用户名: 密码: 验证码:
基础燃料(PRF)及汽油表征燃料(TRF)化学反应动力学骨架模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于实用燃料成分的多样性和化学反应动力学的复杂性,直接将详细机理耦合到流体力学中超过了当前计算机的能力。所以一方面需要选取几种简单的代表性成分,重现实用燃料的物理和化学特性,另一方面需要在保持性能的前提下,对详细机理进行简化。为了解决保持机理性能和缩小机理规模之间的矛盾,本文根据当前汽油表征燃料化学反应动力学的研究现状,提出了一种实用的构建多成分混合燃料化学反应动力学骨架模型的“半解耦”思想,并根据该思想构建了汽油表征燃料化学反应动力学骨架模型,通过了包括HCCI发动机的多种反应器和不同工况的实验验证。本文主要完成了以下工作。
     1、比较系统地总结和分析了当前适用于发动机的基础燃料(PRF)和甲苯参比燃料(TRF)化学反应动力学机理的研究现状,简单地归纳了现有的详细机理简化方法,并指出了当前所存在的问题。
     2、全面地对比和分析了现有基础燃料化学动力学骨架模型的不足,同时考虑现有详细机理简化方法的局限性,从理论上提出了“半解耦”思想,根据这种思想给出了一种实用的构建多成分混合燃料化学反应动力学骨架模型的方法。应用“半解耦”思想,以构建异辛烷化学动力学骨架模型为例,对比和分析了三种不同的“内核”机理,揭示了其共性问题,并确定选用C0~C1的详细和普适机理作为“内核”
     3、将“半解耦”思想和方法应用于最基础的汽油表征燃料——异辛烷,构建了新的异辛烷化学动力学骨架模型,并通过了激波管、射流搅拌反应器、流动反应器、层流火焰速度和3D-CFD发动机的验证。
     4、在成功构建异辛烷化学反应动力学骨架模型的基础上,将“半解耦”思想和方法应用到正庚烷和基础燃料上作为进一步拓展,构建了二者的化学动力学骨架模型,并通过了激波管、射流搅拌反应器、流动反应器、层流火焰速度和3D-CFD发动机的验证。
     5、在基础燃料的基础上,通过“半解耦”思想和方法构建了甲苯和甲苯参比燃料的化学反应动力学骨架模型,并通过了激波管、射流搅拌反应器、流动反应器和层流火焰速度的验证。
     6、选取两种不同配比的甲苯参比燃料作为汽油表征燃料,并应用新构建的甲苯参比燃料化学反应动力学骨架模型,通过激波管、层流火焰速度和3D-CFD发动机模拟了实际汽油的着火和燃烧特性。计算结果与实验数据达到了满意的吻合。
Due to the diversity of components of real fuels and the complexity of chemical kinetics, the computer resources demanded by the combination of computational fluid dynamics (CFD) and detailed chemical kinetics exceeds the currently available computational abilities. Therefore, it is necessary to model a fuel's physical and chemical properties by choosing some represented components and reduce a detailed mechanism while maintain its good performance. In order to solve the contradiction between maintaining the ability and reducing the size of the mechianism, a practical methodology of developing a skeletal chemical kinetic model for surrogate fuels with multi-components is proposed by exploring a new approach, called as'semi-decoupling'. Based on the methodology, a new skeletal chemical kinetic model for gasoline surrogate fuels is developed and validated against various reactors, including HCCI engines, and operation conditions. Research work completed in this thesis is as the following.
     1. Recent advancement and achievements in the chemical kinetic models for primary reference fuel (PRF) and toluene reference fuel (TRF) is reviewed systematically and the methodology of reducing detailed mechanism is summarized. Problems in the current studies are identified and discussed.
     2. The weaknesses of existing skeletal chemical kinetic models are compared and analyzed. Considering the limitation of existing methodology of reducing detailed mechanisms, the theoretical background and basic idea of the 'semi-decoupling' methodology is presented. Based on the methodology, a practical technique of developing a skeletal chemical kinetic model for surrogate fuels with multi-components is proposed and applied to the construction of a skeletal model of iso-octane. Three different 'core' mechanisms are compared and analyzed to reveal their common characteristic. Consequently, the detailed and comprehensive mechianism of 'CO~C1' is chosen as the 'core'.
     3. A new skeletal chemical kinetic model of iso-octane is developed by using the 'semi-decoupling' methodology in view of the fact that iso-octane is the simplest gasoline surrogate. The model is validated against shock tube, jet-stirred reactor, flow reactor, laminar flame speed and3D-CFD engine.
     4. Based on the achievement of developing the iso-octane skeletal model, new skeletal chemical kinetic models of n-heptane and PRF are developed by using the'semi-decoupling' methodology as an extention of the iso-octane model. The models are validated against measurement data from ST, JSR, FR, LFS and3D-CFD engine.
     5. Base on the skeletal model of PRF, new skeletal chemical kinetic models of toluene and TRF are developed by using the 'semi-decoupling' methodology. The model is validated against ST, JSR, FR and LFS.
     6. The new model is applied to two kinds of gasoline surrogate fuels with different components based on TRF and validated against the real gasoline fuels on auto-ignition and combustion characteristic in ST, LFS and3D-CFD engine. Good agreement between predictions and experiments are obtained.
引文
[1]Pitz W. J..Cernansky N. P., Dryer F. L., et al. Development of an experimental database and chemical kinetic models for surrogate gasoline fuels [C]. SAE Paper 2007-01-0175,2007.
    [2]Farrell J. T., Cernansky N. P., Dryer F. L., et al. Development of an experimental database and kinetic models for surrogate diesel fuels [C].SAE paper 2007-01-0201,2007.
    [3]Colket M., Edwards T., Williams S., et al. Development of an experimental database and kinetic models for surrogate jet fuels [C].45th AIAA Aerospace Sciences Meeting and Exhibit,2007.
    [4]Workshop on Combustion Simulation Databases for Real Transportation Fuels. http://kinetics.nist.gov/RealFuels/.
    [5]Model Fuels Consortium, http://www.reactiondesign.com/support/open/mfc.html.
    [6]Mehl M., Pitz W. J., Westbrook C. K., et al. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions [J]. Proceedings of the Combustion Institute,2011,33(1):193-200.
    [7]Jia, M., Xie M. Z. A chemical kinetics model of iso-octane oxidation for HCCI engines [J]. Fuel,2006, 85(17):2593-2604.
    [8]Chaos M., Zhao Z., Kazakov A. et al. A PRF+Toluene Surrogate Fuel Model for Simulating Gasoline Kinetics [C]. Fifth US Combustion Meeting,2007.
    [9]Mittal, G., Sung C. J. Autoignition of toluene and benzene at elevated pressures in a rapid compression machine [J]. Combustion and Flame,2007,150(4):355-368.
    [10]Gauthier, B., Davidson D., Hanson R. Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures [J]. Combustion and Flame,2004,139(4):300-311.
    [11]Kim, Y., Min K., Kim M. S., et al. Development of a Reduced Chemical Kinetic Mechanism and Ignition Delay Measurement in a Rapid Compression Machine for CAI Combustion [C].SAE paper 2007-01-0218,2007.
    [12]Machrafi, H., Cavadias S., Gilbert P. An experimental and numerical analysis of the HCCI auto-ignition process of primary reference fuels, toluene reference fuels and diesel fuel in an engine, varying the engine parameters [J]. Fuel processing technology,2008,89(11):1007-1016.
    [13]Andrae J. Head R. HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model [J]. Combustion and Flame,2009,156(4):842-851.
    [14]Puduppakkam, K., Liang L., Naik C. V., et al. Combustion and emissions modeling of a gasoline hcci engine using model fuels [C]. SAE paper 2009-01-0669,2009.
    [15]Kukkadapu G., Kumar K., Sung C. J., et al. Autoignition of gasoline and its surrogates in a rapid compression machine [J]. Proceedings of the Combustion Institute,2013,34(1):345-352.
    [16]Naik, C.V., Pitz W. J., Westbrook C. K., et al. Detailed Chemical Kinetic Modelling of Surrogate Fuels for Gasoline and Application to an HCCI Engine [C]. SAE Paper 2005-01-3741,2005.
    [17]Vanhove G., Petit G., Minetti R. Experimental study of the kinetic interactions in the low-temperature autoignition of hydrocarbon binary mixtures and a surrogate fuel [J]. Combustion and Flame,2006, 145(3):521-532.
    [18]Fikri M., Herzler J., Starke R., et al. Autoignition of gasoline surrogates mixtures at intermediate temperatures and high pressures [J]. Combustion and Flame,2008,152(1):276-281.
    [19]Lenhert D. B., Miller D. L., Cernansky N. P., et al. The oxidation of a gasoline surrogate in the negative temperature coefficient region [J]. Combustion and Flame,2009,156(3):549-564.
    [20]Mehl M., Chen J. Y., Pitz W. J., et al. An Approach for Formulating Surrogates for Gasoline with Application toward a Reduced Surrogate Mechanism for CFD Engine Modeling [J]. Energy & Fuels, 2011,25(11):5215-5223.
    [21]Cancino L., Fikri M., Oliveira A.A.M., et al. Ignition delay times of ethanol-containing multi-component gasoline surrogates:Shock-tube experiments and detailed modeling [J]. Fuel,2011, 90(3):1238-1244.
    [22]Griffiths J., Halford-Maw P. A., Rose D. J. Fundamental features of hydrocarbon autoignition in a rapid compression machine [J]. Combustion and Flame,1993,95(3):291-306.
    [23]Minetti R., Carlier M. Ribaucour M., et al. A rapid compression machine investigation of oxidation and auto-ignition of n-Heptane:Measurements and modeling [J]. Combustion and Flame,1995, 102(3):298-309.
    [24]Minetti R., Carlier M., Ribaucour M., et al. Comparison of oxidation and autoignition of the two primary reference fuels by rapid compression [C]. Twenty-Sixth Symposium (International) on Combustion,1996.
    [25]Tanaka S., Ayala F., Kece J. C., et al. Two-stage ignition in HCCI combustion and HCCI control by fuels and additives [J]. Combustion and Flame,2003,132(1):219-239.
    [26]Lim O.T., Sendoh N., Iida "N. Experimental study on HCCI combustion characteristics of n-heptane and iso-octane fuel/air mixture by the use of a rapid compression machine [C]. SAE Paper 2004-01-1968,2004.
    [27]He X., Donovan M. T., Zigler B. T., et al. An experimental and modeling study of iso-octane ignition delay times under homogeneous charge compression ignition conditions [J]. Combustion and Flame, 2005,142(3):266-275.
    [28]Walton S. M., He X., Zigler B. T., et al. An experimental investigation of iso-octane ignition phenomena [J]. Combustion and Flame,2007,150(3):246-262.
    [29]Vermeer D. J., Meyer J. W., Oppenheim A. K. Auto-ignition of hydrocarbons behind reflected shock waves [J]. Combustion and Flame,1972,18(3):327-336.
    [30]Ciezki H. K., Adomeit G. Shock-tube investigation of self-ignition of n-heptane-air mixtures under engine relevant conditions [J]. Combustion and Flame,1993,93(4):421-433.
    [31]Fieweger K., Blumenthal R., Adomeit G. Self-ignition of SI engine model fuels:A shock tube investigation at high pressure [J]. Combustion and Flame,1997,109(4):599-619.
    [32]Horning D. C., Davidson D. F., Hanson R. K. Study of the High-Temperature Autoignition of n-Alkane/O2/Ar Mixtures [J]. Journal of propulsion and power,2002,18(2):363-371.
    [33]Oehlschlaeger M. A., Davidson D. F., Herbon J. T., et al. Shock tube measurements of branched alkane ignition times and OH concentration time histories [J]. International Journal of Chemical Kinetics,2004,36(2):67-78.
    [34]Smith J. M., Simmie J. M., Curran H. J. Autoignition of heptanes; experiments and modeling [J]. International Journal of Chemical Kinetics,2005,37(12):728-736.
    [35]Herzler J., Jeri L., Roth P. Shock tube study of the ignition of lean n-heptane/air mixtures at intermediate temperatures and high pressures [J]. Proceedings of the Combustion Institute,2005,30(1): 1147-1153.
    [36]Davidson D. F., Gauthier B. M., Hanson R. K. Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures [J]. Proceedings of the Combustion Institute,2005,30(1):1175-1182.
    [37]Shen H. P. S., Vanderover J., Oehlschlaeger M. A., A shock tube study of iso-octane ignition at elevated pressures:The influence of diluent gases [J]. Combustion and Flame,2008,155(4):739-755.
    [38]Dagaut P., Reuillon M., Cathonnet M. High pressure oxidation of liquid fuels from low to high temperature.1. n-Heptane and iso-Octane [J]. Combustion Science and Technology,1994,95(1-6): 233-260.
    [39]Dagaut P., Reuillon M., Cathonnet M. High pressure oxidation of liquid fuels from low to high temperature.2. Mixtures of n-heptane and iso-octane [J]. Combustion Science and Technology,1994, 103(1-6):315-336.
    [40]Dagaut P., Reuillon M., Cathonnet M. Experimental study of the oxidation of n-heptane in a jet stirred reactor from low to high temperature and pressures up to 40 atm [J]. Combustion and Flame,1995, 101(1):132-140.
    [41]Ciajolo A. D'Anna A. Controlling steps in the low-temperature oxidation of n-heptane and iso-octane [J]. Combustion and Flame,1998,112(4):617-622.
    [42]Moreac G., Dagaut P., Roesler J. F., et al. Nitric oxide interactions with hydrocarbon oxidation in a jet-stirred reactor at 10 atm [J]. Combustion and Flame,2006,145(3):512-520.
    [43]Dubreuil A., Foucher F., Rousselle C. M., et al. HCCI combustion:Effect of NO in EGR [J]. Proceedings of the Combustion Institute,2007,31(2):2879-2886.
    [44]Dryer F. L., Brezinsky K. A flow reactor study of the oxidation of n-octane and iso-octane [J]. Combustion Science and Technology,1986,45(3-4):199-212.
    [45]Callahan C. V., Held T. J., Dryer F. L., et al. Experimental data and kinetic modeling of primary reference fuel mixtures [C]. Twenty-Sixth Symposium (International) on Combustion,1996.
    [46]Chen J. S., Litzinger T. A., Curran H. J. The lean oxidation of iso-octane in the intermediate temperature regime at elevated pressures [J]. Combustion Science and Technology,2000,156(1): 49-79.
    [47]Bradley D., Hicks R. A., Lawes M., et al. The measurement of laminar burning velocities and Markstein numbers for Iso-octane-Air and Iso-octane-n-Heptane-Air mixtures at elevated temperatures and pressures in an explosion bomb [J]. Combustion and Flame,1998,115(1):126-144.
    [48]Davis S. G., Law C. K. Laminar flame speeds and oxidation kinetics of iso-octane-air and n-heptane-air flames [C]. Twenty-Seventh Symposium (International) on Combustion,1998.
    [49]Seiser R., Pitsch H., Seshadri K., et al. Extinction and autoignition of n-heptane in counterflow configuration [J]. Proceedings of the Combustion Institute,2000,28(2):2029-2037.
    [50]Kwon O. C., Hassan M. I.Faeth G. M. Flame/stretch interactions of premixed fuel-vapor/02/N2 flames [J]. Journal of propulsion and power,2000,16(3):513-522.
    [51]Huang Y., Sung C. J., Eng J. A. Laminar flame speeds of primary reference fuels and reformer gas mixtures [J]. Combustion and Flame,2004,139(3):239-251.
    [52]Jerzembeck S., Peters N., Pepiot-Desjardins P., et al. Laminar burning velocities at high pressure for primary reference fuels and gasoline:Experimental and numerical investigation [J]. Combustion and Flame,2009,156(2):292-301.
    [53]Halstead M. P., Kirsch L. J., Quinn C. P. The autoignition of hydrocarbon fuels at high temperatures and pressures-fitting of a mathematical model [J]. Combustion and Flame,1977,30:45-60.
    [54]Zheng J. C., Miller D. L., Cernansky N.P. A global reaction model for the HCCI combusion process [C]. SAE Paper 2004-01-2950,2004.
    [55]Cox R. A., Cole J. A. Chemical aspects of the autoignition of hydrocarbon-air mixtures [J]. Combustion and Flame,1985,60(2):109-123.
    [56]Hu H., Keck J. Autoignition of adiabatically compressed combustible gas mixtures [C]. SAE Paper 872110,1987.
    [57]Voglsam S., Winter F. A global combustion model for simulation of n-heptane and iso-octane self ignition [J]. Chemical Engineering Journal,2012,203:357-369.
    [58]Li H. L., Miller D. L., Cernansky N. P., et al. Development of a reduced chemical kinetic model for prediction of preignition reactivity and autoignition of primary reference fuels [C]. SAE Paper 960498, 1996.
    [59]Tanaka S., Ayala F., Keck J. C. A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine [J]. Combustion and Flame,2003,133(4):467-481.
    [60]Tsurushima T., A new skeletal PRF kinetic model for HCCI combustion [J]. Proceedings of the Combustion Institute,2009,32(2):2835-2841.
    [61]Machrafi H.,Guibert P., Cavadias S., et al. HCCI engine modeling and experimental investigations-Part 1: The reduction, composition and validation of a n-Heptaneiso-Octane mechanism [J]. Combustion Science and Technology,2007,179(12):2561-2580.
    [62]Machrafi H.,Guibert P., Cavadias S., et al. HCCI engine modeling and experimental investigations-Part 2:The composition of a NO-PRF interaction mechanism and the influence of NO in EGR on auto-ignition [J]. Combustion Science and Technology,2008,180(7):1245-1262.
    [63]Huang C., Lv X. C., Huang Z. New reduced chemical mechanism for homogeneous charge combustion ignition combustion investigation of primary reference fuels [J]. Energy & Fuels,2008, 22(2):935-944.
    [64]Zhang Q. F., Zheng Z. L., He Z. W., et al. A skeletal chemical kinetic model of PRF oxidation for HCCI engines [J]. International Journal of Chemical Reactor Engineering,2011,9(1).
    [65]Zheng J. C., Yang W. Y., David L., et al. A skeletal chemical kinetic model for the HCCI combustion process [C]. SAE Paper 2002-01-0423,2002.
    [66]Griffiths J. F., Hughes K. J., Schreiber M., et al., A unified approach to the reduced kinetic modeling of alkane combustion [J]. Combustion and Flame,1994,99(3):533-540.
    [67]Ra, Y., Reitz R. D. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels [J]. Combustion and Flame,2008,155(4):713-738.
    [68]Kirchen P., Shahbakhti M., Koch C. R. A skeletal kinetic mechanism for PRF combustion in HCCI engines [J]. Combustion Science and Technology,2007,179(6):1059-1083.
    [69]Ogink R., Golovitchev V. Gasoline HCCI modeling:computer program combining detailed chemistry and gas exchange processes [C]. SAE paper 2001-01-3614,2001.
    [70]Chaos M., Kazakov A., Zhao Z. W., et al. A high-temperature chemical kinetic model for primary reference fuels [J]. International Journal of Chemical Kinetics.2007,39(7):399-414.
    [71]Slavinskaya N., Haidn O. J. Modeling of n-heptane and iso-octane oxidation in air [J]. Journal of propulsion and power,2003,19(6):1200-1216.
    [72]Curran H. J., Pitz W. J., Westbrook C. K., et al. Oxidation of automotive primary reference fuels at elevated pressures [C]. Twenty-Seventh Symposium (International) on Combustion,1998.
    [73]Westbrook C. K., Dryer F.L. Chemical kinetics and modeling of combustion processes [J]. Eighteenth Symposium (International) on Combustion,1981.
    [74]Ranzi E., Gaffuri P., Faravelli T., et al. A wide-range modeling study of n-heptane oxidation [J]. Combustion and Flame,1995,103(1):91-106.
    [75]Ranzi E., Faravelli T., Gaffuri P., et al. A wide-range modeling study of iso-octane oxidation [J]. Combustion and Flame,1997,108(1):24-42.
    [76]Held T. J., Marchese A. J., Dryer F. L. A semi-empirical reaction mechanism for n-heptane oxidation and pyrolysis [J]. Combustion Science and Technology,1997,123(1-6):107-146.
    [77]Curran H. J., Gaffuri P., Pitz W. J., et al. A comprehensive modeling study of iso-octane oxidation [J]. Combustion and Flame,2002,129(3):253-280.
    [78]Curran H. J., Gaffuri P., Pitz W. J., et al. A comprehensive modeling study of n-heptane oxidation [J]. Combustion and Flame,1998,114(1-2):149-177.
    [79]Marinov N. M., Westbrook C. K., Pitz W. J. Detailed and global chemical kinetics model for hydrogen, transport phenomena in combustion [C]. Proceedings of the Eighth International Symposium on Transport Phenomena,1995
    [80]Maroteaux F., Noel L. Development of a reduced n-heptane oxidation mechanism for HCCI combustion modeling [J]. Combustion and Flame,2006,146(1):246-267.
    [81]Su W. H., Huang H. Z. Development and calibration of a reduced chemical kinetic model of n-heptane for HCCI engine combustion [J]. Fuel,2005,84(9):1029-1040.
    [82]郑朝蕾,尧命发.正庚烷均质压燃燃烧简化动力学模型[J].燃烧科学与技术,2005,11(6):547-553.
    [83]王志,帅石金,王建昕.高辛烷值燃料HCCI燃烧特性的变参数研究[J].内燃机学报,2004,22(1):17-26.
    [84]Sivaramakrishnan R., Tranter R. S., Brezinsky K. High-pressure, high-temperature oxidation of toluene [J]. Combustion and Flame,2004,139(4):340-350.
    [85]Sivaramakrishnan R., Tranter R. S., Brezinsky K. High pressure pyrolysis of toluene.1. Experiments and modeling of toluene decomposition [J]. J. Phys. Chem. A,2006,110(30):9388-9399.
    [86]Shen H. P. S., Vanderover J., Oehlschlaeger M. A., A shock tube study of the auto-ignition of toluene/air mixtures at high pressures [J]. Proceedings of the Combustion Institute,2009,32(1): 165-172.
    [87]Dagaut P., Pengloan G., Ristori A. Oxidation, ignition and combustion of toluene:Experimental and detailed chemical kinetic modeling [J]. Phys. Chem. Chem. Phys.,2002,4(10):1846-1854.
    [88]Bounaceur R., Costa I. DA., Fournet R., et al. Experimental and modeling study of the oxidation of toluene [J]. International Journal of Chemical Kinetics,2005,37(1):25-49.
    [89]Davis S. G., Wang H., Brezinsky K., et al. Laminar flame speeds and oxidation kinetics of benene-air and toluene-air flames [C]. Twenty-Sixth Symposium (International) on Combustion.1996.
    [90]Farrell, J. T., Johnston R. J., Androulakis I. P. Molecular structure effects on laminar burning velocities at elevated temperature and pressure [C]. SAE paper 2004-01-2936,2004.
    [91]Johnston R. J., Farrell, J. T. Laminar burning velocities and Markstein lengths of aromatics at elevated temperature and pressure [J]. Proceedings of the Combustion Institute,2005.30(1):217-224.
    [92]Roubaud A., Minetti R., Sochet L. R. Oxidation and combustion of low alkylbenzenes at high pressure: comparative reactivity and auto-ignition [J]. Combustion and Flame,2000,121(3):535-541.
    [93]Colket M. B.,Seery D. J. Reaction mechanisms for toluene pyrolysis [C]. Twenty-Fifth Symposium (International) on Combustion.1994.
    [94]Pitz W. J., Seiser R., Bozzelli J. W., et al. Chemical Kinetic Study of Toluene Oxidation under Premixed and Nonpremixed Conditions [C]. Thirtyth (International) Symposium on Combustion, 2003.
    [95]Vasudevan V., Davidson D. F., Hanson R. K. Shock tube measurements of toluene ignition times and OH concentration time histories [J]. Proceedings of the Combustion Institute,2005,30(1):1155-1163.
    [96]Sakai Y., Inamura T., Ogura T., et al. Detailed kinetic modelling of toluene combustion over a wide range of temperature and pressure [C]. SAE Paper 2007-01-4104,2007.
    [97]Brezinsky K., Litzinger T. A., Glassman I. The high temperature oxidation of the methyl side chain of toluene [J]. International Journal of Chemical Kinetics,1984,16(9):1053-1074.
    [98]Klotz S. D., Brezinsky K., Glassman I. Modeling the combustion of toluene-butane blends [C]. Twenty-Seventh Symposium (International) on Combustion,1998.
    [99]Szwarc M. The C-H Bond Energy in Toluene and Xylenes [J]. The Journal of Chemical Physics,1948, 16(2):128-136.
    [100]McLain, A. G., Jachimowski C. J., Wilson C. H., et al., Chemical kinetic modeling of benzene and toluene oxidation behind shock waves[R]. National Aeronautics and Space Administration,1979.
    [101]Bittker D. A. Detailed mechanism of toluene oxidation and comparison with benzene [R]. National Aeronautics and Space Administration,1988.
    [102]Emdee J. L., Brezinsky K., Glassman I. A kinetic model for the oxidation of toluene near 1200 K [J]. The Journal of Physical Chemistry,1992,96(5):2151-2161.
    [103]Lindstedt R. P., Maurice L. Q. Detailed kinetic modelling of toluene combustion [J]. Combustion Science and Technology,1996,120(1):119-167.
    [104]Sivaramakrishnan R., Tranter R. S., Brezinsky K. A high pressure model for the oxidation of toluene [J]. Proceedings of the Combustion Institute,2005,30(1):1165-1173.
    [105]Metcalfe W. K., Dooley S., Dryer F. L. Comprehensive Detailed Chemical Kinetic Modeling Study of Toluene Oxidation [J]. Energy & Fuels,2011,25(11):4915-4936.
    [106]Brezinsk K., Egolfopoulos F. N., Emdee J. F., et al. Benzene/toluene oxidation models:studies based on flow-reactor and laminar flamer speed data [J]. Abstracts of Papers of the American Chemical Society 202:83-Fuel Part 1,1991.
    [107]Pitz W. J., Seiser R., Bozzelli J. W., et al. Chemical Kinetic Characterization of Combustion Toluene [C], Proceedings of the 2nd Joint Meeting of the U.S. Sections of the Combustion Institute,2001.
    [108]Mittal G., Sung C.J. Homogeneous charge compression ignition of binary fuel blends [J]. Combustion and Flame,2008,155(3):431-439.
    [109]Sakai Y., Ozawa H., Ogura T., et al. Effects of Toluene Addition to Primary Reference Fuel at High Temperature [C]. SAE Paper 2007-01-4104,2007.
    [110]Herzler J., Fikri M., Hitzbleck K., et al. Shock-tube study of the autoignition of n-heptane/toluene/air mixtures at intermediate temperatures and high pressures [J]. Combustion and Flame,2007,149(1-2): 25-31.
    [111]Hartmann M., Gushterova I., Fikri M., et al. Auto-ignition of toluene-doped n-heptane and iso-octane/air mixtures:High-pressure shock-tube experiments and kinetics modeling [J]. Combustion and Flame,2011,158(1):172-178.
    [112]Anderlohr J. M., Piperel A., Cruz A. P., et al. Influence of EGR compounds on the oxidation of an HCCl-diesel surrogate [J]. Proceedings of the Combustion Institute,2009,32(2):2851-2859.
    [113]Ciajolo A., D'Anna A., Mercogijano R. Slow-combustion of n-heptane, iso-octane and a toluene/n-heptane mixture [J]. Combustion Science and Technology,1993,90(5):357-371.
    [114]Bieleveld T., Frassoldati A., Cuoci A., et al. Experimental and kinetic modeling study of combustion of gasoline, its surrogates and components in laminar non-premixed flows [J]. Proceedings of the Combustion Institute,2009,32(1):493-500.
    [115]Lee K., Kim Y., Min K. Development of a reduced chemical kinetic mechanism for a gasoline surrogate for gasoline HCCI combustion [J]. Combustion Theory and Modelling,2011,15(1): 107-124.
    [116]Machrafi H., Cavadias S. Three-stage autoignition of gasoline in an HCCI engine:An experimental and chemical kinetic modeling investigation [J]. Combustion and Flame,2008,155(4):557-570.
    [117]张庆峰,郑朝蕾,何祖威.适用于HCCI燃烧研究的甲苯参比燃料化学动力学简化模型[J].物理化学学报,2011,27(003):530-538.
    [118]Golovitchev V., Ogink R. Numerical Evaluation of Main Features of Chemical Models for Motor Fuel Surrogates [C]. Proceedings of the Joint Meeting of the Scandinavian-Nordic and Italian Sections of the Combustion Institute.2003.
    [119]Ra Y., Reitz R. D. A combustion model for IC engine combustion simulations with multi-component fuels [J]. Combustion and Flame,2011,158(1):69-90.
    [120]Andrae J. C. G., Brinck T., Kalghatgi G. T. HCCI experiments with toluene reference fuels modeled by a semidetailed chemical kinetic model [J]. Combustion and Flame,2008,155(4):696-712.
    [121]Anderlohr J. M., Bounaceur R., Cruz A. P. D. Modeling of autoignition and NO sensitization for the oxidation of IC engine surrogate fuels [J], Combustion and Flame,2009,156(2):505-521.
    [122]Sakai Y., Miyoshi A., Koshi M., et al. A kinetic modeling study on the oxidation of primary reference fuel-toluene mixtures including cross reactions between aromatics and aliphatics [J]. Proceedings of the Combustion Institute,2009,32(1):411-418.
    [123]Andrae J. C. G., Bjornbom P., Cracknell R. F., et al. Autoignition of toluene reference fuels at high pressures modeled with detailed chemical kinetics [J]. Combustion and Flame,2007,149(1-2):2-24.
    [124]Heghes C, Morgan N., Riedel U., et al. Development and Validation of a Gasoline Surrogate Fuel Kinetic Mechanism [C]. SAE Paper 2009-01-0934,2009.
    [125]Andrae J. C. G. Development of a detailed kinetic model for gasoline surrogate fuels [J]. Fuel,2008, 87(10-11):2013-2022.
    [126]Andrae J. C. G., Johansson D., Bjornbom P., et al. Co-oxidation in the auto-ignition of primary reference fuels and n-heptane/toluene blends. Combustion and Flame,2005,140(4):267-286.
    [127]Zhang F., Shuai S. J., Wang Z., et al. A detailed oxidation mechanism for the prediction of formaldehyde emission from methanol-gasoline SI engines [J]. Proceedings of the Combustion Institute,2011,33:3151-3158.
    [128]Li Y. Y., Zhang L. D., Tian Z. Y., et al. Experimental study of a fuel-rich premixed toluene flame at low pressure [J]. Energy & Fuels,2009,23(3):1473-1485.
    [129]Detilleux V., Vandooren J. Experimental and Kinetic Modeling Evidences of a C7H6 Pathway in a Rich Toluene Flame [J]. The Journal of Physical Chemistry A,2009,113(41):10913-10922.
    [130]Tian Z. Y., Pitz W. J., Fournet R., et al. A detailed kinetic modeling study of toluene oxidation in a premixed laminar flame [J]. Proceedings of the Combustion Institute,2011,33(1):233-241.
    [131]Detilleux V., Vandooren J., Experimental and kinetic modeling investigation of toluene combustion in premixed, one-dimensional and laminar toluene-oxygen-argon flames [J]. Proceedings of the Combustion Institute,2011,33(1):217-224.
    [132]Zhang L. D., Cai J. H., Zhang T. C. et al. Kinetic modeling study of toluene pyrolysis at low pressure [J]. Combustion and Flame,2010,157(9):1686-1697.
    [133]Qi F. Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry [J]. Proceedings of the Combustion Institute,2013,34(1):33-63.
    [134]Li Y. Y., Cai J. H., Zhang L. D., et al. Investigation on chemical structures of premixed toluene flames at low pressure [J]. Proceedings of the Combustion Institute,2011,33(1):593-600.
    [135]Li Y. Y., Zhang L. D., Yuan T., et al. Investigation on fuel-rich premixed flames of monocyclic aromatic hydrocarbons:Part I. Intermediate identification and mass spectrometric analysis [J]. Combustion and Flame,2010,157(1):143-154.
    [136]Lu T. F., Law C. K. Toward accommodating realistic fuel chemistry in large-scale computations [J]. Progress in Energy and Combustion Science,2009,35(2):192-215.
    [137]He K. Y., Androulakis I. P., Ierapetritou M. G. On-the-fly reduction of kinetic mechanisms using element flux analysis [J]. Chemical Engineering Science,2010,65(3):1173-1184.
    [138]Pope S. B. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation [J]. Combustion Theory and Modelling,1997,1(1):41-63.
    [139]Mitsos A., Oxberry G. M., Barton P. I. et al. Optimal automatic reaction and species elimination in kinetic mechanisms [J]. Combustion and Flame,2008,155(1):118-132.
    [140]Schwer D. A., Lu P., Green W. H. An adaptive chemistry approach to modeling complex kinetics in reacting flows [J]. Combustion and Flame,2003,133(4):451-465.
    [141]Bhattacharjee B., Schwer D. A., Barton P., et al. Optimally-reduced kinetic models:reaction elimination in large-scale kinetic mechanisms [J]. Combustion and Flame,2003,135(3):191-208.
    [142]Gou X., Chen Z., Sun W., et al. A dynamic adaptive chemistry scheme with error control for combustion modeling with a large detailed mechanism [J]. Combustion and Flame,2013,160(2): 225-231.
    [143]Tomlin A. S., Pilling M. J., Turanyi T., et al. Mechanism reduction for the oscillatory oxidation of hydrogen:sensitivity and quasi-steady-state analyses [J]. Combustion and Flame,1992,91(2): 107-130.
    [144]Tomlin A. S., Pilling M. J., Merkin J. H.,et al. Reduced mechanisms for propane pyrolysis [J]. Industrial & engineering chemistry research,1995,34(11):3749-3760.
    [145]Whitehouse L. E., Tomlin A. S., Pilling M. J. Systematic reduction of complex tropospheric chemical mechanisms, Part I:sensitivity and time-scale analyses [J]. Atmospheric Chemistry and Physics, 2004.4(7):2025-2056.
    [146]Revel J., Boettner J. C, Cathonnet M. B. Derivation of a global chemical kinetic mechanism for methane ignition and combustion [J]. Journal de chimie physique,1994,91(4):365-382.
    [147]Androulakis I. P., Grenda J. M., Bozzelli J. W. Time-integrated pointers for enabling the analysis of detailed reaction mechanisms [J]. AIChE journal,2004,50(11):2956-2970.
    [148]Vajda S., Valko P., Turanyi T. Principal component analysis of kinetic models [J]. International Journal of Chemical Kinetics,2004,17(1):55-81.
    [149]Brown N. J., Li G., Koszykowski M. L., Mechanism reduction via principal component analysis [J]. International Journal of Chemical Kinetics,1997,29(6):393-414.
    [150]Gokulakrishnan P., Lawrence A. D., Mclellan P. J., et al. A functional-PCA approach for analyzing and reducing complex chemical mechanisms [J]. Computers & chemical engineering,2006,30(6): 1093-1101.
    [151]Elliott L., Ingham D. B., Kyne A. G., et al. Genetic algorithms for optimisation of chemical kinetics reaction mechanisms [J]. Progress in Energy and Combustion Science,2004,30(3):297-328.
    [152]Polifke W., Geng W., Dobbeling K. Optimization of rate coefficients for simplified reaction mechanisms with genetic algorithms [J]. Combustion and Flame,1998,113(1):119-134.
    [153]Edwards K., Edgar T. F., Manousiouthakis V. I. Kinetic model reduction using genetic algorithms [J]. Computers & chemical engineering,1998,22(1):239-246.
    [154]Lu T., Law C. K. A directed relation graph method for mechanism reduction [J]. Proceedings of the Combustion Institute,2005,30(1):1333-1341.
    [155]Lu T., Law C. K. Linear time reduction of large kinetic mechanisms with directed relation graph: n-Heptane and iso-octane [J]. Combustion and Flame,2006,144(1):24-36.
    [156]Lu T., Law C. K. On the applicability of directed relation graphs to the reduction of reaction mechanisms [J]. Combustion and Flame,2006,146(3):472-483.
    [157]Pepiot-Desjardins P., Pitsch H. An efficient error-propagation-based reduction method for large chemical kinetic mechanisms [J]. Combustion and Flame,2008,154(1):67-81.
    [158]Sankaran R., Hawkes E. R., Chen J. H., et al. Structure of a spatially developing turbulent lean methane-air Bunsen flame [J]. Proceedings of the Combustion Institute,2007,31(1):1291-1298.
    [159]Zheng X., Lu T., Law C. K. Experimental counterflow ignition temperatures and reaction mechanisms of 1,3-butadiene [J]. Proceedings of the Combustion Institute,2007,31(1):367-375.
    [160]Sun W., Chen Z., Gou X., et al. A path flux analysis method for the reduction of detailed chemical kinetic mechanisms [J]. Combustion and Flame,2010,157(7):1298-1307.
    [161]Ahmed S. S., Mauss F., Moreac G., et al., A comprehensive and compact n-heptane oxidation model derived using chemical lumping [J]. Phys. Chem. Chem. Phys.,2007,9(9):1107-1126.
    [162]Zhang H. R., Eddings E. G., Sarofim A. F., et al. Mechanism reduction and generation using analysis of major fuel consumption pathways for n-heptane in premixed and diffusion flames [J]. Energy & Fuels,2007,21(4):1967-1976.
    [163]解茂昭.内燃机计算燃烧学(第2版)[M].大连:大连理工大学出版社,2005:297-298,284-287.
    [164]Peters N. Systematic reduction of flame kinetics-Principles and details [J]. Dynamics of reactive systems, Progress in Astronautics and Aeronautics,1988,133:67-86.
    [165]Keck J. C. Rate-controlled constrained-equilibrium theory of chemical reactions in complex systems [J]. Progress in Energy and Combustion Science,1990,16(2):125-154.
    [166]Jones W. P., Rigopoulos S. Reduced chemistry for hydrogen and methanol premixed flames via RCCE [J]. Combustion Theory and Modelling,2007,11(5):755-780.
    [167]Jones W. P., Rigopoulos S. Rate-controlled constrained equilibrium:Formulation and application to nonpremixed laminar flames [J]. Combustion and Flame,2005,142(3):223-234.
    [168]Rigopoulos S. The Rate-Controlled Constrained Equilibrium (RCCE) method for reducing chemical kinetics in systems with time-scale separation [J]. International Journal for Multiscale Computational Engineering,2007,5(1):11-18.
    [169]Rigopoulos S. Reduced flame kinetics via rate-controlled constrained equilibrium [C]. Computational Science-ICCS 2006,6th International Conference,2006.
    [170]Tang Q., Pope S. B. A more accurate projection in the rate-controlled constrained-equilibrium method for dimension reduction of combustion chemistry [J]. Combustion Theory and Modelling, 2004,8(2):255-279.
    [171]Tang Q., Pope S. B. Implementation of combustion chemistry by in situ adaptive tabulation of rate-controlled constrained equilibrium manifolds [J]. Proceedings of the Combustion Institute,2002, 29(1):1411-1417.
    [172]Yousefian V. A rate-controlled constrained-equilibrium thermochemistry algorithm for complex reacting systems [J]. Combustion and Flame,1998,115(1):66-80.
    [173]Maas U., Pope S. B. Simplifying chemical kinetics:intrinsic low-dimensional manifolds in composition space [J]. Combustion and Flame,1992,88(3):239-264.
    [174]Bongers H., Van Oijen J. A., De Goey L. P. H. Intrinsic low-dimensional manifold method extended with diffusion [J]. Proceedings of the Combustion Institute,2002,29(1):1371-1378.
    [175]Buki A., Perger T., Turanyi T., et al. Repro-modelling based generation of intrinsic low-dimensional manifolds [J]. Journal of mathematical chemistry,2002,31(4):345-362.
    [176]Nafe J., Maas U. A general algorithm for improving ILDMs [J]. Combustion Theory and Modelling, 2002,6(4):697-709.
    [177]Ren Z., Pope S. B., Transport-chemistry coupling in the reduced description of reactive flows [J]. Combustion Theory and Modelling,2007,11(5):715-739.
    [178]Lam S. H., Goussis D. A. The CSP method for simplifying kinetics [J]. International Journal of Chemical Kinetics,1994,26(4):461-486.
    [179]Lu T., Ju Y., Law C.K. Complex CSP for chemistry reduction and analysis [J]. Combustion and Flame,2001,126(1):1445-1455.
    [180]Massias A., Diamandis D, Mastorakos E, et al. Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data [J]. Combustion Theory and Modelling,1999,3(2):233-257.
    [181]Massias A., Diamandis D, Mastorakos E, et al. An algorithm for the construction of global reduced mechanisms with CSP data [J]. Combustion and Flame,1999,117(4):685-708.
    [182]Gou X., Sun W., Chen Z., et al. A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms [J]. Combustion and Flame,2010,157(6): 1111-1121.
    [183]Lu T., Law C. K. Strategies for mechanism reduction for large hydrocarbons:n-heptane [J]. Combustion and Flame,2008,154(1):153-163.
    [184]Shi Y., Ge H. W., Brakora J. L., et al. Automatic chemistry mechanism reduction of hydrocarbon fuels for HCCI engines based on DRGEP and PC A methods with error control [J]. Energy & Fuels, 2010,24(3):1646-1654.
    [185]Luo Z., Lu T., Liu J. A reduced mechanism for ethylene/methane mixtures with excessive NO enrichment [J]. Combustion and Flame,2011,158(7):1245-1254.
    [186]Yoo C. S., Lu T., Chen J. H., et al. Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume:Parametric study [J]. Combustion and Flame,2011,158(9):1727-1741.
    [187]Contino F., Jeanmart H., Lucchini T., et al. Coupling of in situ adaptive tabulation and dynamic adaptive chemistry:An effective method for solving combustion in engine simulations. [J] Proceedings of the Combustion Institute,2011,33(2):3057-3064.
    [188]Perini F., Brakora J. L., Reitz R. D., et al. Development of reduced and optimized reaction mechanisms based on genetic algorithms and element flux analysis [J]. Combustion and Flame,2012, 159(1):103-119.
    [189]苟小龙,王卫,桂莹等.一种多代路径通量分析化学机理简化方法[J].推进技术,2012,33(003):412-417.
    [190]王彬彬,蒋勇,邱榕.CSP分析方法在简化燃烧化学反应系统中的应用[J].物理化学学报,2008,24(12):2221-2228.
    [191]蒋勇,邱榕.基于直接关系图法的碳氢燃料复杂化学机理简化[J].物理化学学报,2009,25(5):1019-1025.
    [192]牛宝柱,蒋勇,邱榕.应用遗传算法优化氢气/空气燃烧反应系数[J].火灾科学,2009,18(2):45-50.
    [193]蒋勇,邱榕.正庚烷复杂化学框架与全局简化机理构筑[J].高等学校化学学报,2010,31(2):312-319.
    [194]邢佳佳,邱榕,李山岭等.针对C3H8/空气扩散火焰的PCA简化机理构筑[J].中国安全生产科学技术,2011,7(9):18-23.
    [195]李山岭,蒋勇,邱榕.基于路径通量-敏感性分析方法的C3H8/DMMP/空气详细化学机理简化[J].燃烧科学与技术,2012,18(5):473-479.
    [196]蒋勇,邱榕.复杂化学机理简化的关联水平法[J].化学学报,2010,68(5):403-412.
    [197]文斐,姚通,钟北京.奇异摄动法简化化学反应机理[J].工程热物理学报,2012,33(4):699-702.
    [198]文斐,钟北京,基于特征值分析的骨架机理获取方法[J].物理化学学报,2012,28(6):1306-1312.
    [199]姚通,文斐,钟北京.CSP简化机理在超声速燃烧中的应用[J].工程热物理学报,2013,34(2):380-383.
    [200]Zhong B., Zheng D. Chemical Kinetic Mechanism of a Three-Component Fuel Composed of Isooctane/n-Heptane/Ethanol [J]. Combustion Science and Technology,2013,185(4):627-644.
    [201]李军,邵菊香,刘存喜等.碳氢燃料热裂解机理及化学动力学模拟[J].化学学报,2010,68(3):239-245.
    [202]华晓筱,王静波,王全德等.正十二烷高温燃烧机理的构建及模拟[J].物理化学学报,2011,27(12):2755-2761.
    [203]方亚梅,王全德,王繁等.正十二烷高温燃烧详细化学动力学机理的系统简化[J].物理化学学报,2012,28(11):2536-2542.
    [204]Chen W., Shuai S., Wang J. A soot formation embedded reduced reaction mechanism for diesel surrogate fuel [J]. Fuel,2009,88(10):1927-1936.
    [205]Kelley A. P., Liu W., Xin Y. X., et al. Laminar flame speeds, non-premixed stagnation ignition, and reduced mechanisms in the oxidation of iso-octane [J]. Proceedings of the Combustion Institute, 2011,33(1):501-508.
    [206]Cook D. J., Pitsch H., Chen J. H., et al. Flamelet-based modeling of auto-ignition with thermal inhomogeneities for application to HCCI engines [J]. Proceedings of the Combustion Institute,2007, 31(2):2903-2911.
    [207]Patel A., Kong S. C., Reitz R. D. Development and validation of a reduced reaction mechanism for HCCI engine simulations [C]. SAE Paper 2004-01-0558,2004.
    [208]Conley J. P., Kazakov A., Dryer F. Experimental and Numerical Observations on n-Heptane Oxidation:Mechanism Comparisons and Minimization [C]. Joint Meeting of the US Sections of the Combustion Institute,2003.
    [209]CHEMKIN-PRO, Reaction Design, San Diego, CA,2008.
    [210]CHEMKIN-PRO, Theory Manual.
    [211]贾明,均质压燃(HCCI)发动机着火与燃烧过程的理论与数值研究[D].2006,大连理工大学.
    [212]Alamos L. KIVA-3V. A block-structured KIVA program for engines with vertical or canted values [CP]. LA-18818-MS,1997. Los Alamos National Laboratory.
    [213]Han Z., Reitz R. D. Turbulence modeling of internal combustion engines using RNG κ-ε models [J]. Combustion Science and Technology,1995,106(4-6):267-295.
    [214]Ricart L. M., Reltz R. D., Dec J. E. Comparisons of diesel spray liquid penetration and vapor fuel distributions with in-cylinder optical measurements [J]. Journal of engineering for gas turbines and power,2000,122:588-595.
    [215]Nordin P. A. Complex chemistry modeling of diesel spray combustion [D]. Chalmers University, 2001.
    [216]Han Z., Xu Z., Trigui N. Spray/wall interaction models for multidimensional engine simulation [J]. International Journal of Engine Research,2000,1(1):127-146.
    [217]Han, Z., Reitz R. D. A temperature wall function formulation for variable-density turbulent flows with application to engine convective heat transfer modeling [J]. International journal of heat and mass transfer,1997,40(3):613-625.
    [218]Zhou J. X., Cordier M., Mounaim-Rousselle C., et al., Experimental estimate of the laminar burning velocity of iso-octane in oxygen-enriched and CO2-diluted air [J]. Combustion and Flame,2011, 158(12):2375-2383.
    [219]Yang S., Reitz R. D., O.Iyer C., et al. Improvements to combustion models for modeling spark-ignition engines using the G-equation and detailed chemical kinetics [C]. SAE Paper 2008-01-1634,2008.
    [220]Tan Z., Reitz R. D. An ignition and combustion model based on the level-set method for spark ignition engine multidimensional modeling [J]. Combustion and Flame,2006,145(1):1-15.
    [221]Kumar K., Freeh J. E., Sung C. J., et al. Laminar flame speeds of preheated iso-octane/O2/N2 and n-heptane/O2/N2 mixtures [J]. Journal of propulsion and power,2007,23(2):428-436.
    [222]Ranzi E., Frassoldati A., Grana R., et al. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels [J]. Progress in Energy and Combustion Science, 2012,38(4):468-501.
    [223]You X., Egolfopoulos F. N., Wang H. Detailed and simplified kinetic models of n-dodecane oxidation:The role of fuel cracking in aliphatic hydrocarbon combustion [J]. Proceedings of the Combustion Institute,2009,32(1):403-410.
    [224]Brakora J. L., Ra Y., Reitz R. D., et al., Development and validation of a reduced reaction mechanism for biodiesel-fueled engine simulations [C]. SAE Paper 2008-01-1378,2008.
    [225]Klippenstein S. J., Harding L. B., Davis M. J., et al. Uncertainty driven theoretical kinetics studies for CH3OH ignition:HO2+ CH3OH and O2+ CH3OH [J]. Proceedings of the Combustion Institute, 2011,33(1):351-357.
    [226]Li J., Zhao Z., Kazakov A., et al. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion [J]. International Journal of Chemical Kinetics,2007,39(3):109-136.
    [227]Gregory P. Smith, David M. Golden, Michael Frenklach, Nigel W. Moriarty, Boris Eiteneer, Mikhail Goldenberg, C. Thomas Bowman, Ronald K. Hanson, Soonho Song, William C. Gardiner, Jr., Vitali V. Lissianski, and Zhiwei Qin http://www.me.berkeley.edu/grimech/.
    [228]Qin Z., Lissianski V. V., Yang H., et al. Combustion chemistry of propane:A case study of detailed reaction mechanism optimization [J]. Proceedings of the Combustion Institute,2000,28(2): 1663-1669.
    [229]McLean I. C., Smith D. B., Taylor S. C. The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO + OH reaction [C]. Twenty-Fifth Symposium (International) on Combustion,1994.
    [230]Vagelopoulos C. M., Egolfopoulos F. N., Law C. K. Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique [C]. Twenty-Fifth Symposium (International) on Combustion,1994.
    [231]Egolfopoulos F. N., Zhu D. L., Law C. K. Experimental and numerical determination of laminar flame speeds:Mixtures of C2-hydrocarbons with oxygen and nitrogen [C]. Twenty-Third Symposium (International) on Combustion,1991.
    [232]Egolfopoulos F. N, Du D. X., Law C. K. A comprehensive study of methanol kinetics in freely-propagating and burner-stabilized flames, flow and static reactors, and shock tubes [J]. Combustion Science and Technology,1992,83(1-3):33-75.
    [233]Callahan C. V. Autoignition and Emissions-Related Chemistry of Primary Reference Fuels and Gasoline Components:Flow Reactor Experiments at 9.6 and 12.5 Atmospheres Pressure [D]. Princeton:Department of Mechanical and Aerospace Engineering, Princeton University,1995
    [234]Dec J. E., Sjoberg M. A parametric study of HCCI combustion:The sources of emissions at low loads and the effects of GDI fuel injection [C]. SAE Paper 2003-01-0752,2003.
    [235]Tsurushima T., Shimazaki N., Asaumi Y. Gas sampling analysis of combustion processes in a homogeneous charge compression ignition engine [J]. International Journal of Engine Research, 2000,1(4):337-352.
    [236]Kalghatgi G. T., Head R. A. The available and required autoignition quality of gasoline-like fuels in HCCI engines at high temperatures [C]. SAE Paper 2004-01-1969,2004.
    [237]Yang Y., Dec J. E., Dronniou N., et al. Partial Fuel Stratification to Control HCCI Heat Release Rates:Fuel Composition and Other Factors Affecting Pre-Ignition Reactions of Two-Stage Ignition Fuels [C]. SAE Paper 2011-01-1359,2011.
    [238]Mehl M., Faravelli T., Ranzi E., et al. Experimental and kinetic modeling study of the effect of fuel composition in HCCI engines [J]. Proceedings of the Combustion Institute,2009,32(2):2843-2850.
    [239]Kim Y., Min K., Kim M. S., et al. Development of a Reduced Chemical Kinetic Mechanism and Ignition Delay Measurement in a Rapid Compression Machine for CAI Combustion [C]. SAE Paper 2007-01-0218,2007.
    [240]Kalghatgi G. T., Hildingsson L., Harrison A. J., et al. Autoignition quality of gasoline fuels in partially premixed combustion in diesel engines [J]. Proceedings of the Combustion Institute,2011, 33(2):3015-3021.
    [241]Gasoline Surrogate. https://www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion-gasoline_surrogate.
    [242]Zhao Z., Conley J. P., Kazakov A., et al. Burning velocities of real gasoline fuel at 353 K and 500 K [C]. SAE Paper 2003-01-3265,2003.
    [243]Chang Y., Jia M., Liu Y., et al. Development of a new skeletal mechanism for n-decane oxidation under engine-relevant conditions based on a decoupling methodology [J]. Combustion and Flame, 2013, in press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700