用户名: 密码: 验证码:
超临界循环流化床锅炉数学模拟与设计方案优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超临界循环流化床锅炉技术有机地结合了循环流化床燃烧和超临界参数发电两种技术的优点,是我国洁净煤燃烧利用的发展方向之一。依托于国家十一五支撑项目“600MW超临界循环流化床锅炉本体设计及研制”子课题的资助,本文开展了超临界循环流化床锅炉数学模型和设计方案优化的研究工作。
     论文首先从讨论发展超临界循环流化床锅炉的必要性和可行性入手,综述了国内外超临界循环流化床锅炉技术及其数学模型的研究与发展现状。
     其次,依据大型超临界循环流化床锅炉的运行特性和最新研究进展,在现有适用于中小型循环流化床锅炉整体数学模型的基础上发展了适用于大型超临界循环流化床锅炉的整体数学模型。该模型由可以正确描述循环流化床锅炉炉内各物理化学过程的子模型及其他部件的子模型有机耦合而成,这些子模型包括炉内流体动力特性模型,煤燃烧模型,颗粒磨损模型,炉内传热模型,SO2生成和脱除模型,NO和N20的生成和脱除模型,分离机构、返料机构和外置式换热器等部件的子模型,及尾部受热面的换热模型等。同时,为了进一步正确描述煤颗粒在流化床燃烧过程中的破碎特性,本文在所建小型流化床反应器上开展了煤颗粒的灰分和粒径对灰渣形成特性的实验研究,并在所获实验结果的基础上,结合国内外的相关研究建立了流化床煤燃烧过程中的颗粒破碎模型。
     然后,采用一台300MW循环流化床锅炉的运行测试结果对所建立的大型循环流化床锅炉的整体数学模型进行了验证对比。结果表明,所建立的数学模型可以有效地预测大型循环流化床锅炉的运行与性能参数。
     在此基础上,应用所建立的总体数学模型对600MW超临界循环流化床锅炉六个不同的设计方案进行了模拟计算,并从主循环回路结构布置、主循环回路热负荷分配、炉内燃烧以及热力特性参数等方面,分析比较了密相区结构、分离器数量及布置、炉内受热面、外置式换热器、受热面系统等不同布置方案对锅炉性能参数的影响,从而得到了优化后的600MW超临界循环流化床锅炉的设计方案。该推荐方案为H型布置,单炉膛裤衩腿双布风板结构,锅炉左右两侧各布置3台高温旋风分离器,每台分离器下面连接一台外置式换热器,高温过热器布置在尾部烟道。
     最后,对所推荐的600MW超临界循环流化床锅炉的设计方案进行了满负荷及变负荷工况下的性能模拟预测,为600MW循环流化床锅炉下一步的研制和工业应用提供了指导。
Supercritical circulating fluidized bed boiler technology combines the advantages of the circulating fluidized bed combustion technology and the power generation technology with supercritical parameters. So it is one of the clean-coal utilization technologies in China. Supported by the "Eleventh Five-Year" Science and Technology Support Projects of China, the research on the overall mathematical model of large-scale supercritical circulating fluidized bed boiler and the design optimization of a600MW supercritical circulating fluidized bed boiler is carried out in this paper.
     Firstly, the necessity and the feasibility of the development of the supercritical circulating fluidized bed boiler are discussed. Then the worldwide development and studies of the supercritical circulating fluidized bed boiler and its mathematical model are reviewed.
     The overall mathematical model of the supercritical circulating fluidized bed boiler developed in this paper is built on the basis of the mathematical model which was previously developed for the small-and moderate-scale circulating fluidized bed boiler. This overall mathematical model considers all the physical and chemical processes in the circulating fluidized bed boiler comprehensively and is made up of the submodels of hydrodynamics, combustion, attrition, heat transfer, the formation and reduction of pollutants, cyclone, external heat exchanger and the tail flue gas duct of the boiler. Due to its modular structure, it is convenient to develop new submodels or renew the parameters which are suitable for the characteristics of large-scale supercritical circulating fluidized bed boilers.
     In order to describe the fragmentation submodel of coal particles in the fluidized bed combustion correctly, the experimental research on the influences of coal particle properties on the ash formation behaviors during fluidized bed combustion was conducted on a bench-scale fluidized bed combustor. Coal samples were divided into6ranks with different ash content. For every rank of coal sample,3size ranges were used in the experiments. Effects of coal particle ash content and particle size on the ash formation behaviors were studied, such as bottom ash mass fraction, ash size distribution and carbon content in the bottom residue and the fly ash. On the basis of the experimental results and the relevant studies in the references, an empirical model for the fragmentation of coal particles in the fluidized bed combustion is developed.
     For the numerical solution of the overall mathematical model of the large-scale supercritical circulating fluidized bed boiler, the boiler system is divided into a series of "cells" along the flow direction from the furnace to the tail flue gas duct. The performance of a300MW CFB boiler is used to validate the mathematical model. The result shows that the developed mathematical model is correct and can be used to predict the performance of large-scale supercritical circulating fluidized bed boilers.
     Then the overall mathematical model of the supercritical circulating fluidized bed boiler is applied to calculate the characteristics and the performances of six different design concepts of a600MW supercritical circulating fluidized bed boiler. Furthermore the structure of the furnace, separator, the external heat exchanger (EHE) and the layout of heat surfaces are discussed from different aspects. The design of a600MW supercritical circulating fluidized bed boiler with pant-leg furnace and6cyclones and6EHEs symmetrically arranged on the both sides of the furnace is recommended.
     Finally, the mathematical model of supercritical circulating fluidized bed boiler is used to predict the performances of the recommended600MW supercritical circulating fluidized bed boiler under full and part loads. The results are helpful for the study of the characteristics of supercritical circulating fluidized bed boiler.
引文
[1]http://www.oecd-ilibrary.org/energy/world-energy-outlook-2011 weo-2011-en
    [2]国家统计局.中国统计年鉴2010[M].北京:中国统计出版社,2011.
    [3]俞珠峰.洁净煤技术发展与应用[M].北京:化学工业出版社,2004.
    [4]姚强.洁净煤技术[M].北京:化学工业出版社,2005.
    [5]吴国华.中国节能减排战略研究[M].北京:经济科学出版社,2009.
    [6]岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社,1998.
    [7]蒋敏华.大型循环流化床锅炉技术[M].北京:中国电力出版社,2009.
    [8]Reh L. Fluid Dynamics of CFB-Combustors[C]. Proceedings of Circulating Fluidized Bed Technology V, Ontario, Canada,1996:1-15.
    [9]Koornneef J., Junginer M., Faaij A. Development of fluidized bed combustion— An overview of trends, performance and cost [J]. Progress in energy and combustion science,33 (2007) 19-55.
    [10]Stamatelopoulos G.-N., Darling S. ALSTOM'S CFB TECHNOLOGY[C]. Proceedings of Circulating Fluidized Bed Technology Ⅸ, Hamburg, Germany,2008:CFB9 01_01.
    [11]Lundqvist R. G. Designing large-scale circulating fluidized bed boilers[J]. VGB PowerTech, 2003:41-47.
    [12]Nowak W., Bis Z., Laskaviec J., et al. Experience gained during operation of 235 MW CFB boilers at Turow power plant. [C]. Proceedings of Circulating Fluidized Bed Technology Ⅶ, Ontario, Canada,2002:621-628.
    [13]Nowak W., Bis Z., Laskaviec J., et al. Design and operating experience of 260 MW compact type CFB boilers [C]. Proceedings of Circulating Fluidized Bed Technology Ⅶ, Ontario, Canada,2002: 629-636.
    [14]Hotta A. Foster Wheeler's Solutions for Large Scale CFB Boiler Technology:Features and Operational Performance of LAGISZA 460 MW CFB Boiler[C]. Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xi'an, China,2009:59-70.
    [15]周一工.中国循环流化床锅炉的发展:从低压到超临界[J].锅炉技术,2009,40(2):22-27.
    [16]程乐鸣,周星龙,郑成航,等.大型循环流化床锅炉的发展[J].动力工程,2008,28(6):817-826.
    [17]Luo Z. Y., Cen, K.F. Research and Development on Circulating Fluidized Bed Combustion Technology in China[C]. Proceedings of Circulating Fluidized Bed Technology Ⅷ, Hangzhou, China,2005:56-67.
    [18]Li S.A., Tang Y., Zhang Y.J., et al. CFB Design Evolution of Chinese CFB's [C]. Proceedings of Circulating Fluidized Bed Technology Ⅸ, Hamburg, Germany,2008:CFB9 09_04.
    [19]Yue G.X., Yang H.R., Lu J.F. et al. LATEST DEVELOPMENT OF CFB BOILERS IN CHINA [C]. Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xi'an, China,2009:3-12.
    [20]刘昀,刘德吕.阿尔斯通循环流化床锅炉的大型化发展[J].电力设备,2006,7(12):18-21.
    [21]张彦军,李振宇,王凤君,等.300MW循环流化床锅炉的设计和运行实践[J].动力工程,2007,27(4):507-510.
    [22]尹刚,陈继辉,卢啸风,等.引进300 MW循环流化床锅炉的技术特点分析[J].锅炉技术,2007,38(3):29-34.
    [23]姜孝国,别如山. 300 MW循环流化床锅炉选型[J].热力发电,2008,37(11):1-4.
    [24]聂立,王鹏,霍锁善,等.东方型300 MW循环流化床锅炉开发设计[J].东方锅炉,1(2007)1-11.
    [25]付金兴,张立新.哈锅首台自主开发300 MW CFB锅炉设计与运行[J].锅炉制造,2(2011)3-5.
    [26]孙献斌.大型循环流化床锅炉技术与工程应用[M].北京:中国电力出版社,2009.
    [27]于龙,吕俊复,王智微,等.循环流化床燃烧技术的研究展望[J].热能动力工程,2004,19(4):336-342.
    [28]Kunii, D., Levenspiel, O. Flow modelling of fast fluidized bed[C]. Proceedings of Circulating Fluidized Bed Technology Ⅲ, Nagoya, Japan,1993:91-98.
    [29]Smolders K., Baeyens J. Hydrodynamic modelling of the axial density profile in the riser of a low-density circulating fluidized bed[J]. The Canadian Journal of Chemical Engineering,79 (2001)422-429.
    [30]Li J. J., Zhang H., Yue G. X., et al. HYDRODYNAMIC MODEL WITH BINARY PARTICLE DIAMETERS TO PREDICT AXIAL VOIDAGE PROFILE IN A CFB COMBUSTOR[C]. Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xi'an, China, 2009:768-773.
    [31]Pugsley T. S., Berruti F. A predictive hydrodynamic model for circulating fluidized bed risers [J]. Powder Technology,89(1996)57-69.
    [32]Huilin L., Guangbo Z., Rushan B. A coal combustion model for circulating fluidized bed boilers[J]. Fuel,79 (2000) 165-172.
    [33]Adanez J., Gayan P., Grasa G., et al. Circulating fluidized bed combustion in the turbulent regime: modeling of carbon combustion efficiency and sulfur retention[J]. Fuel,80 (2001) 1405-1414.
    [34]Gungor A., Eskin N. Hydrodynamic modeling of a circulating fluidized bed[J]. Powder Technology,172 (2007) 1-13.
    [35]Gungor A., Eskin N. Predicting axial pressure profile of a CFB[J]. Chemical Engineering Journal, 140 (2008) 448-456.
    [36]Gungor A., Eskin N. Two-dimensional coal combustion modeling of CFB[J]. International Journal of Thermal Sciences,47(2008)157-174.
    [37]杨晨.大型循环流化床锅炉整体数学模型的建模与仿真方法研究[D].重庆大学,1999.
    [38]雍玉梅.循环流化床锅炉大型化的数值模型[D].中科院工程热物理所,2004.
    [39]白丁荣,金涌,俞芷青.气—固并流上行系统的环/核内循环流动结构模型[J].化学反应工程与工艺,1994,10(3):227-238.
    [40]Qinhui W., Zhongyang L., Xuantian L., et al. A mathematical model for a circulating fluidized bed [J]. Energy,24(1999) 633-653.
    [41]Redemann, K., Hartge E.-U., Werther, J. A particle poulation balancing model for a circulating fluidized bed combustion system[J]. Powder Technology,2009,191(1):78-90.
    [42]Phillippek, C., Knobig, T., Schonfelder H., et al. NOx formation and reduction during combustion of wet sewage sludge in the circulating fluidized bed-measurements and simulation[C]. Proceedings of the 14th international conference on fluidized bed combustion, Newyork, USA, 1997:983-996.
    [43]Pallares D., Johnsson F. Fluid dynamic modeling of large CFB units[C]. Proceedings of Circulating Fluidized Bed Technology Ⅶ, Hangzhou,China,2005:387-394.
    [44]Myohanen K., Hyppanen T., Miettinen J. and Parkkonen R.:Three-Dimensional Modeling and Model Validation of Circulating Fluidized Bed Combustion[C]. Proceedings of the 17th International Conference on Fluidized Bed Combustion, Florida, USA,2003. FBC2003_048.
    [45]Myohanen K., Hyppanen T. and Loschkin M. Converting measurement data to process knowledge by using three-dimensional CFB furnace model[C]. Proceedings of Circulating Fluidized Bed Technology VIII, Beijing, China,2005:306-312.
    [46]Vepsalainen A., Myohanen, K. and Hyppanen T., et al., DEVELOPMENT AND VALIDATION OF A 3-DIMENSIONAL CFB FURNACE MODEL[C]. Proceedings of the 20th International Conference on FBC, Xi'an, China,2009:757-763.
    [47]李静海,欧阳洁,高土秋.颗粒流体复杂系统的多尺度模拟[M].北京:科学出版社,2005.
    [48]Wei G., Wei W., Weigang D., et al. MESO-SCALE STRUCTURE:A CHALLENGE OF COMPUTATIONAL FLUID DYNAMICS FOR CIRCULATING FLUIDIZED BED RISERS[C]. Proceedings of Circulating Fluidized Bed Technology IX, Hamburg, Germany,2008:CFB9 01 03.
    [49]Xueyao W., Fan J., Jing L., et al. A revised drag force model and the application for the gasesolid flow in the high-density circulating fluidized bed[J]. Applied Thermal Engineering,31 (2011) 2254-2261.
    [50]Xianbin X., Wei W., Hairui Y., et al. TWO-DIMENSIONAL COMBUSTION MODELING OF CFB BOILER FURNACE BASED ON AN EULER-EULER APPROACH AND THE KINETIC THEORY OF GRANULAR FLOW[C]. Proceedings of Circulating Fluidized Bed TechnologyⅧ, Hangzhou, China,2005:394-401.
    [51]Nan Z., Bona L., Wei W., et al.3D CFD SIMULATION OF COMBUSTION IN A 150 MW CIRCULATING FLUIDIZED BED BOILER[C]. Proceedings of Circulating Fluidized Bed Technology X, Oregon, USA,2011:538-545.
    [52]程长健,葛蔚.EMMS模型中噎塞判据的进一步分析[J].化学进展,2008,20(4):620-624.
    [53]Armstrong L.M., Luo K.H., Gu S.Two-dimensional and three-dimensional computational studies of hydrodynamics in the transition from bubbling to circulating fluidised bed[J]. Chemical Engineering Journal,160 (2010) 239-248.
    [54]Cruz E., Pugsley T. Computational Fluid Dynamics Model of a CFB Lignite Coal Combustor[C]. Proceedings of Circulating Fluidized Bed TechnologyIX, Hamburg, Germany,2008:CFB9 04-07.
    [55]Zhou W., Zhao C. S., Duan L. B., etc. Two-dimensional computational fluid dynamics simulation of coal combustion in a circulating fluidized bed combustor[J]. Chemical Engineering Journal. 166(2011)306-314.
    [56]Vashisth S., Grace J. R. HYDRODYNAMICS OF A CLUSTER DESCENDING AT THE WALL OF A CFB RISER:NUMERICAL STUDY[C]. Proceedings of Circulating Fluidized Bed Technology X, Oregon, USA,2011:586-593.
    [57]Cundall P. A., Strack O. D. L. A discrete numerical model for granular assemblies[J]. Geotechnique,1979,29(1):47-65.
    [58]李建锋,郝继红,吕俊复,等.中国300 MW级循环流化床锅炉机组运行现状分析[J].锅炉技术,2010,41(5):37-47.
    [59]樊泉桂.超超临界锅炉设计及运行[M].北京:中国电力出版社.2010.
    [60]吕俊复,于龙,岳光溪,等.循环流化床锅炉热流密度分布[J].动力工程,2006,26(4):336-340.
    [61]Goidich S. J., Wu S., Fan Z. Design Aspects of the Ultra-Supercritical CFB Boiler [C]. International Pittsburgh Coal Conference, Pittsburgh, USA,2005.
    [62]Goidich S. J., Fan Z., Sippu O., et al. Integration of Ultra-Supercritical OTU and CFB Boiler Technologies [C]. Proceedings of the 19th International Conference on Fluidized Bed Combustion, Vienna, Austria,2006:1-12.
    [63]Robertson A., Goidich S., Fan Z.1300 ℉ 800 MW USC CFB Boiler Design Study[C]. Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xi'an, China, 2009:125-131.
    [64]Morin J-X. Recent ALSTOM POWER Large CFB and Scale up aspects including steps to Supercritical [C]. Proceedings of 47th International Energy Agency Workshop on Large Scale CFB, Zlotnicki, Poland,2003.
    [65]Semedard J-C, Gauville P, Morin J-X. Development of Ultra Large CFB Boilers [C]. Proceedings of the 16th International Conference on Fluidized Bed Combustion, Nevada, USA, 2001:FBC01-0171.
    [66]Prabir H. Further Studies into the Designs of Supercritical Pressure Circulating Fluidized Bed Boilers [C]. Proceedings of the 16th International Conference on Fluidized Bed Combustion, Nevada, USA,2001:FBC01-0104.
    [67]杨海瑞,吕俊复,张海,等.超临界循环流化床锅炉的最新进展[J].锅炉技术,2005,36(5):1-6.
    [68]聂立,王鹏,彭雷,等.600 MW超临界循环流化床锅炉的设计[J].动力工程,2008,28(5):701-706.
    [69]Li Y., Nie L., Hu X. K., et al. Structure and Performance of a 600 MW Supercritical CFB Boiler with Water Cooled Panels [C]. Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xi'an, China,2009:132-136.
    [70]苏虎,聂立,杨雪芬,等.东方型350 MW超临界循环流化床锅炉的开发与设计[J].东方锅炉,2010,175(1):1-6.
    [71]张缦,姜孝国,王凤君,等.600 MW超临界循环流化床锅炉技术特点[J].锅炉制造,6(2009)1-6.
    [72]吕清刚,宋国良,孙运凯,等.自主研发超临界循环流化床锅炉技术[C].全国电力行业CFB机组技术交流服务协作网第六届年会技术交流论文集,海南,中国,2007:56-67.
    [73]孙献斌.自主研发6000 MW超临界CFB锅炉的设计研究[J].中国电力,2009,42(11):11-15.
    [74]刘静,王勤辉,骆仲泱,等.600 MW超临界循环流化床锅炉的设计研究[J].动力工程,2003,23(1):2179-2185.
    [75]辛建,吕俊复,岳光溪,等.发展超临界循环流化床的讨论[J].热能动力工程,2002,17(5):439-441.
    [76]吕俊复,于龙,张彦军,等.600 MW超临界循环流化床锅炉[J].动力工程,2007,27(4):497-501.
    [77]吴玉新,吕俊复,张建胜,等.800 MW超临界循环流化床锅炉概念设计[J].锅炉技术,2004,35(3):12-16.
    [78]Hyppanen, T., Lee, Y.Y., Rainio, A. A three-dimensional model for circulating fluidized bed boilers[C]. Proceedings of the 11th International Conference on FBC. New York, USA,1991: 439-448.
    [79]Tsuo, Y.Y.P., Lee, et al. Three-dimensional modeling of N2O and NOx emissions from circulating fluidized bed boilers[C]. Proceedings of the 13th International Conference on Fluidized Bed Combustion, Florida, USA,1995:1059-1069.
    [80]Vepsalainen A., Myohanen, K., Hyppanen T., et al. DEVELOPMENT AND VALIDATION OF A 3-DIMENSIONAL CFB FURNACE MODEL[C]. Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xi'an, China,2009:757-763.
    [81]Knoebig T., Luecke K., Werther J. Mixing and reaction in the circulating fluidized bed-A three-dimensional combustor model[J]. Chemical Engineering Science,54(1999) 2151-2160.
    [82]Hartge E.-U., Luecke K., Werther J. The role of mixing in the performance of CFB reactors[J]. Chemical Engineering Science,54 (1999)5393-5407.
    [83]Luecke K., Hartge E.-U., Werther J. MODELING OF SOLIDS AND GAS MIXING EFFECTS IN LARGE-SCALE CFB COMBUSTORS[C]. Proceedings of the 17th International Conference on Fluidized Bed Combustion, Florida, USA,2003, FBC2003-048.
    [84]Wischnewski R., Ratschow L., Hartge E. U., et al.3D-SIMULATION OF CONCENTRATION DISTRIBUTIONS INSIDE LARGE-SCALE CIRCULATING FLUIDIZED BED COMBUSTORS[C]. Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xi'an, China,2009:774-779.
    [85]Wischnewski R., Ratschow L., Hartge E. U., et al. THREE-DIMENSIONAL SIMULATION OF TEMPERATURE DISTRIBUTIONS IN LARGE-SCALE CIRCULATING FLUIDIZED BED COMBUSTORS[C]. Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xi'an, China,2009:780-785.
    [86]Pallares D., Johnsson F. Modeling of fuel mixing in fluidized bed combustors [J]. Chemical Engineering Science,63 (2008) 5663-5671.
    [87]Pallares D., Johnsson F. A COMPREHENSIVE MODEL OF CFB COMBUSTION[C]. Proceedings of Circulating Fluidized Bed Technology Ⅸ, Hamburg, Germany,2008:CFB9 10 11.
    [88]Palonena M., Pallares B D., and Yla-Outinena V., et al. CIRCULATING FLUIDIZED BED COMBUSTION-BUILD-UP AND VALIDATION OF A THREE-DIMENSIONAL MODEL[C]. Proceedings of Circulating Fluidized Bed TechnologyX, Oregon, USA,2011:CFB10 S7-492.
    [89]Scalari S., Grillo F., Salatino P., et al. Dynamic Modelling of Enel Sulcis 790 MWth CFB Combustion Unit:Model Development and Preliminary Results[C]. Proceedings of the 19th International Conference on Fluidized Bed Combustion, Vienna, Austria,2006:FBC 19-89.
    [90]王勤辉.循环流化床锅炉总体数学模型及性能试验[D].杭州:浙江大学,1997.
    [91]Qinhui W., Zhongyang L., Mingjiang N., et al. Particle population balance model for a circulating fluidized bed boiler [J]. Chemical Engineering Journal,93 (2003) 121-133.
    [92]Johnsson F., Johansson A., Sterneus J., et al. In-furnace processes in a 235 MW CFB boiler[C]. Proceedings of Circulating Fluidized Bed Technology Ⅶ. Ontario, Canada,2002:607-614.
    [93]Johansson A., Johnsson F., Leckner B., et al. Solids back-mixing in CFB furnaces[C]. Proceedings of Circulating Fluidized Bed Technology Ⅷ. Hangzhou, China,2005:151-158.
    [94]Werther J. Fluid dynamics, Temperature and concentration fields in large-scale CFB combustions [C]. Proceedings of Circulating Fluidized Bed Technology Ⅷ. Hangzhou,China, 2005:1-25.
    [95]蒋茂庆,高洪培,邝伟,等.300 MW循环流化床锅炉床料翻床原因分析及运行对策[J].热力发电,2007(6)127-129.
    [96]刘剑,董志乾,朱劲松.300 MW循环流化床锅炉两床失稳及翻床的特性分析[J].热力发电,2007(4)53-55.
    [97]田晨,王勤辉,张锡梅,等.循环流化床床内结构对局部流动特性影响[J].过程工程学报,2009,9(2):139-145.
    [98]Chen T., Qinhui W., Zhongyang L., et al. Effect Of Riser Geometry Structure On Local Flow Pattern In A Rectangular Circulating Fluidized Bed[C]. Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xi'an, China,2009:464-470.
    [99]张锡梅,王勤辉,田晨,等.出口结构对矩形循环流化床稀相区颗粒速度分布影响实验研究[J].能源工程,3(2010)1-6.
    [100]Hannes J., Renz U., Bleek C.M. The IEA model for circulating fluidized bed Combustion[C]. Proceedings of the 13th International Conference on FBC, Florida, USA,1995:281-296.
    [101]Zhang W., Johnsson F. and Leckner B. Fluid-Dynamic Boundary Layers in CFB Boilers[J]. Chemical Engineering Science,50 (1995) 201-210.
    [102]Cammarota A., Chirone R., Salatino P., et al. Attrition phenomena during fluidized bed combustion of granulated and mechanically dewatered sewage sludges[J]. Proceedings of the Combustion Institute,30 (2005) 3017-3024.
    [103]Stensen, M., Lin, W., Johnsson, J. E., & Johansen, K. D. Modeling of devolatilization in CFB Combustion [C]. Proceedings of the 14th international conference on Fluidized Bed Combustion, Florida, USA,1997:117-124.
    [104]Loison R., Chauvin R. Pyrolyse rapide du charbon[J]. Chemie et Industrie,91(1964) 269-274.
    [105]何宏舟.CFB锅炉洁净燃烧福建无烟煤的理论与试验研究[D].杭州:浙江大学,2005.
    [106]Lee J. M., Kim J. S., Kim J. J. Comminution characteristics of Korean anthracite in a CFB reactor[J]. Fuel,82(2003) 1349-1357.
    [107]Hongtao Z., Kefa C., Jianhua Y., et al. The fragmentation of coal particles during the coal combustion in a fluidized bed[J]. Fuel,81 (2002) 1835-1840.
    [108]Chirone R., Massimilla L. Primary fragmentation of a coal in fluidized bed combustion[J]. Symposium (International) on Combustion,1989,22(1):267-277.
    [109]Chirone R., Salatino P., Massimilla L. Secondary fragmentation of char particles during combustion in a fluidized bed[J]. Combustion and Flame,1989,77(1):79-90.
    [110]Chirone R., Massimilla L., Salatino P. Communition of carbons in fluidized bed combustion[J]. Progress in Energy and Combustion Science,17(1991) 297-326.
    [111]Sundback C. A., J. M. Beer, Sarofim A. F. Fragmentation behavior of single coal particle[C].20th Symposium on Coal combustion, London, England,1984:1495-1520.
    [112]Lee S. H., Kim S. D., Lee D. H. Particle size reduction of anthracite coals during devolatilization in a thermobalacne reactor[J]. Fuel,81(2002):1611-1639.
    [113]何宏舟,骄仲泱,岑可法.无烟煤流化床燃烧中热破碎现象的研究综述[J].热能动工程,2006,21(3):221-226.
    [114]Cammarota A., Chirone R., Marzocchella A., et al. Relevance of attrition to bed solids inventory and particle size distribution in circulating fluidized bed coal combustion [C]. Proceedings of Circulating Fluidized Bed Technology Ⅶ, Ontario, Canada,2002:661-668.
    [115]Bellgardt D., Hembach F., Schossler M., et al. Modeling of Large Scale Atmospheric Fluidized
    Bed Combustors[C]. Proceedings of 9th International Conference on Fluidized Bed Combustion, Newyork, USA,1987:713-722.
    [116]Hairui Y., Wirsum M., Junfu L., et al. Semi-empirical technique for predicting ash size distribution in CFB boilers [J]. Fuel Processing Technology,85 (2004)1403-1414.
    [117]杨海瑞,吕俊复,肖显斌,等.CFB锅炉煤成灰特性的六参数模型研究[J].热能动力工程,18(2003)577-561.
    [118]何宏舟,骆仲泱,方梦祥,等.龙岩煤宏观煤岩组分的热破碎性质研究[J].燃料化学学报,2005,33(5)534-539.
    [119]马利强,路霁鸰,岳光溪.流化床条件下煤的一次爆裂特性的实验研究[J].燃料化学学报,2000,28(1):44-48.
    [120]Ross, I. B., Davidson, J. F. Combustion of carbon particles in a fluidized bed [J]. Transaction of Chemical Engineering,60(1982)108-114.
    [121]Basu P. Combustion of coal in circulating fluidized-bed boilers:a review [J]. Chemical Engineering Science,54 (1999) 5547-5557.
    [122]吕俊复.流化床燃烧煤的成灰磨耗特性[J].燃烧科学与技术,2003,9(1):1-5.
    [123]Winter F., Xin L. Attrition behavior of coal ash under circulating fluidized bed combustion conditions[C]. Proceedings of 17th International Conference on Fluidized Bed Combustion, Florida, USA,2003:FBC2003-129.
    [124]王进伟,赵新木,李少华,等.循环流化床锅炉煤灰成分对其磨耗特性的影响[J].化工学报,2007,58(3):739-744.
    [125]Arena U., Malandrino A., Massimilla L., et al. Modelling of Circulating Fluidized Bed Combustion of a Char[J]. The Canadian Journal of Chemical engineering,69 (1991) 860-868.
    [126]Palmer C.A., Tuncali E., Dennen K.O., et al. Characterization of Turkish coals:a nationwide perspective[J]. International Journal of Coal Geology,60 (2004) 85-115.
    [127]王进伟,李少华,杨海瑞,等.石灰石的爆裂与磨耗特性研究[J].热能动力工程,2006,21(4):366-369.
    [128]程乐鸣,骆仲泱,倪明江,等.循环流化床传热综述(试验部分)[J].动力工程,1998,18(2):20-34
    [129]程乐鸣.大型循环流化床锅炉中的传热研究[J].动力工程,2000,20(2):587-591.
    [130]程乐鸣,王勤辉,施正伦,等.大型循环流化床锅炉中的传热[J].动力工程,2006,26(3)305-310.
    [131]程乐鸣,骆仲泱,倪明江,等.循环流化床传热综述(数学模型)[J].动力工程,1998,18(1):24-33.
    [132]张磊,杨学民,等.循环流化床燃煤过程NOx和N20产生-控制研究进展[J].过程工程学报,2006,6(6):1004-1010.
    [133]Durcane E.D., Dolignier J.C., Marty E., et al. Modelling of gaseous pollutants emissions in circulating fluidized bed combustion of municipal refuse[J]. Fuel,1998,77(13):1399-1410.
    [134]Zijlma G. J., Gerritsen A.W., et al. Influence of oxygen on the formation and reduction of NO and NH3 in circulating fluidized bed bombustors [C]. Proceedings of Circulating Fluidized Bed Technology VI, Wuerzburg, Germany,1999:653-658.
    [135]张磊,杨学民,等.粉煤和石灰石加入位置对循环流化床燃煤过程NOx与N20排放的影响[J].中国电机工程学报,2006,26(21):92-98.
    [136]Johnsson J. E. Modelling of N2O reduction in a circulating fluidized bed boiler[C]. Proceedings of Circulating Fluidized Bed Technology V, Ontario, Canada,1996:338-343.
    [137]Sarofim L., Bernard M.G. Modelling of NO and N2O emissions from biomass-fired circulating fluidized bed boiler[J]. Fuel,81(2002)271-280.
    [138]Kallio S., Kilpinen, P., Hupa M. Advanced modeling of nitrogen oxide emissions in circulating fluidized bed combustors:parametric study of Hydrodynamics[C]. Proceedings of Circulating Fluidized Bed Technology Ⅵ, Wuerzburg, Germany,1999:659-664.
    [139]曾东,郑守忠.流化床煤燃烧中氧化亚氮生成机理研究[J].热力发电,1(2001)16-19.
    [140]Hao L., Bernard M.G. Modelling of NO and N2O emissions from biomass circulating fluidized bed boiler[C]. Proceedings of Circulating Fluidized Bed Technology Ⅶ, Ontario, Canada, 2002:730-738.
    [141]Kilpinen, P., Kallio S., Hupa M. Advanced modeling of nitrogen oxide emissions in circulating fluidized bed combustors:parametric study of coal combustion and nitrogen compound chemistries [C]. Proceedings of 15th International Conference on Fluidized Bed Combustion, Georgia, USA,2003:FBC99-0155.
    [142]Johnsson J.E., Jensen A., Nielsen J.S. Kinetics of heteterogeneous NO and N2O reduction at FBC conditions[C]. Proceedings of 15th International Conference on Fluidized Bed Combustion, Georgia, USA,1999:FBC99-0099.
    [143]骆仲泱,张彦军,王勤辉,等.循环流化床锅炉外置式换热器设计方法的探讨[J].动力工程,1999,19(3):1-6.
    [144]肖峰,陈干锦,倪晓辉,等.外置床(FBHE)对床温、汽温调节特性的研究[J].锅炉技术,2003,34(4):4-10.
    [145]周一工.循环流化床锅炉再热器调温方式探讨[J].锅炉技术,2001,32(10):1-3.
    [146]杨磊,陈继辉,刘汉周.循环流化床外置式换热器结构与布置特性的探讨[J].电站系统工程,2007,23(6):1-5.
    [147]王敦恩.工业锅炉设计计算方法[M].北京:中国标准出版社,2005.
    [148]刘朝化,郭强,孙献斌,等.125 MW CFB锅炉外置换热器试验[J].东方锅炉,3(2001)17-26.
    [149]Bin X., Xiaofeng L., Amano R.S., et al. Gas-solid flow in an integrated external heat exchanger for CFB boiler [J]. Powder Technology,202 (2010) 55-61.
    [150]熊斌,卢啸风,刘汉周.一体化外置式换热器的物料流动特性[J].动力工程,2008,28(6):859-855.
    [151]董志乾,张聪,赵发家,等.300 MW CFB锅炉外置式换热器特性分析[J].中国电力,2008,41(1):65-69.
    [152]廖鹏,李文峰,邹苍胜.300 MW循环流化床锅炉外置式换热器原理及运行分析[J].热电技术,2007,95(3):15-16.
    [153]孙献斌,李志伟,时正海,等.循环流化床锅炉紧凑式分流回灰换热器的试验研究[J].中国电力,2006,39(7):27-30.
    [154]Qinhui W., Zhongyang L., Mengxiang F., et al. Development of a new external heat exchanger for a circulating fluidized bed boiler[J]. Chemical Engineering and Processing,42 (2003) 327-335.
    [155]王勤辉,施止伦,程乐鸣,等.非机械阀控制外置式换热器的试验研究[J].动力工程,2001,21(4):1-6.
    [156]郑成航,程乐鸣,周星龙,等.300 MW单炉膛循环流化床锅炉二次风射程的数值模拟[J].动力工程,2009,29(9):801-806.
    [157]郑成航,程乐鸣,骆仲泱,等.裤衩型300 MW循环流化床炉膛二次风数值模拟[J].浙江大学学报(工学版),2010,44(4):743-749.
    [158]田辰.炉膛结构对循环流化床气固流动特性影响的研究[D].杭州:浙江大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700