用户名: 密码: 验证码:
大规模电力系统暂态稳定并行计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前是我国电力系统发展的重要时期,跨区域的大规模互联电网正在逐步形成。为满足互联电网分析、规划和安全稳定运行对高性能暂态稳定仿真工具的迫切需要,本文对大规模电力系统暂态稳定并行仿真技术进行了研究,内容涉及暂态稳定串行算法改进、并行算法的构造、并行任务的划分及算法在高性能并行计算平台上的实现等方面。论文的主要工作如下:
     1)提出了一种基于Shamanskii算法和非诚实牛顿法(Very Dishonest Newton Method, VDHN)的可变步长暂态稳定仿真组合算法。在基本的微分代数方程组联立求解框架下,根据隐式梯形积分局部截断误差理论,对步长进行控制,在保证精度的条件下,减少了积分步数;考虑牛顿类算法的收敛性,使用Shamanskii算法控制雅可比矩阵的更新,减少了不必要的更新计算;应用VDHN原理简化了迭代过程中电压向量的计算。算法可适应不同规模算例,在不同故障下都能较好提升计算速度,后文工作以此算法为基础展开。
     2)提出了一种基于多核处理器的并行变步长VDHN算法用于暂态稳定仿真。引入α动态调度策略,将算法中最耗时的部分——发电机组的计算配置到多核CPU并行处理,并在仿真中动态调整各核心的计算量,以获得更好的负载平衡性能。进一步,在并行环境中考虑Newton类算法迭代时间的改变,自适应地调整雅可比矩阵更新策略,减少了并行计算过程中的串行部分和并行开销。算法复合加速比达到6.01倍,并可方便灵活地部署在多种软硬件平台上,适用性广。
     3)提出了基于CPU-GPU (Graphics Processing Unit)异构平台的一种非诚实牛顿-稳定双共轭梯度(BiConjugate Gradient Stabilized Method, BiCGSTAB)暂态稳定并行算法。算法依据联立矩阵的双层对角加边结构,将整体计算分解为3部分:1.动态元件相关计算;2.子分区系统计算;3.联络系统计算。在异构平台上,第1、2部分被分配到多核CPU上进行处理。第3部分则采用可完全并行化的稳定双共轭梯度法在GPU上计算,并且为了减少迭代次数使用了稀疏近似逆预处理技术。并行任务的划分使用了超图算法,可以对电网进行更精细的描述,并用数学语言表示地理区域信息,显著提高了划分效果。算法可对万级节点电网进行超实时仿真,仿真时间仅为实际暂态过程的63.4%。
     4)提出了基于CPU-GPU异构平台的一种多速率并行算法,应用于交-直流互联电网仿真。算法采用双层并行结构:第一层为“交-直并行”,考虑直流系统动态的独立性,将交流系统与直流系统解耦,分别部署在CPU和GPU上采用不同速率计算,系统间通过一定的接口时序交换数据;第二层为“直流系统时间并行”,直流系统在小步长下采用详细模型仿真,使用GPU实现了基于时间并行算法的流水线计算,可灵活设置流水线条数,对多个直流系统多积分时步并行求解。在此基础上,基于模型-视图-控制器模式构建了适应于大规模交直流互联电网暂态仿真的云计算原型系统,可方便地调用前文所述多种并行算法,并根据网络请求,分配合适的计算资源供用户使用。
     本文实现的方法可用于电力系统的规划、分析及安全稳定控制等方面,进一步推动了电力系统暂态稳定并行计算技术的发展,为大规模互联电网暂态稳定并行仿真和新型的电力系统仿真工具提供新的研究思路。
Nowadays the interconnection among areal power systems are being formed in China, which results in the exigent requirements of faster power system transient stability simulation. Thus, parallel computing for large scale power system transient stability analysis was studied in this dissertation. The main work focused on the improvement of serial algorithm, parallel algorithm, task scheduling and parallel software implemention on a high-performance platform and so on. The work of this dissertation can be listed as follows:
     1) An novel mixed serial algorithm is introduced to power system transient stability simulation, in which Shamanskii method and very dishonest newton algorithm(VDHN) are combined with variable step size technique. In the framework of simultaneous solution method of differential-algebra equations, this proposed algorithm utilizes the step-size control strategy on the basis of the local truncation error theory firstly. In addition, according to a class of Newton methods'convergence index, Shamanskii method is employed, which can control the update of Jacobin matrix adaptively. Furthermore, VDHN method applies to simplify the computation of voltage vector. Several test cases testify the validity and practicability of the proposed algorithm, which is especially efficient to improve the simulation when the fault of the network is serious. Some comments on its limitations are also provided.
     2) An OpenMP-based parallel Very Dishonest Newton (PVDHN) algorithm with variable step size is provided, running transient stability simulations on multi-core computers. Under the framework of simultaneous solution method of TSA, the step-size control strategy is used according to the local truncation error theory firstly. Then, computation of the generation units, which is the most time-consuming part of the simulation, is dynamically dispatched to several cores using an a dynamic scheduling scheme to obtain workload balancing based on OpenMP. Due to the convergence of Newton-type iterations, an adaptive Jacobian update control strategy is applied to reduce the sequential part of the simulation and the overhead generated by OpenMP. Several large scale test cases verify the validity and practicability of the proposed parallel algorithm, showing that the proposed approach achieves6.01comprehensived speed-up and a considerable reduction in parallel overheads.
     3) In order to satisfy the desire for faster than real-time transient stability simulation of large-scale power system, a parallel algorithm based on CPU-GPU (Graphics Processor Unit) platform is introduced. According to two-level block bordered diagonal form (BBDF) of the matrix, the algorithm decomposed the whole computation into three parts:1. the computation of dynamic units and injection currents;2. sub-network computation;3. boundary network computation. Part land2were computed on multi-core CPUs. Part3was solved by preconditioning Biconjugated gradient stabilized method on GPU. The precodnditoner was produced by sparse approximate inverse technique. The simulation results show that for a large network with12685nodes, the proposed algorithm runs6.63times faster than on a single CPU core, and the simulation time is less than the actual transient process time. It provides a new solution strategy for large-scale power system simulation.
     4) A multi-rated parallel algorithm based on CPU-GPU platform for the transient stability simulation of AC/DC power system is presented. A detailed model is applied to HVDC in which detailed HVDC controls and L/R Line dynamic is included. As a result, AC system uses large step size and HVDC uses small step size in the simulation. At the first parallel level, AC/DC power system is decomposed into two parts:the computation of AC power system is deployed on CPU, and HVDC is deployed on GPU. The second parallel level focuses on HVDC. Based on the principle of parallel-in-time method, the pipeline technique is implemented on GPU, which makes multi-integration steps of HVDC solved simultaneously. In order to increase the utilization level of the high-performce platform, a cloud computing proterotype system is developed based on Model-View-Controller (MVC) model. Case studies show that the proposed algorithm obtains a better efficiency, and the high-performance computing resources can be more eaily accessed by the
     The realization methods in this dissertation provide a new approach to high performance computing technologies in the field of transient stability simultion in power industry.
引文
[1]刘振亚.中国电力与能源[M].北京:中国电出版社.2012.
    [2]袁清云.特高压直流输电技术现状及在我国的应用前景[J].电网技术,2005,(14):1-3.
    [3]甘德强.胡江溢,韩祯祥.2003年国际若干停电事故思考[J].电力系统自动化,2004,28(03):1-9.
    [4]鲁宗相,蒋锦峰,袁德,等.从“8·14”美加大停电思考电力可靠性[J].中国电力,2003,36(12):1-6.
    [5]严剑峰,于之虹,田芳,等.电力系统在线动态安全评估和预警系统[J].中国电机工程学报,008,28(34):87-93.
    [6]颜泉,工路,李兴源.交直流混联系统的多速率混合仿真技术研究[J].电网技术,2005,(15):23-27.
    [7]王路,李兴源,颜泉,等.复杂交直流系统的双时标混合协调仿真[J].电力系统自动化,2005,(22):33-37.
    [8]王路.复杂交、直流互联系统的电磁—机电暂态混合仿真和相关问题的研究[D].2005.
    [9]Crow M. L., Chen J. G. The multirate method for simulation of power system dynamics[J]. Power Systems, IEEE Transactions on,1994,9(3):1684-1690.
    [10]Crow M. L., Chen J. G. The multirate simulation of FACTS devices in power system dynamics [J]. Power Systems, IEEE Transactions on.1996.11(1):376-382.
    [11]Chen J., Crow M. L., Chowdhury B. H., et al. An error analysis of the multirate method for power system transient stability simulation[C]. Power Systems Conference and Exposition,2004. IEEE PES, 2004:982-986.
    [12]陈国良.孙广中.徐云,等.并行计算的一体化研究现状与发展趋势[J].科学通报.2009.54(08):1143-1149.
    [13]Almasi G. S., Gottlieb A. Highly parallel computing[M]. San Francisco:Benjamin/Cummings Pub. Co., 1994.
    [14]Flynn M. J. Very high-speed computing systems[J]. Proceedings of the IEEE,1966,54(12):1901-1909.
    [15]Chapman B., Jost G., Van Der Pas R. Using OpenMP:Portable Shared Memory Parallel Programming[M].Mit Press,2007.
    [16]都志辉.高性能计算并行编程技术:MPI并行程序设计[M].北京:清华大学出版社.2001.
    [17]Amdahl Gene M. Validity of the single processor approach to achieving large scale computing capabilities[C]. AFIPS'67 (Spring), New York, NY, USA.1967:483-485.
    [18]Gobbert M. K. Configuration and performance of a Beowulf cluster for large-scale scientific simulations[J]. Computing in Science & Engineering,2005,7(2):14-26.
    [19]Sutter Herb, Larus James. Software and the Concurrency Revolution [J]. Queue-Multiprocessors,2005, 3(7):54-62.
    [20]Akhter S., Roberts J. Multi-Core Programming:Increasing Performance Through Software Multi-threading[M]. Intel Press,2006.
    [21]Owens J. D., Houston M., Luebke D., et al. GPU Computing[J]. Proceedings of the IEEE,2008, 96(5):879-899.
    [22]卢风顺,宋君强,银福康,等CPU/GPU协同并行计算研究综述[J].计算机科学,2011,38(03):5-9,46.
    [23]Brodtkorb Andre R., Dyken Christopher, Hagen Trond R., et al. State-of-the-art in heterogeneous computing[J]. Scientific Programming,2010,18(1):1-33.
    [24]朱小谦,孟祥飞,菅晓东,等.“天河一号”大规模并行应用程序测试[J].计算机科学,2012,39(03):265-282.
    [25]张建勋,古志民,郑超.云计算研究进展综述[J].计算机应用研究,2010,27(02):429-433.
    [26]陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2009,20(05):1337-1348.
    [27]陈全,邓倩妮.云计算及其关键技术[J].计算机应用,2009,29(09):2562-2566.
    [28]Lizhe Wang, Jie Tao, Kunze M., et al. Scientific Cloud Computing:Early Definition and Experience[C]. High Performance Computing and Communications,2008. HPCC'08.10th IEEE International Conference on,2008:825-830.
    [29]Armbrust Michael, Fox Armando, Griffith Rean, et al. Above the Clouds:A Berkeley View of Cloud Computing[R]. UC Berkley,2009.
    [30]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].清华大学出版社,2002.
    [31]王锡凡,方万良,杜正春.现代电力系统分析[M].科学出版社,2003.
    [32]Stott B. Power system dynamic response calculations[J]. Proceedings of the IEEE,1979,67(2):219-241.
    [33]宋新立,汤涌,刘文焯,等.电力系统全过程动态仿真的组合数值积分算法研究[J].中国电机上程学报,2009,29(28):23-29.
    [34]Astic J. Y., Bihain A., Jerosolimski M. The mixed Adams-BDF variable step size algorithm to simulate transient and long term phenomena in power systems[J]. Power Systems, IEEE Transactions on,1994, 9(2):929-935.
    [35]徐英,白雪峰,郭志忠.采用动态多维阶数控制的暂态稳定计算方法[J].中国电机工程学报,2008,28(19):81-85.
    [36]王守相,郑志杰,王成山.计及不确定性的电力系统时域仿真的区间算法[J].中国电机工程学报,2007,27(07):40-44.
    [37]吴红斌,丁明.用于电力系统暂态稳定仿真的可变步长牛顿法[J].中国电机工程学报,2010,(07):36-41.
    [38]林济铿,仝新宇,李杨春,等.基于预处理共轭梯度法的电力系统机电暂态仿真[J].电工技术学报,2008,23(05):93-99.
    [39]Ontario Hydro. Extend transient midterm stability program final report[R]. USA EPRI,1993.
    [40]IEEE Task Force. Parallel processing in power systems computation[J]. Power Systems, IEEE Transactions on,1992,7(2):629-638.
    [41]Chai J. S., Bose A. Bottlenecks in parallel algorithms for power system stability analysis[J]. IEEE Transactions on Power Systems,1993,8(1):9-15.
    [42]汪芳宗,何一帆.基十辛龙格-库塔-奈斯通方法的电力系统暂态稳定性并行计算方法[J].电网技术,2011.35(04):40-45.
    [43]汪芳宗,何一帆.电力系统暂态稳定性数值计算的几种新方法及其比较[J].电力系统保护与控制.2009.37(23):15-19.
    [44]Falc A O Djalma M. High Performance Computing in Power System Applications[C]. VECPAR'96, London, UK,1997:1-23.
    [45]Fong J., Pottle C. Parallel Processing of Power System Analysis Problems Via Simple Parallel Microcomputer Structures[J]. Power Apparatus and Systems, IEEE Transactions on,1978, PAS-97(5):1834-1841.
    [46]Kyuwa S., Yoshida T., Yuasa S., et al. Operator training simulator with real-time transient stability analysis[C]. Power Industry Computer Application Conference,1993. Conference Proceedings, 1993:255-261.
    [47]Decker I. C., Falcao D. M., Kaszkurewicz E. Conjugate gradient methods for power system dynamic simulation on parallel computers[J]. IEEE Transactions on Power Systems,1996,11(3):1218-1227.
    [48]Decker I. C., Falcao D. M., Kaszkurewicz E. Parallel implementation of a power system dynamic simulation methodology using the conjugate gradient method[J]. IEEE Transactions on Power Systems,1992, 7(1):458-465.
    [49]Chan K. W. Parallel algorithms for direct solution of large sparse power system matrix equations[J]. Generation, Transmission and Distribution, IEE Proceedings-,2001,148(6):615-622.
    [50]薛巍.舒继武,严剑峰,等.基于集群机的大规模电力系统暂态过程并行仿真[J].中国电机工程学报,2003,23(08):38-43.
    [51]Wei Xue, Jiwu Shu, Yongwei Wu, et al. Parallel algorithm and implementation for realtime dynamic simulation of power system[C]. Parallel Processing,2005. ICPP 2005. International Conference on, 2005:137-144.
    [52]Wang X. Z., Yan Z., Xue W. An adaptive clustering algorithm with high performance computing application to power system transient stability simulation[C]. Electric Utility Deregulation and Restructuring and Power Technologies,2008. DRPT 2008., Nanjuing,2008:1137-1140.
    [53]Chan K. W., Dai R. C., Cheung C. H. A coarse grain parallel solution method for solving large set of power systems network equations[C]. Power System Technology,2002. Proceedings. PowerCon 2002. International Conference on,2002:2640-2644.
    [54]Oyama T., Kitahara T., Serizawa Y. Parallel processing for power system analysis using band matrixfJ]. Power Systems, IEEE Transactions on,1990,5(3):1010-1016.
    [55]Lau K., Tylavsky D. J., Bose A. Coarse grain scheduling in parallel triangular factorization and solution of power system matrices[J]. Power Systems. IEEE Transactions on,1991,6(2):708-714.
    [56]Shyan-Lung Lin, Van Ness J. E. Parallel solution of sparse algebraic equations[C]. Power Industry Computer Application Conference,1993. Conference Proceedings,1993:380-386.
    [57]Aykanat C., Guven N. Algorithms for efficient vectorization of repeated sparse power system network computations[J]. Power Systems, IEEE Transactions on,1995,10(1):448-456.
    [58]Jun Qiang Wu, Bose A., Jin An Huang, et al. Parallel implementation of power system transient stability analysis[J]. Power Systems. IEEE Transactions on,1995.10(3):1226-1233.
    [59]沈沉,李业楼.大型互联电网分布式计算理论与方法[M].北京:清华大学出版社,2010.
    [60]李业楼,周孝信,吴中习.中种可用于大型电力系统数字仿真的复杂故障并行计算方法[J].中国电机工程学报,2003,23(12):1-5.
    [61]Morales F., Rudnick H.. Cipriano A. Electromechanical transients simulation on a multicomputer via the VDHN-Maclaurin method[J]. Power Systems, IEEE Transactions on,2001, 16(3):418-426.
    [62]韩晓言,韩祯祥.预处理并轭梯度法在电力系统暂态稳定分析并行算法中的应用研究[J].电力系统及其自动化学报,1996,8(2):1-6.
    [63]Alvarado F. L. Parallel Solution of Transient Problems by Trapezoidal Integration[J]. Power Apparatus and Systems, IEEE Transactions on,1979, PAS-98(3):1080-1090.
    [64]La Scala M., Brucoli M., Torelli F., et al. A Gauss-Jacobi-Block-Newton method for parallel transient stability analysis [of power systems][J]. Power Systems, IEEE Transactions on,1990,5(4):1168-1177.
    [65]洪潮.电力系统暂态稳定计算的一种时间并行算法[J].电网技术,2003,(04):31-35
    [66]汪芳宗,张磊.基于辛Radau方法的暂态稳定性并行计算方法[J].电力系统保护与控制,2011,39(23):35-38.
    [67]Ilic-Spong M., Crow M. L., Pai M. A. Transient Stability Simulation by Waveform Relaxation Methods[J]. Power Engineering Review, IEEE,1987, PER-7(11):37-38.
    [68]Paul D., Nakhla N. M., Achar R., et al. Parallel Simulation of Massively Coupled Interconnect Networks[J]. Advanced Packaging, IEEE Transactions on,2010,12(1):115-127.
    [69]Lin Jikeng, Tong Xinyu, Wang Xudong, et al. Parallel simulation for the transient stability of power system[C]. Electric Utility Deregulation and Restructuring and Power Technologies,2008. DRPT 2008. Third International Conference on, Nanjuing,2008:1325-1329.
    [70]林济铿,李杨春,罗萍萍,等.波形松弛法的电力系统暂态稳定性并行仿真计算[J].电工技术学报,2006,21(12):47-65.
    [71]Nakhla N. M., Ruehli A. E., Nakhla M. S., et al. Simulation of coupled interconnects using waveform relaxation and transverse partitioning[J]. Advanced Packaging, IEEE Transactions on,2006,29(1):78-87.
    [72]Hou L., Bose A. Implementation of the waveform relaxation algorithm on a shared memory computer for the transient stability problem[J]. Power Systems, IEEE Transactions on,1997,12(3):1053-1060.
    [73]Crow M. L., Ilic M. The parallel implementation of the waveform relaxation method for transient stability simulations[J]. Power Systems, IEEE Transactions on,1990,5(3):922-932.
    [74]Jalili-Marandi V., Dinavahi V. Instantaneous Relaxation-Based Real-Time Transient Stability Simulation[J]. Power Systems, IEEE Transactions on,2009,24(3):1327-1336.
    [75]韩帧祥.电力系统分析[M].杭州:浙江大学出版社,2005.
    [76]Nicolaides R. A. Whittaker's method for systems of non-linear equations[J]. Mathematical Proceedings of the Cambridge Philosophical Society,1969,65(02):523-526.
    [77]Chai J. S., Zhu N., Bose A., et al. Parallel Newton type methods for power system stability analysis using local and shared memory multiprocessors[J]. IEEE Transactions on Power Systems,1991,6(4):1539-1545.
    [78]Vorst H. A. Iterative Krylov methods for large linear systems[M]. Cambridge University Press,2003.
    [79]Jalili-Marandi V., Dinavahi V. SIMD-Based Large-Scale Transient Stability Simulation on the Graphics Processing Unit[J]. IEEE Transactions on Power Systems,2010,25(3):1589-1599.
    [80]Chan K. W., Dunn R. W., Daniels A. R. Efficient heuristic partitioning algorithm for parallel processing of large power systems network equations[J]. Generation, Transmission and Distribution, IEE Proceedings-, 1995,142(6):625-630.
    [81]Shu J., Wei Xue, Weimin Zheng. A parallel transient stability simulation for power systems[J]. Power Systems, IEEE Transactions on,2005,20(4):1709-1717.
    [82]赵文恺,房鑫炎,严正.电力系统并行计算的嵌套分块对角加边形式划分算法[J].中国电机工程学报,2010,(25).
    [83]Zhu N., Bose A. A dynamic partitioning scheme for parallel transient stability analysis[C]. Power Industry Computer Application Conference, USA.1991:238-244.
    [84]Jingjia Chen, Crow M. L. A Variable Partitioning Strategy for the Multirate Method in Power Systems[J]. Power Systems, IEEE Transactions on,2008,23(2):259-266.
    [85]Reeve J., Adapa R. A new approach to dynamic analysis of AC networks incorporating detailed modeling of DC systems. I. Principles and implementation[J]. Power Delivery, IEEE Transactions on,1988, 3(4):2005-2011.
    [86]Adapa R., Reeve J. A new approach to dynamic analysis of AC networks incorporating detailed modeling of DC systems. II. Application to interaction of DC and weak AC systems[J]. Power Delivery, IEEE Transactions on,1988,3(4):2012-2019.
    [87]岳程燕.田芳,周孝信,等.电力系统电磁暂态-机电暂态混合仿真接口原理[J].电网技术,2006,,(01):23-27.
    [88]周长春,徐政.直流输电准稳态模型有效性的仿真验证[J].中国电机工程学报,2003,23(12):33-36.
    [89]王成山,高毅,王丹,等.考虑直流系统开关特性控制的变步长仿真算法[J].中国电机工程学报,2009,,(34):16-21.
    [90]中国南方电网公司.交直流电力系统仿真技术[M].中国电力出版社,2007.
    [91]徐政.交直流电力系统动态行为分析[M].机械工业出版社,2004.
    [92]毛晓明,管霖,张尧,等.含有多馈入直流的交直流混合电网高压直流建模研究[J].中国电机工程学报,2004,(09):72-77.
    [93]刘永强,杨志辉,唐云,等.多时间尺度电力系统的模型降阶及稳定性分析(一)基本理论[J].电力系统自动化.2003,27(01):5-10.
    [94]徐政.蔡晔,刘国平.大规模交直流电力系统仿真计算的相关问题[J].电力系统自动化,2002,(15).
    [95]韩祯祥,杨卫东,徐政.基于NETOMAC软件的直流输电系统混合仿真计算及参数优化[J].电网技术,2000,(12):11-16.
    [96]Brandt R. M., Annakkage U. D., Brandt D. P., et al. Validation of a two-time step HVDC transient stability simulation model including detailed HVDC controls and DC line L/R dynamics[C].2006 IEEE Power Engineering Society General Meeting, Montreal, Canada,2006.
    [97]夏俊峰,杨帆,李静.等.基于GPU的电力系统并行潮流计算的实现[J].电力系统保护与控制,2010,(18):100-103.
    [98]韩志伟,刘志刚,鲁晓帆,等.基于CUDA的高速并行小波算法及其在电力系统谐波分析中的应用[J].电力自动化设备,2010,(01):98-101.
    [99]沐连顺,崔立忠,安宁.电力系统云计算中心的研究与实践[J].电网技术,2011,35(06):172-175.
    [100]冯永青,李鹏,陈刚.等.智能电网标准化核心内容及其对EMS发展的影响[J].南方电网技术,2011,05(01):8-13.
    [101]林振智,赵俊华,文福拴.云计算:构建未来电力系统的核心计算平台[J].电力系统自动化,2010,34(15):1-8.
    [1]Schainker R, Miller P, Dubbelday W.. Real-time dynamic security assessment:fast simulation and modeling applied to emergency outage security of the electric grid[J]. Power and Energy Magazine,2006.4(2):51-58.
    [2]Shi L B, Chang N C, Zhao D P, et al. Implementation of a Power System Dynamic Security Assessment and Early Warning System[C]. in Power Engineering Society General Meeting,2007.IEEE:1-6,24-28
    [3]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002:147-156.Ni
    [4]王锡凡.方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2003.
    [5]Stott, B., Power system dynamic response calculations[J]. Proceedings of the IEEE,1979.67(2):p.219-241.
    [6]徐英,白雪峰,郭志忠.采用动态多维阶数控制的暂态稳定计算方法[J].中国电机工程学报,2008,28(19): 81-85.
    [7]王守相,郑志杰,王成山.计及不确定性的电力系统时域仿真的区间算法[J].中国电机工程学报,2007,27(7):40-44.
    [8]吴红斌,丁明.用于电力系统暂态稳定仿真的可变步长牛顿法[J].中国电机工程学报,2010,(07):36-41.
    [9]宋新立,汤涌,刘文焯,等.电力系统全过程动态仿真的组合数值积分算法研究[J].中国电机工程学报,2009,29(28):23-29.
    [10]Astic J Y, Bihain A, Jerosolimski M. The mixed Adams BDF variable step size algorithm to simulate transient and long-term phenomena in power systems[J]. IEEE Trans. on Power Systems.1994,9(2):929-935.
    [11]Ontario Hydro. Extend transient midterm stability program final report[R]. USA EPRI,1993.
    [12]王建.陈颖,沈沉.基于逆Broyden拟牛顿法的分布式暂态稳定仿真算法[J].电力系统自动化,2010,,34(5):7-12..
    [13]Kundur P. Power system stability and control[M].New York:McGraw-Hill,1994:836-843.
    [14]Ascher, U.M. and L.R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Philadelphia, PA, USA:Society for Industrial and Applied Mathematics. 1998:123-133.
    [15]Nicolaides R.A. Whittaker's method for systems of non-linear equations. Mathematical Proceedings of the Cambridge Philosophical Society[J],1969,65(02):523-526.
    [16]Kelley C. T. Solving nonlinear equations with Newton's method[M]. Philadelphia, PA, USA:Society for Industrial and Applied Mathematics,2003:33-34.
    [17]Weijer Wilbert, Dijkstra Henk A., Hakan. A fully-implicit model of the global ocean circulation. Journal of Computational Physics[J],2003,192(2):452-470.
    [18]Chen J G, Crow M L. A study of numerically efficient algorithms for power system dynamic analysis[C]. The 36th Midwest Symposium on Circuits and Systems, Detroit (MI, USA),1993
    [19]Crow M L, Chen J G. The multirate mehod for simulation of power system dynamics[J]. IEEE Trans. on Power Systems,1994,9(3):1684-1690.
    [20]Crow M L, Chen J G. The multirate simulation of facts devices in power system dynamics[J]. IEEE Trans. on Power Systems,1996,11(1):376-382.
    [1]Taoka H., Abe S., Takeda S. Fast Transient Stability Solution Using an Array Processor[J]. Power Engineering Review, IEEE,1983, PER-3(12):37-38.
    [2]Happ H. H., Pottle C., Wirgau K. A. An Assessment Of Computer Technology For Large Scale Power System Simulation[C]. Power Industry Computer Applications Conference,1979:316-324.
    [3]Decker I. C., Falcao D. M., Kaszkurewicz E. Conjugate gradient methods for power system dynamic simulation on parallel computers[J]. IEEE Transactions on Power Systems,1996,11(3):1218-1227.
    [4]Chai J. S., Bose A. Bottlenecks in parallel algorithms for power system stability analysis[J]. IEEE Transactions on Power Systems,1993,8(1):9-15.
    [5]La Scala M., Sblendorio G., Bose A., et al. Comparison of algorithms for transient stability simulations on shared and distributed memory multiprocessors[J]. Power Systems, IEEE Transactions on,1996, 11(4):2045-2050.
    [6]李亚楼,周孝信,吴中习.基于PC机群的电力系统机电暂态仿真并行算法[J].电网技术,2003,27(11):8-12.
    [7]薛巍,舒继武,严剑峰,等.基于集群机的大规模电力系统暂态过程并行仿真[J].中国电机工程学报,2003,23(08):38-43.
    [8]Chapman B., Jost G., Pas R. Using OpenMP:portable shared memory parallel programming[M]. Massachusetts:MIT Press,2007.
    [9]黄春.面向分布共享存储体系结构的高效能OpenMP关键技术研究[D].国防科学技术大学,2007.
    [10]Akhter S., Roberts J. Multi-core programming:increasing performance through software multi-threading[M]. Intel Press,2006.
    [11]Akhter S., Roberts J. Multi-Core Programming:Increasing Performance Through Software Multi-threading[M]. Intel Press,2006.
    [12]Jun Qiang Wu, Bose A., Jin An Huang, et al. Parallel implementation of power system transient stability analysis[J]. Power Systems, IEEE Transactions on,1995,10(3):1226-1233.
    [13]Jalili-Marandi V., Dinavahi V. Instantaneous Relaxation-Based Real-Time Transient Stability Simulation[J]. Power Systems, IEEE Transactions on,2009,24(3):1327-1336.
    [14]Shu J., Wei Xue, Weimin Zheng. A parallel transient stability simulation for power systems[J]. Power Systems, IEEE Transactions on,2005,20(4):1709-1717.
    [15]Morales F., Rudnick H., Cipriano A. Electromechanical transients simulation on a multicomputer via the VDHN-Maclaurin method[J]. Power Systems, IEEE Transactions on,2001,16(3):418-426.
    [16]Yang Chao-tung, Chang Shun-chyi. A Parallel Loop Self-Scheduling on Extremely Heterogeneous PC Clusters[C].,2003:1079-1088.
    [17]Polychronopoulos Constantine D., Kuck David J. Guided Self-Scheduling:A Practical Scheduling Scheme for Parallel Supercomputers[J]. Computers, IEEE Transactions on,1987. C-36(12):1425-1439.
    [18]Deuflhard P. Newton Methods for Nonlinear Problems:Affine Invariance and Adaptive Algorithms[M]. Springer,2011.
    [19]Ontario Hydro. Extend transient midterm stability program final report[R]. USA EPRI,1993.
    [1]Chai J. S., Zhu N., Bose A., et al. Parallel Newton type methods for power system stability analysis using local and shared memory multiprocessors[J]. IEEE Transactions on Power Systems,1991,6(4):1539-1545.
    [2]Brucoli M., De Roma A., La Scala M., et al. Parallel-in-time method based on shifted-picard iterations for power system transient stability analysis[J]. European Transactions on Electrical Power,1994,4(6):525-532.
    [3]de Pillis L. G. A Comparison of Iterative Methods for Solving Nonsymmetric Linear Systems[J]. Acta Applicandae Mathematicae,1998,51(2):141-159.
    [4]Decker I. C., Falcao D. M., Kaszkurewicz E. Conjugate gradient methods for power system dynamic simulation on parallel computers[J]. IEEE Transactions on Power Systems,1996,11(3):1218-1227.
    [5]Decker I. C., Falcao D. M., Kaszkurewicz E. Parallel implementation of a power system dynamic simulation methodology using the conjugate gradient method[J]. IEEE Transactions on Power Systems,1992, 7(1):458-465.
    [6]丁明,张晋波,汪兴强.提高预处理共轭梯度法计算大型电网潮流时并行性能的方法[J].电网技术,2008,32(13):16-19.
    [7]蔡大用,陈玉荣.用不完全LU分解预处理的不精确潮流计算方法[J].电力系统自动化,2002,25(08):11-14.
    [8]韩晓言,韩祯祥.预处理并轭梯度法在电力系统暂态稳定分析并行算法中的应用研究[J].电力系统及其自动化学报,1996,8(2):1-6.
    [9]林济铿,仝新宇,李杨春,等.基于预处理共轭梯度法的电力系统机电暂态仿真[J].电工技术学报,2008,23(05):93-99.
    [10]薛巍,舒继武.严剑峰,等.基十集群机的大规模电力系统暂态过程并行仿真[J].中国电机工程学报,2003.23(08):38-43.
    [11]李亚楼,周孝信,吴中习.一种可用于大型电力系统数字仿真的复杂故障并行计算方法[J].中国电机工程学报,2003,23(12):1-5.
    [12]岳程燕,周孝信,李若梅.电力系统电磁暂态实时仿真中并行算法的研究[J].中国电机工程学报,2004,12(24):1-7.
    [13]李芳,郭剑,吴中习.基于PC机群的电力系统小干扰稳定分布式并行算法[J].中国电机工程学报,2007,27(31):7-13.
    [14]王鲁,相年德,王世缨.应用简化梯度法研究分布式并行最优潮流计算[J].中国电机工程学报,1991,S1(11):126-131.
    [15]刘科研,盛万兴.李运华.基于分布式最优潮流算法的跨区输电阻塞管理研究[J].中国电机工程学报,2007,27(19):56-61.
    [16]程新功,厉吉文,曹立霞.基于电网分区的多目标分布式并行无功优化研究[J].中国电机工程学报,2003,23(10):109-113.
    [17]王旭东.基于图论的智能电网最优孤岛划分模型和算法[D].2011.
    [18]赵文恺,房鑫炎,严正.电力系统并行计算的嵌套分块对角加边形式划分算法[J].中国电机工程学报,2010,30(25):66-73.
    [19]Wei Xue, Jiwu Shu, Yongwei Wu, et al. Parallel algorithm and implementation for realtime dynamic simulation of power system[C]. Parallel Processing,2005. ICPP 2005. International Conference on, 2005:137-144.
    [20]van der Vorst H. A. BI-CGSTAB:a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing,1992, 13(2):631-644.
    [21]张浩,李利军,林岚.GPU的通用计算应用研究[J].计算机与数字工程,2005,(12):60-62.
    [22]Jalili-Marandi V., Dinavahi V. SIMD-Based Large-Scale Transient Stability Simulation on the Graphics Processing Unit[J]. IEEE Transactions on Power Systems,2010,25(3):1589-1599.
    [23]夏俊峰,杨帆.李静,等.基于GPU的电力系统并行潮流计算的实现[J].电力系统保护与控制,2010,(18):100-103.
    [24]韩志伟,刘志刚,鲁晓帆,等.基于CUDA的高速并行小波算法及其在电力系统谐波分析中的应用[J].电力自动化设备,2010,(01):98-101.
    [25]都志辉.高性能计算并行编程技术:MP1并行程设计[M].北京:清华大学出版社,2001.
    [26]东旭.一种图分割算法在大规模电力系统计算中的应用[D].上海交通大学,2011.
    [27]李业楼.大规模电力系统机电暂态实时仿真算法及软件的研究[D].2003.
    [28]杨建林.电力系统暂态稳定空间并行仿真[D].天津大学.2006.
    [29]薛巍.全国互联巨系统的暂态稳定并行计算研究[D].2003.
    [30]张伯明,张海波.多控制中心之间分解协调计算模式研究[J].中国电机工程学报,2006,26(22):1-5.
    [31]Karypis George, Kumar Vipin. A fast and high quality multilevel scheme for partitioning irregular graphs[J]. SIAM Journal on Scientific Computing,1999,20(1):359-392.
    [32]贝尔热.超图:有限集的组合学[M].南京:东南大学出版社,2002.
    [33]Berge C. Graphs and Hypergraphs[M]. Holland:North-Holland Publishing Company,1976.
    [34]Power Technologies Inc. Program application guide[M]. NY:Power Technologies Inc,2002,314-334.
    [35]Karypis G., Aggarwal R., Kumar V., et al. Multilevel hypergraph partitioning:applications in VLSI domain[J]. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,1999,7(1):69-79.
    [36]Karypis George, Kumar Vipin. Multilevel k-way hypergraph partitioning[C]. DAC'99, New York, NY, USA, 1999:343-348.
    [37]Alvarado F. L. Computational complexity in power systems[J]. Power Apparatus and Systems, IEEE Transactions on,1976,95(4):1028-1037.
    [38]Tinney W. F., Walker J. W. Direct solutions of sparse network equations by optimally ordered triangular factorization[J]. Proceedings of the IEEE.1967,55(11):1801-1809.
    [39]昆德.电力系统稳定与控制[M].北京:中国电力出版社,2001.
    [40]Fiduccia C. M., Mattheyses R. M. A Linear-Time Heuristic for Improving Network Partitions[C]. Design Automation,1982.19th Conference on,1982:175-181.
    [41]谷同祥.大型稀疏线性代数方程组的并行非定常迭代方法[D].2001.
    [42]Topsakal E., Kindt R., Sertel K., et al. Evaluation of the BICGSTAB(1) algorithm for the finite-element/boundary-integral method[J]. Antennas and Propagation Magazine, IEEE,2001, 43(6):124-131.
    [43]Van Der Vorst H. A. Iterative Krylov Methods for Large Linear Systems[M]. Cambridge University Press, 2003.
    [44]谷同祥,迟学斌,刘兴平.稀疏近似逆与多层块ILU预条件技术[J].应用数学和力学,2004,25(09):927-934.
    [45]汪芳宗,何一帆,叶婧.基于稀疏近似逆预处理的牛顿-广义极小残余潮流计算方法[J].电网技术,2008,32(14):50-53.
    [46]Benzi Michele, Tuma Miroslav. A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems[J]. SIAM Journal on Scientific Computing,1998,19(3):968-994.
    [47]Owens J. D., Houston M., Luebke D., et al. GPU Computing[J]. Proceedings of the IEEE,2008, 96(5):879-899.
    [48]Buntinas Darius. Goglin Brice, Goodell David, et al. Cache-Efficient, Intranode, Large-Message MPI Communication with MPICH2-Nemesis[C]. ICPP'09. Washington. DC, USA,2009:462-469.
    [1]Chen J. G., Crow M. L. A study of numerically efficient algorithms for power system dynamic analysis[C]. Proceedings of the 36th Midwest Symposium on Circuits and Systems, USA,1993:712-715.
    [2]Crow M. L., Chen J. G. The multirate method for simulation of power system dynamics[J]. Power Systems, IEEE Transactions on,1994,9(3):1684-1690.
    [3]Crow M. L., Chen J. G. The multirate simulation of FACTS devices in power system dynamics [J]. Power Systems, IEEE Transactions on,1996,11(1):376-382.
    [4]颜泉,王路,李兴源.交直流混联系统的多速率混合仿真技术研究[J].电网技术,2005,(15):23-27.
    [5]王路.复杂交、直流互联系统的电磁—机电暂态混合仿真和相关问题的研究[D].2005.
    [6]袁清云.特高压直流输电技术现状及在我国的应用前景[J].电网技术,2005,(14):1-3.
    [7]Reeve J., Adapa R. A new approach to dynamic analysis of AC networks incorporating detailed modeling of DC systems. I. Principles and implementation[J]. Power Delivery, IEEE Transactions on,1988, 3(4):2005-2011.
    [8]Adapa R.. Reeve J. A new approach to dynamic analysis of AC networks incorporating detailed modeling of DC systems. Ⅱ. Application to interaction of DC and weak AC systems[J]. Power Delivery, IEEE Transactions on,1988,3(4):2012-2019.
    [9]岳程燕,田芳,周孝信,等.电力系统电磁暂态-机电暂态混合仿真接口原理[J].电网技术,2006,(01):23-27.
    [10]Brandt R. M., Annakkage U. D.,Brandt D. P., et al. Validation of a two-time step HVDC transient stability simulation model including detailed HVDC controls and DC line L/R dynamics[C].2006 IEEE Power Engineering Society General Meeting, Montreal, Canada,2006.
    [11]夏道止.电力系统分析(下册)[M].水利水电出版社,1994.
    [12]王路,李兴源.颜泉,等.复杂交直流系统的双时标混合协调仿真[J].电力系统自动化,2005,(22):33-37.
    [13]毛晓明,管霖,张尧等.含有多馈入直流的交直流混合电网高压直流建模研究[J].中国电机工程学报,2004,(09):72-77.
    [14]沐连顺,崔立忠,安宁.电力系统云计算中心的研究与实践[J].电网技术,2011,35(06):172-175.
    [15]Jalili-Marandi V., Dinavahi V. Instantaneous Relaxation-Based Real-Time Transient Stability Simulation[J]. Power Systems, IEEE Transactions on,2009,24(3):1327-1336.
    [16]Peddigari B. P. Unified Cloud Migration Framework-Using factory based approach[C]. India Conference (INDICON),2011 Annual IEEE,2011:1-5.
    [17]陈臣,马晓亭.基于云计算的数字图书馆动态云迁移问题与对策[J].图书馆学研究,2011,20(21):48-50.
    [18]刘芹,刘玲,毕晓飞.业务平台云迁移方案的探讨[J].电信下程技术与标准化,2012,12(04):35-38.
    [19]Ontario Hydro. Extend transient midterm stability program final report[R]. USA EPRI,1993.
    [20]Kundur P., Balu N. J., Lauby M. G. Power system stability and control[M]. McGraw-Hill,1994.
    [21]Power Technologies Inc. Program application guide[M]. NY:Power Technologies Inc,2002,314-334.
    [22]洪潮.电力系统暂态稳定计算的一种时间并行算法[J].电网技术,2003,(04):31-35.
    [23]La Scala M., Sbrizzai R., Torelli F. A pipelined-in-time parallel algorithm for transient stability analysis [J]. Power Systems. IEEE Transactions on,1991.6(2):715-722.
    [24]Ino Fumihiko, Matsui Manabu, Goda Keigo, et al. Performance Study of LU Decomposition on the Programmable GPU[J]. High Performance Computing,2005,3769:83-94.
    [25]Chai J. S., Bose A. Bottlenecks in parallel algorithms for power system stability analysis[J]. IEEE Transactions on Power Systems,1993,8(1):9-15.
    [26]Alvarado F. L. Parallel Solution of Transient Problems by Trapezoidal Integration[J]. Power Apparatus and Systems, IEEE Transactions on,1979, PAS-98(3):1080-1090.
    [27]Forcier J., Bissex P., Chun W. J., et al. Python Web Development with Django[M]. USA:Pearson Education, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700