用户名: 密码: 验证码:
宁夏引黄灌区不同类型农田氮素累积与淋洗特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宁夏引黄灌区农田集约化程度高,过量施肥造成农业面源污染严重。该区域农田地表径流引起农业面源污染的研究已有很多,而氮素淋洗损失也是农业面源污染的重要途径,农田生态系统中氮素累积与淋洗特征的研究尚未引起关注。为了弄清宁夏引黄灌区不同类型农田土壤氮素累积与淋洗规律及其对地下水环境的影响特征,2008-2011年分别选择设施菜田和水旱轮作两种典型利用类型农田,布置了三种试验。采用农田定位采样法,在8个点位上观测了设施菜田和水旱轮作农田0~150cm土壤氮素累积与淋洗动态及其对地下水的影响特征。在设施菜田上布置了5种肥料处理试验,利用田间原位淋溶水采集器法,对0~90cm土体氮素淋失量进行了测定。利用田间定位试验,在水旱轮作农田中,研究了5种肥料处理对土壤无机氮累积与氮素平衡的影响。取得的主要结论如下:
     不同类型农田氮素累积与淋洗动态观测发现,设施菜田土壤剖面溶解性氮素含量都显著高于水旱轮作农田。设施菜田土壤剖面的溶解性总氮、溶解性有机氮和硝态氮平均含量分别是水旱轮作农田的1.5~5.6、1.6~9.8和1.5~3.4倍,设施菜田氮素淋洗风险较高。
     不同类型农田土壤氮素累积量表明:同一类型农田0~100cm土体主要形态溶解性氮素累积量在不同时期均无显著差异,但同一类型农田不同田块间溶解性氮素累积存在显著差异。设施菜田不同田块溶解性总氮、硝态氮和溶解性有机氮累积分别是水旱轮作农田的1.6~4.5、1.4~4.1和1.9~6.1倍,设施菜田主要形态溶解性氮素累积都显著高于水旱轮作农田。
     不同类型农田地下水埋深和氮素含量观测结果显示,设施菜田和水旱轮作农田地下水埋深变幅分别为130~230和86~240cm。设施菜田地下水中硝态氮和溶解性有机氮含量分别达11.85~46.12和0.64~5.89mg/L,水旱轮作农田分别为0.12~4.97和0.03~1.00mg/L。硝态氮和溶解性有机氮都是地下水污染的主要来源,设施菜田氮素淋失易造成地下水硝态氮含量超过10mg/L。
     设施番茄-黄瓜轮作体系氮素淋失定量研究表明,相对于不施肥和单施有机肥处理,常规施肥、减量优化化肥和优化化肥+调节土壤C/N比处理都能显著提高氮素淋失量。番茄、黄瓜和夏休闲期,增施肥处理下当季总氮、硝态氮和溶解性有机氮淋失量分别为56.1~128.8、41.7~104.6和6.7~46.1kg/hm~2,显著高于不施肥和单施有机肥处理的10.2~99.3、7.7~75.4和1.0~25.6kg/hm~2。减量优化化肥较常规施肥处理可使总氮、硝态氮和溶解性有机氮淋失量分别降低1.5%~32.6%、1.6%~35.9%和6.9%~41.4%,而通过调节土壤C/N比相对于减量优化化肥处理又可使总氮和溶解性有机氮淋失分别降低1.3%~11.0%和5.0%~27.0%。减量优化化肥或施用牛粪来调节土壤C/N比都可以有效地降低氮素淋失。
     设施菜田氮素淋失规律与影响因素分析发现,氮素淋失动态与淋溶水产生动态规律基本一致,淋洗高峰主要出现在黄瓜移栽后畦灌和夏休闲期大水漫灌。氮素淋失量与施氮量及灌水量都呈正相关关系。氮素淋失形态以硝态氮为主(57.3%~92.0%),其次是溶解性有机氮(7.8%~42.5%),铵态氮仅为1%左右。
     设施菜田土壤氮素累积与氮素表观平衡表明,施肥显著提高了土壤剖面硝态氮累积量,0~100cm土体硝态氮累积总量与累积施氮量呈显著正相关关系。设施番茄-黄瓜轮作下,氮素淋失量占表观损失氮的比例仅为13.4%~19.5%。减量优化化肥或调节土壤C/N比处理可有效地减少土壤氮素的盈余,降低氮素表观损失。
     水旱轮作体系土壤无机氮累积与氮素表观平衡表明,水旱交替易造成旱作农田土壤残留氮素在水作季发生淋洗损失。水作季,0~100cm土壤剖面硝态氮累积从旱作残留的9.7~61.9kg/hm~2明显降低到2.7~26.2kg/hm~2,且施肥处理间差异不显著。水旱轮作体系下,优化化肥和有机无机配施较习惯施肥处理可分别降低46.9%和33.3%的氮素表观损失。
There are many high intensive farmlands in the Yellow River Irrigation Region of Ningxia;therefore, over-use fertilizers result in even serious agricultural non-point pollution. Lots of studiesfocused on N losses by surface runoff from paddy rice fields; however, N leaching losses is one of theimportant ways resulting in agricultural non-point pollution. These investigations on the characteristicsof soil N accumulation and leaching in different agroecosystems in this region are not concerned verymuch. In order to make clear the characteristics of soil N accumulation and N leaching losses indifferent farmlands and its effect on groundwater in the Yellow River Irrigation Region of Ningxia. Twodifferent typical farmlands of greenhouse vegetable fields and paddy-upland rotation fields were chose,and three different field experiments were conducted from2008to2011, respectively. Fields fixedlocation soil sampling experiment with eight points was used to study the characteristics of Naccumulation and leaching in0~150cm soil depth, and its effect on groundwater under greenhousevegetable fields and paddy-upland rotation condition, respectively. An in-situ plot field experiment withfive fertilizers treatments was conducted in a greenhouse vegetable field, and the soil leachate samplingwith PVC plates was used to investigate N leaching losses from0~90cm intact soil. The fieldexperimental design was a randomized complete block with three replications. A short-term plotexperiment was carried out in a paddy-upland rotation field to study the effects of five differentfertilizers treatments on soil Nminaccumulation and apparent N balance. The field experimental designwas also a randomized complete block with three replications. The main results are as following:
     Observation of N leaching from two different farmlands showed that the average soluble Ncontents in different soil profiles in greenhouse vegetable fields were significantly higher than that inpaddy-upland rotation fields. Generally, the contents of total soluble N (TSN), soluble organic N (SON),and NO_3~--N in greenhouse vegetable fields were1.5~5.6,1.6~9.8, and1.5~3.4times greater than inpaddy-upland rotation fields, therefore, there was rather higher risk of soil N leaching in greenhousevegetable fields.
     Soil N accumulation in different farmlands indicated that the main forms of soluble Naccumulation in0~100cm had no significant differences found in different investigated periods underthe same field condition. However, soluble N accumulation had significant differences betweendifferent fields in the same farmland. Accumulation of TSN, NO_3~--N, and SON in different greenhousevegetable fields were1.6~4.5,1.4~4.1, and1.9~6.1times greater than in the paddy-upland fields, andthe main forms of soluble N accumulation in greenhouse vegetable fields were significantly higher thanin paddy-upland fields.
     Investigation of groundwater depth and N concentrations from two different farmlands showed thatgroundwater depth was ranged from130~230and86~240cm in greenhouse vegetable fields andpaddy-upland fields, respectively. Concentrations of SON and NO_3~--N in groundwater from greenhousevegetable fields were11.85~46.12and0.64~5.89mg/L, and corresponding in paddy-upland fields were0.12~4.97and0.03~1.00mg/L, respectively. Therefore, both NO_3~--N and SON are the main N pollution forms in groundwater, and N leaching into groundwater in greenhouse vegetable fields easily result inNO_3~--N concentrations>10mg/L.
     Determination of N leaching losses from the greenhouse tomato-cucumber rotation systemindicated that in contrast to treatments no fertilizers (CK) and manure (M), there were significant higherTN, NO_3~--N, and SON leached found in treatments CON, OPT and OPT+C/N during differentinvestigated periods. TN, NO_3~--N, and SON leaching losses in treatments CON, OPT, and OPT+C/Nwere56.1~128.8,41.7~104.6, and6.7~46.1kg/hm~2in tomato, cucumber seasons, and fallow periods,respectively; which were significantly higher than TN10.2~99.3, NO_3~--N7.7~75.4and SON1.0~25.6kg/hm~2in treatments CK and M. Compared with treatment CON, amounts of TN, NO_3~--N, and SONleached in treatment OPT were decreased by1.5%~32.6%,1.6%~35.9%, and6.9%~41.4%, respectively.Based on treatment OPT, amounts of TN and SON leached in treatment OPT+C/N were decreased by1.3%~11.0%and5.0%~27.0%, respectively. Hence reducing fertilizer N rate while adding dairy manureregulated soil C/N ratio could be appropriate fertilization practices for reducing soil N leaching.
     Investigation of the influencing factors on N leaching and dynamic of N leaching in the greenhousevegetable field showed that dynamics of N leached were very similar to leachate producing, and theleaching peaks were always occurred at flood irrigation in summer fallow and furrow irrigation aftercucumber transplanting. There were positive correlations found between N leached and applied fertilizerN rates and irrigation rates. The dominant N leaching form was NO_3~--N (accounted for57.3%~92.0%ofTN), and the secondary was SON (7.8%~42.5%), only about1%of NH+4-N leached.
     Soil Nminaccumulation and apparent N balance in the greenhouse vegetable field indicated thatfertilization significantly increased NO_3~--N accumulation in soil profiles in contrast to treatment CK,and there was significant positive linear relationship between soil NO_3~--N accumulation amounts in0~100cm soil and accumulative applied N rates. In the greenhouse tomato-cucumber rotation system, Nleached accounted for13.4%~19.5%of total apparent N losses. Therefore, reduced fertilizers N rate orregulating soil C/N ratio could also decrease soil N surplus and apparent N losses in contrast toconventional fertilization.
     Soil Nminaccumulation and apparent N balance in the paddy-upland rotation system showed thatsoil N accumulation in upland was liable to leaching losses in paddy rice season between paddy andupland converting. In the paddy rice season, the residual NO_3~--N in0~100cm soil depth was declinedfrom9.7~61.9kg/hm~2to2.7~26.2kg/hm~2, and there was no significant difference among differentfertilization treatments. In the paddy-upland rotation system, apparent N losses were decreased by46.9%and33.3%in treatments optimal NPK and combination of NPK and manure in contrast totreatment conventional fertilization, respectively.
引文
1.白优爱.京郊保护地番茄养分吸收和氮素调控研究[D].北京:中国农业大学硕士论文,2003.
    2.蔡祖聪.尿素和KNO3对水稻土无机氮转化过程和产物的影响. I.无机氮转化过程[J].土壤学报,2003,40(2):239-245.
    3.曹艳春,冯永忠,杨引禄,等.基于GIS的宁夏灌区农田污染源结构特征解析[J].生态学报,2011,31(12):3468-3477.
    4.陈伟伟,李强坤,胡亚伟,等.青铜峡灌区水稻田三氮变化特征试验研究[J].农业环境科学学报,2010,29(4):790-794.
    5.陈子明,袁锋明,姚造华,等.北京潮土硝态氮在土体中的移动特点及其淋失动态[J].土壤学报,1995,32(4):388-398.
    6.杜军,杨培岭,李云开,等.不同灌期对农田氮素迁移及面源污染产生的影响[J].农业工程学报,2011,27(1):66-74.
    7.杜连凤,赵同科,安志装,等.菜地氮素循环途径及其环境效应综述[J].中国农学通报,2008,24(2):414-418.
    8.杜伟.长三角地区典型稻作流域农田氮平衡及氮负荷研究[D].南京:南京农业大学硕士学位论文,2010.
    9.樊军,邵明安,郝明德,等.黄土旱塬塬面生态系统土壤硝酸盐累积分布特征[J].植物营养与肥料学报,2005,11(1):8-12.
    10.范丙全,胡春芳,平建立.灌溉施肥对壤质潮土硝态氮淋溶的影响[J].植物营养与肥料学报,1998,4(1):16-21.
    11.范明生.水旱轮作系统养分资源综合管理研究[D].北京:中国农业大学博士学位论文,2005.
    12.冯兆忠,王效科,冯宗炜.河套灌区地下水氮污染状况[J].农村生态环境,2005,21(4):74-76.
    13.高伟,朱静华,高宝岩,等.天津市设施蔬菜不同种植年限土壤及地下水养分特征[J].华北农学报,2010,25(2):206-211.
    14.高晓宇,韩晓日,刘宁,等.长期定位施肥对棕壤有机氮组分及剖面分布的影响[J].中国农业科学,2009,42(8):2820-2827. doi:10.3864/j.issn.0578-1752.2009.08.022
    15.高新昊,江丽华,刘兆辉,等.山东省农村地区地下水硝酸盐污染现状调查与评价[J].中国农业气象,2011,32(1):89-93.
    16.葛体达.番茄对有机氮的吸收及土壤溶解性有机氮行为特性研究[D].上海:上海交通大学博士论文,2008.
    17.古巧珍,杨学云,孙本华,等.旱地塿土长期定位施肥土壤剖面硝态氮分布与累积研究[J].干旱地区农业研究,2003,21(4):48-52.
    18.国家统计局.中国统计年鉴[M].北京:中国统计出版社,2010.
    19.郝芳华,欧阳威,李鹏,等.河套灌区不同灌季土壤氮素时空分布特征分析[J].环境科学学报,2008,28(5):845-852.
    20.何传龙,马友华,于红梅,等.减量施肥对保护地土壤养分淋失及番茄产量的影响[J].植物营养与肥料学报,2010,16(4):846-851.
    21.何绪生,李素霞,李旭辉,等.控效肥料的研究进展[J].植物营养与肥料学报,1998,4(2):97-106.
    22.胡承孝,邓波儿,刘同仇.氮肥水平对蔬菜品质的影响[J].土壤肥料,1996(3):34-36.
    23.胡春胜,程一松,高鹭,等.太行山山前平原冬小麦田深层土体硝态氮累积特征研究[J].中国生态农业学报,2001,9(1):19-20.
    24.胡开明,逄勇,王华.太湖湖体总氮平衡与水质可控目标[J].水科学进展,2012,23(3):437-444.
    25.黄国勤,王兴祥,钱海燕,等.施用化肥对农业生态环境的负面影响及对策[J].生态环境,2004,13(4):656-660.
    26.黄元仿,曹兵,胡克林,等.不同施肥条件下菜地土壤无机氮动态及其淋洗污染潜力[J].土壤通报,1997,28(4):175-177.
    27.黄元仿.不同灌水条件下土壤氮素淋溶渗漏的研究[A].现代土壤科学研究[C].北京:中国农业科技出版社,1994:243-247.
    28.纪雄辉,郑圣先,聂军,等.稻田土壤上控释氮肥的氮素利用率与硝态氮淋溶损失[J].土壤通报,2007,38(3):467-471.
    29.纪雄辉,郑圣先,石丽红,等.洞庭湖区不同稻田土壤及施肥对养分淋溶损失的影响[J].土壤学报,2008,145(14):663-671.
    30.贾蕊,陆迁,何学松.我国农业污染现状、原因及对策研究[J].中国农业科技导报,2006,8(1):59-63.
    31.巨晓棠,刘学军,张福锁.冬小麦与夏玉米轮作体系中氮肥效应及氮素平衡研究[J].中国农业科学,2002,35(11):1361-1368.
    32.巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作体系中土壤氮素矿化及预测[J].应用生态学报,2003,12(14):2241-2245.
    33.巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作中NO-3-N在土壤剖面的累积及移动[J].土壤学报,2003,40(4):538-546.
    34.寇长林,巨晓棠,张福锁.三种集约化种植体系氦素平衡及其对地下水硝酸盐含量的影响[J].应用生态学报,2005,16(4):660-667.
    35.李成芳,曹凑贵,汪金平,等.稻鸭、稻鱼共作生态系统土壤溶解性有机N的动态和损失[J].生态学报,2009,29(5):2541-2550.
    36.李冬初,徐明岗,李菊梅,等.化肥有机肥配合施用下双季稻田氮素形态变化[J].植物营养与肥料学报,2009,15(2):303-310.
    37.李俊良,朱建华.保护地番茄养分利用及土壤氮素淋失[J].应用与环境生物学报,2001,7(2):126-129.
    38.李强坤,李怀恩,胡亚伟,等.基于单元分析的青铜峡灌区农业非点源污染估算[J].生态与农村环境学报,2007,23(4):33-36.
    39.李瑞鸿,洪林.漳河灌区农田氮磷淋失特性[J].武汉大学学报(工学版),2010,43(5):566-570.
    40.李世清,高亚军,杜建军,等.连续施用氮肥对旱地土壤氮素状况的影响[J].干旱地区农业研究,1999,17(3):28-34.
    41.李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失[J].应用生态学报,2000,2:240-242.
    42.李晓欣,胡春胜,程一松.不同施肥处理对作物产量及土壤中硝态氮累积的影响[J].干旱地区农业研究,2003,21(3):38-42.
    43.李志博,王起超,陈静.农业生态系统中氮素循环研究进展[J].土壤与环境,2002,11(4):417-421.
    44.李宗新,董树亭,王空军,等.不同施肥条件下玉米田土壤养分淋溶规律的原位研究[J].应用生态学报,2008,19(1):65-70.
    45.刘春增,寇长林,王秋杰.长期施肥对砂土肥力变化及硝态氮积累和分布的影响[J].土壤通报,1996,27(5):216-218.
    46.刘国强,杨世琦.宁夏引黄灌区农田退水污染现状分析[J].灌溉排水学报,2010,29(1):104-108.
    47.刘宏斌,李志宏,张维理,等.露地栽培条件下大白菜氮肥利用率与硝态氮淋溶损失研究[J].植物营养与肥料学报,2004,10(3):286-291.
    48.刘学军,吕世华,张福锁,等.水肥状况对土壤剖面中锰的移动和水稻吸锰的影响[J].土壤学报,1999,36(3):369-375.
    49.刘学军,赵紫娟,巨晓棠,等.基施氮肥对冬小麦产量、氮肥利用率及氮平衡的影响[J].生态学报,2002,22(7):1122-1128.
    50.刘巽浩.耕作学[M].北京:中国农业出版社,1996, p156-171.
    51.刘忠翰,彭江燕.污水土地处理中水田氮素的迁移特征[J].土壤学报,2000,37(3):428-431.
    52.吕殿青,杨进荣,马林英.灌溉对土壤硝态氮淋吸效应影响的研究[J].植物营养与肥料学报,1999,5(4):307-315.
    53.吕殿青,杨学云,张航,等.陕西塿土中硝态氮运移特点及影响因素[J].植物营养与肥料学报,1996,2(4):289-296.
    54.马茂同.钾氮配施对土壤氮钾渗漏损失的影响[J].土壤,1999(3):136-139.
    55.马毅杰,陈家坊.水稻土物质变化与生态环境[M].北京:科学出版社,1999, p1-8.
    56.穆鑫,吕谋超,温随群,等.宁夏引黄灌区农田退水回灌对土壤盐分影响的试验研究[J].灌溉排水学报,2011,30(1):76-79.
    57.宁夏回族自治区水文水资源勘测局.宁夏回族自治区水资源公报[M].宁夏回族自治区水利厅,2000.
    58.宁夏回族自治区水文水资源勘测局.宁夏回族自治区水资源公报[M].宁夏回族自治区水利厅,2008.
    59.宁夏统计局.宁夏统计年鉴[M].北京:中国统计出版社,2008.
    60.潘家荣,巨晓棠,刘学军,等.高肥力土壤冬小麦/夏玉米轮作体系中化肥氮去向研究[J].核农学报,2001,15(4):207-212.
    61.邱建军,李虎,王立刚.中国农田施氮水平与土壤氮平衡的模拟研究[J].农业工程学报,2008,24(8):40-44.
    62.邱卫国,唐浩,王超.稻作期氮素渗漏流失特性及控制对策研究[J].农业环境科学学报,2005,24(增刊):99-103.
    63.全为民,严力蛟.农业面源污染对水体富营养化的影响及其防治措施[J].生态学报,2002,22(3):292-299.
    64.申晓辉.吉林省主要早田土壤有机氮组分的研究[J].吉林农业大学学报,1990,12(3):43-50.
    65.沈善敏.中国农业可持续发展的土壤肥力管理对策[A].见:沈善敏主编.中国土壤肥力[C].北京:农业出版社,1998,450-480.
    66.石孝均.水旱轮作体系中养分循环特征[D].北京:中国农业大学博士学位论文,2003.
    67.司友斌,王慎强,陈怀满.农田氮磷的流失与水体富营养化[J].土壤,2000(4):188-193.
    68.孙正风,马京军.宁夏农业面源污染现状与防治对策[J].宁夏农林科技,2005,3:27-29.
    69.谭德水,江丽华,张骞,等.同施肥模式调控沿湖农田无机氮流失的原位研究——以南四湖过水区粮田为例[J].生态学报,2011,31(12):3488-3496.
    70.汤丽玲,陈清,张宏彦,等.不同灌溉措施对露地菜田土壤无机氮残留的影响[J].植物营养与肥料学报,2002,8(3):282-287.
    71.汤丽玲.日光温室番茄的氮素追施调控技术及其效益评估[D].北京:中国农业大学博士学位论文,2003:59-69.
    72.田玉华,贺发云,尹斌,等.不同氮磷配合下稻田田面水的氮磷动态变化研究[J].土壤,2006,38(6):727-733.
    73.汪林,甘泓,汪珊,等.宁夏黄灌区水盐循环演化与调控[M].北京:中国水利水电出版社,2003.
    74.王朝辉,宗志强,李生秀,等.蔬菜的硝态氮累积及菜地土壤的硝态氮残留[J].环境科学,2002,23(3):79-83.
    75.王红霞,周建斌,雷张玲,等.有机肥中不同形态氮及溶解性有机碳在土壤中淋溶特性研究[J].农业环境科学学报,2008,27(4):1364-1370.
    76.王家玉,王省佳,陈义,等.稻田土壤中N的渗漏损失研究[J].应用生态学报,1995,6(增刊):62-66.
    77.王立刚,李虎,邱建军.黄淮海平原典型农田土壤N2O的排放特征[J].中国农业科学,2008,4l(4):1248-1254.
    78.王明国,马玉兰,冯静,等.宁夏农户施肥调查与评价[J].农业科学研究,2009,30(1):13-15.
    79.王永生,黄剑,杨世琦.宁夏黄灌区稻秆还田对硝态氮流失量的影响[J].农业环境科学学报,2011,30(4):697-703.
    80.王智超.农田土壤硝态氮累积及干湿交替过程的影响[D].北京:中国农业大学硕士学位论文,2006.
    81.熊毅.耕作制对土壤肥力的影响[J].土壤学报,1980,17(2):101-119.
    82.徐琪,杨林章,董元华.中国稻田生态系统[M].北京:中国农业出版社,1998, p1-4.
    83.许春霞,吴守仁.塿土有机氮的构成及其在施肥条件下的变化[J].土壤通报,1991,22(2):54-56.
    84.闫莉,黄锦辉,张建军,等.宁夏农灌退水对黄河水质的影响研究[J].人民黄河,2007,29(3):35-36.
    85.颜廷梅,杨林章,单艳红.稻田土壤养分的迁移规律及其环境风险[J].土壤学报,2008,45(6):1189-1193.
    86.杨淑静,张爱平,杨正礼,等.宁夏灌区农业非点源污染负荷估算方法初探[J].中国农业科学,2009,42(11):3947-3955. doi:10.3864/j.issn.0578-1752.2009.11.023
    87.杨学云,张树兰,袁新民,等.长期施肥对塿土硝态氮分布、累积和移动的影响[J].植物营养与肥料学报,2001,7(2):134-138.
    88.杨治平,陈明,张强,等.不同施氮措施对保护地黄瓜养分利用效率及土壤氮素淋失影响[J].水土保持学报,2007,21(2):57-60.
    89.尹娟,费良军,勉韶平.宁夏银南灌区稻田控制排水条件下氮素淋失的研究[J].西北农林科技大学学报(自然科学版),2006,34(1):108-112.
    90.尹娟,王南江,勉韶平.稻田土壤中氮素运移转化规律的试验研究[J].灌溉排水学报,2005,24(3):5-7,26.
    91.于红梅,李子忠,龚元石.不同水氮管理对蔬菜地硝态氮淋洗的影响[J].中国农业科学,2005,38(9):1849-1855.
    92.于涛,陈静生.农业发展对黄河水质和氮污染的影响[J].干旱区资源与环境,2004,18(5):1-7.
    93.袁锋明,陈子明,姚造华,等.北京地区潮土表层中NO-3-N的转化积累及淋洗损失[J].土壤学报,1995,32(4):388-399.
    94.袁新民,同延安,杨学云,等.灌溉与降水对土壤NO-3-N累积的影响[J].水土保持学报,2000c,14(3):71-74.
    95.袁新民,同延安,杨学云,等.施用磷肥对土壤NO-3-N累积的影响[J].植物营养与肥料学报,2000b,6(4):397-403.
    96.袁新民,同延安,杨学云,等.有机肥对土壤NO-3-N累积的影响[J].土壤与环境,2000a,9(3):197-200.
    97.张爱平,杨世琦,张庆忠,等.宁夏灌区农田退水污染形成原因及防治对策[J].中国生态农业学报,2008,16(4):1037-1042.
    98.张福珠,熊先哲,戴同顺,等.应用15N研究土壤-植物系统中氮素淋失动态[J].环境科学,1984,5(1):21-24.
    99.张贵龙.蔬菜保护地氮素利用与去向研究[D].北京:中国农业科学院博士学位论文,2009.
    100.张国梁,章申.农田氮素淋失研究进展[J].土壤,1998,30(6):291-297.
    101.张丽娟,巨晓棠,刘辰琛,等.北方设施蔬菜种植区地下水硝酸盐来源分析——以山东省惠民县为例[J].中国农业科学,2010,43(21):4427-4436.
    102.张晴雯,张惠,易军,等.青铜峡灌区水稻田化肥氮去向研究[J].环境科学学报,2010,30(8):1707-1714.
    103.张树兰,同延安,梁东丽,等.氮肥用量及施用时间对土体中硝态氮移动的影响[J].土壤学报,2004,41(2):270-277.
    104.张维理,田哲旭,张宁,等.我国北方农田氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87.
    105.张维理,武淑霞,冀宏杰,等.中国农业面源污染形势估计及控制对策I.21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008-1017.
    106.张文英,张庆江.小麦-夏玉米两熟制土壤-作物系统的氮素平衡[J].华北农学报,1994,9(增刊):109-114.
    107.张兴昌,邵明安.黄土丘陵区小流域土壤氮素流失规律[J].地理学报,2000,55(5):617-626.
    108.张学军,陈晓群,王黎民,等.宁夏大棚蔬菜生产现状及施肥中存在的问题和对策[J].宁夏农林科技,2004,2:44-47.
    109.张学军,赵营,陈晓群,等.滴灌施肥中施氮量对两年蔬菜产量、氮素平衡及土壤硝态氮累积的影响[J].中国农业科学,2007a,40(11):2535-2545.
    110.张学军,赵桂芳,朱雯清,等.菜田土壤氮素淋失及其调控措施的研究进展[J].生态环境,2004,13(1):105-108.
    111.张学军,赵营,陈晓群,等.氮肥施用量对设施番茄氮素利用及土壤NO-3-N累积的影响[J].生态学报,2007b,27(9):3761-3768.
    112.张学军,赵营,任福聪,等.滴灌条件下施氮量对黄瓜-番茄种植体系中土体NO-3-N淋洗的影响[J].干旱地区农业研究,2007c,25(4):157-162.
    113.张玉良.地下水系统的污染控制[M].北京:中国环境科学出版社,1991.
    114.张志剑,董亮,朱荫湄.水稻田面水氮素的动态特征、模式表征及排水流失研究[J].环境科学学报,2001,21(4):475-480.
    115.张智猛,戴良香,张电学,等.冬小麦-夏玉米轮作周期内碱解氮、硝态氮时空变化及施氮安全值的研究[J].土壤通报,2004,35(1):38-42.
    116.赵竟英,宝德俊,张鸿程,等.潮土硝态氮移动规律及对环境的影响[J].农业环境保护,1996,15(4):166-169.
    117.赵满兴, Kalbitz K,周建斌.黄土区几种土壤培养过程中溶解性有机氮的变化及其与土壤矿化氮的关系[J].水土保持学报,2008,22(4):122-127.
    118.赵营,张学军,罗健航,等.施肥对设施番茄-黄瓜养分利用与土壤氮素淋失的影响[J].植物营养与肥料学报,2011,17(2):374-383.
    119.周超亚.南方耕作制度[M].北京:中国农业出版社,1996, p31-37.
    120.朱建华,李俊良,李晓林,等.几种复合肥施用对蔬菜保护地土壤环境质量的影响[J].农业环境保护,2002,21(1):5-8.
    121.朱兆良,文启军等.中国土壤氮.南京:江苏科学技术出版社[M],1992:213-249.
    122.朱兆良.氮素管理与粮食生产和环境[J].土壤学报,2002,39(增刊):4-11.
    123.朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    124.朱兆良,张福锁,等著.主要农田生态系统氮素行为与氮肥高效利用的基础研究[M].科学出版社,2010, p2-8.
    125.庄舜尧,孙秀廷.肥料氮在蔬菜地中的去向及平衡[J].土壤,1997,29(2):80-83.
    126. Abril A, Baleani D, Casado-Murillo N, et al.. Effect of wheat crop fertilization on nitrogendynamics and balance in the Humid Pampas, Argentina[J]. Agriculture, Ecosystems andEnvironment,2007(2):171-176.
    127. Accoea F, Boeckxa P, Busschaerta J, et al.. Gross N transformation rates and net N mineralisationrates related to the C and N contents of soil organic matter fractions in grassland soils of differentage[J]. Soil Biology&Biochemistry,2004,36:2075-2087.
    128. Addiscott TM, Whitmore AP, Powlson DS. Farming, fertilizers and the nitrate problem[M]. CABInternational, Wallingford,1991:55-72.
    129. Agehara S, Warncke DD. Soil moisture and temperature effects on nitrogen release from organicnitrogen sources[J]. Soil Sci Soc Am J,2005,69(6):1844-1855.
    130. Alkoaik F, Ghaly AE. Influence of dairy manure addition on the biological and thermal kinetics ofcomposting of greenhouse tomato plant residuals[J]. Waste Manage,2006,26:902-913.
    131. Aparicio V, Costa JL, Zamora M. Nitrate leaching assessment in a long-term experiment undersupplementary irrigation in humid Argentina[J]. Agricultural Water Management,2008,95(12):1361-1372.
    132. Appel T, Mengel K. Nitrogen uptake of cereals grown on sandy soils as related to nitrogenfertilizer application and soil nitrogen fractions obtained by electroultrafiltration (EUF) and CaCl2extraction[J]. Eur J Agron,1992,1:1-9.
    133. Barak PE, Molina JA, Hadas A, et al.. Mineralization of amino acids and evidence of directassimilation of organic nitrogen[J]. Sci Soc Am J,1990,54:769-774.
    134. Barraclough D. The direct or MIT route for nitrogen immobilization: a15N mirror images studywith leucine and glycine[J]. Soil biol Biochem.1997,29:1101-1108.
    135. Bauder JW, Schneider RP. Nitrate-nitrogen leaching following urea fertilization and irrigation[J].Soil Sci Soc Am J,1979,43:348-352.
    136. Becker M, Asch F, Maskey SL, et al.. Effects of transition season management on soil N dynamicsand system N balances in rice–wheat rotations of Nepal[J]. Field Crops Research,2007,103:98-108.
    137. Bergstrom L, Brink N. Effects of differentiated applications of fertilizer N leaching losses anddistribution of inorganic N in soil[J].Plant and Soil,1986,93(3):333-345.
    138. Bergstrom L, Kirchmann H. Leaching of total nitrogen from nitrogen-15-labelled poultry manureand inorganic nitrogen fertilizer[J]. J Environ Qual,1999,28:1283-1290.
    139. Bhogal A, Murphy DV, Fortune S, et al.. Distribution of nitrogen pools in the soil profile ofundisturbed and reseeded grasslands[J]. Biol Fertil Soils,2000,30:356-362.
    140. Blumfield TJ, Xu ZH. Impact of harvest residuals on soil mineral nitrogen dynamics followingclear fall harvesting of a hop pine plantation in subtropical Australia[J]. Forest Ecology andManagement,2003,179(1-3):55-67.
    141. Bremner JM. Determination of fixed ammonium in soil[J]. J. Agri. Sci.1959,52:147-160.
    142. Bremner JM. Organic forms of nitrogen. Black C. A.(ed.), Methods of soil analysis[M].1965.
    143. Cameron KC, Harrison DF, Smith NP. A method to prevent edge flow in undisturbed soil cores andlysimeters[J]. Aus J Soil Res,1990,28:879-86.
    144. Campbell JL, Hornbeck, McDowell WH, et al.. Dissolved organic nitrogen budgets for upland,forested ecosystems in New England[J]. Biogeochemistry,2000,49(2):123-142.
    145. Campiglia E, Mancinelli R, Radicetti E, et al.. Legume cover crops and mulches: effects on nitrateleaching and nitrogen input in a pepper crop (Capsicum annuum L.)[J]. Nutr Cycl Agroecosyst,2010, Published online:30September. DOI10.1007/s10705-010-9404-2
    146. Chapman PJ, Williams BL, Hawkings A. Influence of temperature and vegetation cover on solubleinorganic and organic nitrogen in a spodosol[J]. Soil Biology and biochemistry,2001,33(7/8):1113-1121.
    147. Chen BM, Wang ZH, Li SX, et al.. Effects of nitrate supply on plant growth, nitrate accumulationmetabolic nitrate concentration and nitrate reductase activity in three leafy vegetables[J]. PlantScience,2004,167:635-643.
    148. Chen CR, Xu ZH, Zhang SL, et al.. Soluble organic nitrogen pools in forest soils of subtropicalAustralia [J]. Plant and Soil,2005,277(1/2):285-97.
    149. Chen Q, Zhang XS, Zhang HY, et al.. Evaluation of current fertilizer practice and soil fertility invegetable production in the Beijing region[J]. Nutr Cycl Agroecosyst,2004,69:51-58.
    150. Chhabra A, Manjunath KR, Panigrahy S. Non-point source pollution in Indian agriculture:Estimation of nitrogen losses from rice crop using remote sensing and GIS[J]. International Journalof Applied Earth Observation and Geoinformation,2010,12:190-200.
    151. Choil WJ, Ro HM, Chang SX. Recovery of fertilizer derived inorganic-15N in a vegetable field soilas affected by application of an organic amendment[J]. Plant Soil,2004,263:191-201.
    152. Chowdary VM, Raob NH, Sarma PBS. A coupled soil water and nitrogen balance model forflooded rice fields in India[J]. Agriculture, Ecosystems and Environment,2004,103:425-441.
    153. Clough TJ, Ledgard SF, SPROSEN MS, et al.. Fate of15N labelled urine on four soil types[J]. Plantand Soil,1998,199(2):195-203.
    154. Conley DJ, Paerl HW, Howarth RW, et al.. Controlling eutrophication: nitrogen and phosphorus[J].Science,2009,323:1014-1015. DOI10.1126/science.1167755
    155. De NS, De HG. N mineralization and nitrate leaching from vegetable crop residuals under fieldconditions: a model evaluation[J]. Soil Biology and Biochemistry,1998,30(14):2067-2075.
    156. De Paz JM, Delgado JA, Ramos C, et al.. Use of a new GIS nitrogen index assessment tool forevaluation of nitrate leaching across a Mediterranean region[J]. Journal of Hydrology,2009,365:183-194.
    157. Dejoux JF, Recous S, Meynard JM, et al.. The fate of nitrogen from winter-frozen rapeseed leaves:mineralization, fluxes to the environment and uptake by rapeseed crop in spring[J]. Plant and Soil,2000,218(1-2):257-272.
    158. Di HJ and Cameron KC. Nitrate leaching in temperate agroecosystems: sources, factors andmitigating strategies[J]. Nutrient Cycling in Agroecosystems,2002,46:237-256.
    159. Flores P, Castellar I, Navarro J. Nitrate leaching in pepper cultivation with organic manure andsupplementary additions of mineral fertilizer[J]. Commun Soil Sci Plant Anal,2005,36:2889-2898.
    160. Gastal F, Lemaire G. N uptake and distribution in crops: an agronomical and ecophysiologicalperspective[J]. Journal of Experimental Botany,2002,53:789-799.
    161. Gathumbi SM, Q Cadish, RJBuresh, et a1.. Subsoil nitrogen capture in mixed legume stands asassessed by deep nitrogen-15placement[J]. Soil Sci Am J.,2003,67:573-582.
    162. Guo RY, Li XL, Christie P, et al.. Seasonal temperatures have more influence than nitrogenfertilizer rates on cucumber yield and nitrogen uptake in a double cropping system[J]. EnvironPollut,2008,151:443-451.
    163. Guo RY, Nendel C, Rahn C, et al.. Tracking nitrogen losses in a greenhouse crop rotationexperiment in North China using the EU-Rotate_N simulation model[J]. Environmental Pollution,2010,158:2218-2229.
    164. Hansen EA and Harris AR. Validity of soil water samples collected from porous ceramic cups[J].Soil Sci Soc Am Proc,1975,39:528-36.
    165. He FF, Chen Q, Jiang RF, et al.. Yield and nitrogen balance of greenhouse tomato (Lycopersicumesculentum Mill.) with conventional and site-specific nitrogen managenment in Northern China[J].Nutr Cycl Agroecosyst,2007,77:1-14. DOI10.1007/s10705-006-6275-7
    166. Hedlund A, Witter E, An BX. Assessment of N, P and K management by nutrient balances andflows on peri-urban smallholder farms in southern Vietnam [J]. Europ J Agronomy,2003,20:71-87.
    167. Holger J, Martin L, Kristina M, et al.. SOILNDB: a decision support tool for assessing nitrogenleaching losses from arable land [J]. Environmental Modelling&Software,2002,17:505-517.
    168. Houba VJG. Comparison of soil extractions by0.01M CaCl2, by EUF and some conventionalextraction procedures[J]. Plant and Soil,1986,96:433-437.
    169. Jackson LE. Fates and losses of nitrogen from a nitro-gen-15-labeled cover crop in an intensivelymanaged vegetable system[J]. Soil Science Society of America Journal,2000,64(4):1404-1412.
    170. Jégo G, Sánchez-Pérezc JM, Justesb E. Predicting soil water and mineral nitrogen contents with theSTICS model for estimating nitrate leaching under agricultural fields[J]. Agricultural WaterManagement,2012,107:54-65.
    171. Jinno Y and Honna T. Nitrate leaching and nitrogen balance in turf grass field by lysimeters[J].Journal of soil and fertilizer institute in Japan,1999,70(3):297-305.
    172. Jones D L, Shannon D, Murphy DV et al.. Role of dissolved organic nitrogen (DON) in soil Ncycling in grassland soils[J]. Soil Biol Biochem.2004,36(5):749-756.
    173. Ju XT, Kou CL, Zhang FS, et al.. Nitrogen balance and groundwater nitrate contamination:Comparison among three intensive cropping systems on the North China Plain[J]. EnvironmentalPollution,2006,143:117-125.
    174. Ju XT, Xing GX, Chen XP, et al.. Reducing environmental risk by improving N management inintensive Chinese agricultural systems[J]. Proceedings of National Academy of Sciences USA(PNAS),2009,106:3041-3046.
    175. Kalbitz K, Solinger S, Park JH, et al. Controls on the dynamics of dissolved organic matter in soil:A review[J]. Soil Science,2000,165(4):277-304.
    176. Kayser M, Müller J, Isselstein J. Nitrogen management in organic farming: comparison of croprotation residual effects on yields, N leaching and soil conditions[J]. Nutr Cycl Agroecosyst,2010,87:21-31. DOI10.1007/s10705-009-9309-0
    177. Kielland K. Amino acid absorption by arctic plants: implications for plant nutrition and nitrogencycling [J]. Ecology,1994,75:2373-2383.
    178. Kitchen NR. Impact of historical and current farming systems on groundwater nitrate in NorthernMissouri[J]. Soil and Water Conservation,1997,52(4):272-277.
    179. Kraft GJ, Stites W. Nitrate impacts on groundwater from an irrigated vegetable system in a humidnorth-central US sand plain[J]. Agric, Eco&Environ,2003,100:63-74.
    180. Kyllmar K, M rtensson K, Johnsson H. Model-based coefficient method for calculation of Nleaching from agricultural fields applied to small catchments and the effects of leaching reducingmeasures[J]. Journal of Hydrology,2005,304:343-354.
    181. Liu ZH, Jiang LH, Li XL, et al.. Effect of N and K fertilizers on yield and quality of greenhousevegetable crops[J]. Pedosphere,2008,18(4):496-502.
    182. Lu HL, Li SQ, Jin FH, et al.. Effects of Soluble Organic N on Evaluating Soil N-SupplyingCapacity[J]. Agricultural Sciences in China,2008,7(7):860-870.
    183. Manfred K, Jürgen M, Johannes I. Nitrogen management in organic farming: comparison of croprotation residual effects on yields, N leaching and soil conditions[J]. Nutr Cycl Agroecosyst,2010,87:21-31. DOI10.1007/s10705-009-9309-0
    184. Matlou MC and Haynes RJ. Soluble organic matter and microbial biomass C and N in soils underpasture and arable management and the leaching of organic C, N and nitrate in a lysimeter study[J].Appl. Soil Ecol.,2006,34:160-167.
    185. Min J, Shi WM, Xing GX, et al.. Effects of a catch crop and reduced nitrogen fertilization onnitrogen leaching in greenhouse vegetable production systems[J]. Nutrient Cycling inAgroecosystems,2011,91(1):31-39.
    186. Min J, Zhang HL, Shi WM. Optimizing nitrogen input to reduce nitrate leaching loss in greenhousevegetable production[J]. Agricultural Water Management,2012,111:53-59.
    187. Mosier AR and Zhu ZL. Changes in patterns of fertilizer nitrogen use in Asia and its consequencesfor N2O emissions from agricultural systems[J]. Nutrient Cycle in Agro-ecosystems,2000,57:107-117.
    188. MS Bowman, TS Clune, BG Sutton. A modified ceramic sampler and lysimeter design forimproved monitoringof soil leachates[J]. Water Research,2002,36:99-804.
    189. Murphy DV, Macdonald AJ, Stockdale EA, et al.. Soluble organic nitrogen in agricultural soils[J].Biol Fertil Soils,2000,30:374-387.
    190. Nathalie VV, Marco F, Marco R, et al.. A comparison of eight metamodeling techniques for thesimulation of N2O fluxes and N leaching from corn crops[J]. Environmental Modelling&Software,2012,34:51-66.
    191. Nemeth K, Bertels H, Vogel M, et al.. Organic nitrogen compounds extracted from marable andforest soils by electro-ultrafi1tration and recovery rates of amino acids[J]. Biol Fertil Soils,1998,5:271-275.
    192. Olarewaju OE, Adetunji T, Adeofun O, et al.. Nitrate and phosphorus loss from agricultural land:implications for nonpoint pollution[J]. Nutr Cycl Agroecosyst,2009,85:79–85. DOI10.1007/s10705-009-9249-8
    193. Ottman MJ, Tiches BR, Husman SP. Nitrogen-15and bromide tracers of nitrogen fertilizermovement in irrigated wheat production[J]. Journal of Environmental Quality,2000,29(5):1500-1508.
    194. Pansua M, Thuriès L, Larré-Larrouy MC, et al.. Predicting N transformations from organic inputsin soil in relation to incubation time and biochemical composition[J]. Soil Biology&Biochemistry,2003,35:353-363.
    195. Perakis SS, Hedin LQ. Nitrogen loss from unpolluted South American forests mainly via dissolvedorganic compounds[J]. Nature,2002,415(6870):416-419.
    196. Ploeg RR, Bohm W, Kirkhan MB. On the origin of the theory of mineral nutrition of plants and theLaw of the Minimum[J]. Soil Science Society of America Journal,1999,63:1055-1062.
    197. Portela SI, Andriulo AE, Sasal MC, et al.. Fertilizer vs. organic matter contributions to nitrogenleaching in cropping systems of the Pampas:15N application in field lysimeters[J]. Plant Soil,2006,289:265-277. DOI10.1007/s11104-006-9134-z
    198. Qiu SJ, Ju XT, Lu X, et al.. Improved nitrogen management for an intensive winter wheat/summermaize double-cropping system[J]. Soil Sci Soc Am J,2012,76:286-297. doi:10.2136/sssaj2011.0156
    199. Qiu SJ, Peng PQ, Li L, et al.. Effects of applied urea and straw on various nitrogen fractions in twoChinese paddy soils with differing clay mineralogy[J]. Biol Fertil Soils,2012,48:161-172. DOI10.1007/s00374-011-0613-x
    200. Radersmaa S and Smitb AL. Assessing denitrification and N leaching in a field with organicamendments[J]. NJAS-Wageningen Journal of Life Sciences,2011,58:21-29.
    201. Randall, GW, DR Huggins, MP Russelle, et al.. Nitrate losses through subsurface tile drainage inconservation reserve program, alfalfa, and row crops systems[J]. J Environ Qual.,1997,26:1240-124.
    202. Sexton BT, Moncrief JF, Rosen CJ, et al.. Optimizing nitrogen and irrigation input of corn based onnitrate leaching and yield on a coarse-textured soil[J]. J. Environ. Qual.,1996,25:982-992.
    203. Shen WS, Lin XG, Shi WM, et al.. Higher rates of nitrogen fertilization decrease soil enzymeactivities, microbial functional diversity and nitrification capacity in a Chinese polytunnelgreenhouse vegetable land[J]. Plant Soil,2010,337:137-150. DOI10.1007/s11104-010-0511-2
    204. Shi WM, Yao J, Yan F. Vegetable cultivation under greenhouse conditions leads to rapidaccumulation of nutrients, acidification and salinity of soils and groundwater contamination inSouth-Eastern China[J]. Nutr. Cycl. Agroecosyst,2009,83:73-84.
    205. Shindo H and Nishio T. Immobilization and remineralization of N following addition of wheatstraw into soil: determination of gross N transformation rates by15N-ammonium isotope dilutiontechnique[J]. Soil Biology&Biochemistry,2005,37:425-432.
    206. Shrestha RK, Cooperband LR, MacGuidwin AE. Strategies to reduce nitrate leaching intogroundwater in potato grown in sandy soils: case study from North Central USA[J]. Am J Pot Res,2010,87:229-244. DOI10.1007/s12230-010-9131-x
    207. Shrestha RK and Ladha JK. Nitrate in groundwater and integration of nitrogen-catch crop inrice-sweet pepper cropping system [J]. Soil Science Society of America Journal,1998,62(6):1610-1619.
    208. Siemens J and Kaupenjohann M. Contribution of dissolved organic nitrogen to N leaching fromfour German agricultural soils[J]. Journal of Plant Nutrition and Soil Science,2002,165(6):675-681.
    209. Silva RG, Cmeron KC, Di HJ, et al.. Effect of macropore flow on the transport of surface appliedcow urine through a soil profile[J]. Australian J of Soil Res,2000,38:13-23.
    210. Simon JC. Effect of pastures on the drainage of nitrate to groundwater[J]. Forurrages,1989,119:227-241.
    211. Sogbedji JM, Vanes HM, Hutson JL. N fate and transport under variable cropping history andfertilizer rate on loamy sand and clay loam soils: I. calibration of the LEACHMN model[J]. Plantand Soil,2001,229(1):57-70.
    212. Song XZ, Zhao CX, Wang XL, et al.. Study of nitrate leaching and nitrogen fate under intensivevegetable production pattern in northern China[J]. C. R. Biologies,2009(332):385-392.
    213. Stites W and Krafft GJ. Groundwater quality beneath irrigated vege-table fields in a north-centralUS sand plain[J]. Journal of Environ-mental Quality,2000,29(5):1509-1517.
    214. Sun B, Shen RP, AF Bouwman. Surface N Balances in Agricultural Crop Production Systems inChina for the Period1980–2015[J]. Pedosphere,2008,18(3):304-315.
    215. Thompson RB, Martinez-Gaitan C, Gallardo M, et al.. Identification of irrigation and Nmanagement practices that contribute to nitrate leaching loss from an intensive vegetableproduction system by use of a comprehensive survey[J]. Agricultural Water Management,2008,89:261-274.
    216. Tian YH, Yin B, Yang LZ, et al.. Nitrogen runoff and leaching losses during rice-wheat rotations inTaihu Lake region, China[J]. Pedosphere,2007,17(4):445-456.
    217. Timlin DJ, Ahuja LR, Ankeny MD. Comparision of three field menthods to characterize apparentmacropre conductivity[J]. Soil Sci Soc of Americal J.,1994,58:278-284.
    218. Timsina J and DJ Comior. Productivity and management of rice-wheat cropping systems: issuesand challenges[J]. Fleld Crops Res.,2001,69:93-132.
    219. Timsina J, U Singh, M Badaruddin, et al.. Cultivar, nitrogen, and water effect on productivity, andnitrogen use efficiency and balance for rice-wheat sequence of Bangladesh[J]. Field Crops research,2001,72:143-161.
    220. Torstensson G and Aronsson H. Nitrogen leaching and crop availability in manured catch cropsystems in Sweden[J]. Nutr Cycl Agroecosyst,2000,56:139-152.
    221. Upendra MS, Andrew WL, T Caesar-TonThat, et al.. Dryland soil nitrogen cycling influenced bytillage, crop rotation, and cultural practice[J]. Nutr Cycl Agroecosyst, publish online:26July,2012.DOI10.1007/s10705-012-9518-9
    222. Van EHM, Czymmek KJ. Ketterings QM. Management effects on nitrogen leaching and guidelines for a nitrogen leaching index in New York [J]. Journal of Soil and Water Conservation,2002,57(6):499-504.
    223. Vesna Z, Martina, Sonja L, et al.. Nitrate leaching under vegetable field above a shallow aquiferin Slovenia[J]. Agriculture, Ecosystems and Environment,2011,144:167-174.
    224. Vestgarden LS, Abrahamsen G, Stuanes AO, et al.. Soil solution response to nitrogen andmagnesium application in a Scots Pine forest[J]. Soil Sci. Soc. Am. J,2001,65:1812-1823.
    225. Vinten A J A, Davies R, Cadtle K, et al.. Control of nitrate leaching from a nitrate vulnerable zoneusing paper mill waste[J]. Soil Use and Management,1998,14(1):44-51.
    226. Waddll JT, Gupta SC, Moncriff JF, et al.. Irrigation-and nitrogen-management impacts on nitrateleaching under potato[J]. Journal of Environmental Quality,2000,29(1):251-261.
    227. Wang ZH and Li SX. Effects of N and P fertilization on plant growth and nitrate accumulation invegetables[J]. Journal of Plant Nutrition,2004,27(3):539-556.
    228. Williams BB and Edwards AC. Proceses influencing dissolved organic nitrogen, phosphorus andsulphur in soils[J]. Chemistry and Ecology,1993,8:203-15.
    229. Wood WW. Atechnique usingporous cups at any depth in the unsaturated zone[J]. Water Research,1973,9:486-8.
    230. Yadav RL, Singh RV, Singh R, et al.. Effect of planting geometry and fertilizer N rates on nitrateleaching, nitrogen use efficiency, and sugarcane yield[J]. Tropical Agriculture,1997,74(2):115-120.
    231. Yadav RL, BS Dwivedi, PK Pandey. Rice-wheat cropping systems: assessment of sustainablilityunder green manureing and chemical fertilizer inputs[J]. Field Crops Res.,2000,65:15-30.
    232. Yin HJ, Chen Z, Liu Q. Effects of experimental warming on soil N transformations of twoconiferous species, Eastern Tibetan Plateau, China[J]. Soil Biology&Biochemistry,2012,50:77-84.
    233. Young MH, Wierenga PJ, Mancino CF. Large weighing lysimeters for water use and deeppercolation studies[J]. Soil Sci,1996,161:491-501.
    234. Yvonne O, Yvonne K, Roland B, et al.. Nitrate leaching in soil: Tracing the NO3-sources with thehelp of stable N and O isotopes[J]. Soil Biology&Biochemistry,2007,39:3024-3033.
    235. Zhang Q, C Anastasio, M Jimenez-Cruz. Water-soluble organic nitrogen in atmospheric fineparticles (PM2.5) from northern California[J]. J Geophys Res,2002,107:4112-4120.doi:10.1029/2001JD00087
    236. Zhang QC, Wang GH, Xie WX. Soil organic N forms and N supply as affected by fertilizationunder intensive rice cropping system[J]. Pedosphere,2006,16(3):345-353.
    237. Zhao CS, Hu CX, Huang W, et al.. A lysimeter study of nitrate leaching and optimum nitrogenapplication rates for intensively irrigated vegetable production systems in Central China[J]. J SoilsSediments,2010,10:9–17. DOI10.1007/s11368-009-0063-3
    238. Zhou JB, Green M, Shaviv A. Mineralization of organic N originating in treated effluent used forirrigation[J]. Nut Cyc Agroecosyst,2003,67(3):205-213.
    239. Zhu JH, Li XL, Christie P, et al.. Environmental implications of low nitrogen use efficiency inexcessively fertilized hot pepper (Capsicum frutescens L.) cropping systems[J]. Agric EcosystEnviron,2005,111:70-80.
    240. Zotarelli L, Scholberg JM, Dukes MD, et al.. Monitoring of nitrate leaching in sandy soils[J].Environ Qual,2007,36:953-962.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700