎春,宋美珍,张朝军,范正义(2001)中棉所29栽培技术及其生理特性研究,棉花学报,13(2):82-86.
    美国农业部经济研究服务网站,1ittp://www.ers.usda.gov/Data/BiotechCrops/ExtentofAdoptionTable2.htm.
    孟艳艳(2006)高优势抗虫杂交棉新品种的选育及其杂种优势利用研究,作物遗传育种,华中农业大学硕士学位论文.
    孟艳艳,范术丽,宋美珍,庞朝友,喻树迅(2011)NO对生长发育中棉花叶片NO含量及其对抗氧化物酶的影响,作物学报,37(10):1828-1836.
    钱大顺,陈旭升,张香桂,狄佳春,许乃银(2000)棉花杂种优势生理生化研究进展,棉花学报,21(1):45-48.
    秦利,沈晓佳,陈进红,徐海明,祝水金(2009)转基因抗虫棉种子品质性状的遗传效应及相关性分析,棉花学报,21(6):442-447.
    阮海华,沈文飚,叶茂炳,徐朗莱(2001)一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应,科学通报,46(23):1993-1997.
    邵新胜,张鲜芳,黄云虹,侯保国,潘田雨,陈宾(2010)国产抗虫棉产量形成特征研究,山西农业科学,38(1):85-87,102.
    沈晓佳,孙玉强,刘芦苇,祝水金(2009)转基因抗虫棉纤维品质性状的遗传分析,棉花学报,21(3):163-167.
    未美珍,喻树迅,范术丽,原日红,黄祯茂(2005)短季棉早熟不早衰生化性状的遗传分析,西北植物学报,25(5):903-910.
    眭书祥(2010)石家庄市农林科学研究院转基因抗虫棉育种进展及成果分析,河北农业科学,14(3):54-56.
    孙彩霞,齐华,孙加强,张丽莉,缪璐(2007)转基因棉花苗期光合特性的研究,作物学报,33(3):469-475.
    孙锋(2009)一氧化氮和亚甲基蓝对盐胁迫抗虫棉根系的抗氧化能力的影响,棉花学报,21(4):313-318.
    孙君灵,杜雄明,周忠丽,潘兆娥,庞保印(2003)转基因抗虫棉sGK9708与不同类型品种杂种的遗传及优势分析,棉花学报,15(6):323-327.
    汤飞宇,程锦,黄文新,莫旺成,肖文俊(2008)高品质陆地棉与Bt抗虫棉杂交纤维品质性状的遗传及优势分析,江西农业大学学报,30(2):203-206,214.
    唐文武,黄英金,吴秀兰(2008)优异纤维品质陆地棉品种与转基因抗虫棉品种的配合力分析,安徽农 业科学,36(29):12647-12649.
    唐文武,肖文俊,黄英金,吴秀兰(2006)优异纤维品质陆地棉和转基因抗虫棉的杂种优势和亲子相关性,棉花学报,18(2):74-78.
    腾祥增,陶志柱,崔永峰,于旭东,管利军(2004)棉花杂交抗虫棉F1、F2生产利用的研究,新疆农业科学,41(2):83-85.
    田晓莉,杨培珠,王保民,段留生,李召虎,何钟佩(2003)转Bt基因抗虫棉源器官的建成及其功能,棉花学报,15(2):91-96.
    汪若海,李秀兰(2000)我国转基因抗虫棉应用现状及建议,生物技术通报,(5):1-6.
    王洪飞,王乃元,李毓,梁康迳,仇秀丽,周卫营(2010)新质源(CMS-FA)杂交稻产量相关性状的遗传效应与杂种优势分析,43(2):230-239.
    王武,张献龙,孙济中,聂以春(2002)转基因抗虫组合F2代群体农艺性状变异及其利用价值评估,棉花学报,14(1):8-12.
    王永慧,杨朝华,张祥,张丽,王书红,王进友,陈德华(2008)转Bt基因抗虫棉叶片光合生产特征的探讨,棉花学报,20(2):128-132.
    王兆晓,闫芳教,崔瑞敏,耿军义,张香云(2002)转Bt基因棉杂交种一、二代产量及主要农艺性状研究,中国棉花,29(8):20-22.
    王志伟,胡根海,林丽婷,王清连(2010)外源抗虫基因对杂交棉正反交的影响,湖北农业科学,49(5):1048-1049.
    王志伟,王清连(2009)转基因抗虫杂交棉的遗传效应分析,贵州农业科学,37(12):21-24.
    王志伟,王清连(2010)外源抗虫基因对棉花杂种优势的影响,贵州农业科学,38(1):7-10.
    王宗文(2011)国内外抗除草剂棉花研究应用现状,山东农业科学,(1):81-85.
    吴立强,庞民好,李文芹,马峙英,李建良(2008)转基因抗虫无色素腺体棉花营养价值研究,河北农业大学学报,30(2):19-21.
    吴征彬,陈鹏,杨业华,陈全求(2004)转基因抗虫棉对棉花纤维品质的影响,农业生物技术学报,12(5):509-514.
    夏敬源(1993)棉铃虫抗药性现状及治理对策,棉花学报,(2):1-6.
    夏志明,刘生荣,王增信(2009)转基因抗虫棉产量形成特征,西北农业学报,18(6):143-146.
    肖松华,吴巧娟,刘剑光,君赵,陈旭升,狄佳春,马晓杰,许乃银(2012)显性低酚棉新品系种仁营养品质与利用评价,棉花学报,24(2):127-132.
    邢朝柱,靖深蓉,郭立平,袁有禄,王海林(2000)转Bt基因棉杂种优势及性状配合力研究,棉花学报,21(1):6-11.
    邢朝柱,喻树迅,郭立平,叶子弘,王海林,苗成朵,赵云雷(2007)不同生态环境下陆地棉转基因抗虫杂交棉遗传效应及杂种优势分析,中国农业科学,40(5):1056-1063.
    徐立华,李国锋,何循宏,杨德银,陈祥龙(2002)转Bt基因抗虫棉"33B”的源库特征,江苏农业学报,18(4):208-212.
    许长成,赵世杰,邹琦,程炳嵩(1993)植物膜脂过氧化水平硫代巴比妥酸测定法中的干扰因素,植物 生理学通讯,(5):361-363.
    杨伯祥,王治斌(2005)转基因抗虫杂交棉杂种优势研究,江西棉花,27(6):15-18.
    杨青华,王俊振(2001)棉花异常生育诊断与调控Ⅰ.棉花早衰及其预防,河南农业科学,(8):16-17.
    杨铁钢,黄树梅(1999)棉株载铃量对其主要性育性状的影响,华北农学报,14(3):65-70.
    喻树迅,宋美珍,范术丽(2007)我国短季棉遗传育种研究进展,棉花学报,19(5):331-336.
    翟雷霞,米换房,李继军,李文蕾,权月伟,唐光雷(2011)抗虫低酚棉新品种邯无198的选育及栽培要点,中国棉花,38(1):31.
    张安红,吴家和,罗晓丽,肖娟丽,石跃进(2005)转双抗虫棉纯合系的杂种优势及其产量性状的配合力,华北农学报,20(5):21-24.
    张冬梅,董合忠,李维江,辛承松,唐薇,李振怀,罗振(2008)山东抗虫棉栽培技术体系,山东农业科学,(6):96-99.
    张冬梅,李振怀,唐薇,李维江,董合忠(2005)抗虫棉品种间杂交组合F1和F2的产量比较,山东农业科学,(2):22-24.
    张宪政(1992)作物生理研究法:农业出版社.
    张香桂,周宝良,陈松,张震林(2004)抗虫棉与常规棉主要农艺及经济性状的比较研究,中国棉花,31(5):14-16.
    张祥,陈德华,王进友,夏文省,陈源,顾万荣,吴云康(2006)移栽Bt棉的生长发育及其碳氮代谢研究,棉花学报,18(1):37-42.
    张永山,吕友军,郭红祥(2004)外源抗虫基因对棉花杂种优势的影响,作物学报,30(3):215-220.
    张正圣,李先碧,刘大军,肖月华,罗明,黄顺礼,张凤鑫(2002)陆地棉高强纤维品系和Bt基因抗虫棉的配合力与杂种优势研究,中国农业科学,35(12):1450-1455.
    赵海祯,梁哲军,齐宏立,王玉香,聂安全(2002)转基因抗虫棉生物学特性研究,中国棉花,29(10):10-11.
    郑家焕,戴玉淑,王建波(2000)棉花早衰的表现及防治途径,中国棉花,27(3):40-41.
    朱军(1993)作物杂种后代基因型值和杂种优势的预测方法,生物数学学报(8):32-44.
    朱军(1997)遗传模型分析方法:中国农业出版社.
    朱军,季道藩,许馥华(1993)作物品种间杂种优势遗传分析的新方法,遗传学报,20(3):262-271.
    朱四元,陈金湘(2005)棉酚腺体的遗传分析及低酚棉分子育种研究进展,中国农学通报,21(9):57-60.
    朱四元,陈金湘(2006)低酚棉育种研究进展,江西农业学报,18(4):18-23,27.
    祝水金,汪静儿,俞志华,季道藩(2003)棉花抗草甘膦突变体筛选及其在杂种优势利用中的应用,棉花学报,15(4):227-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700