用户名: 密码: 验证码:
大型船用齿轮箱系统动态性能分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究依托于浙江省重大科技专项重点工业项目:《大功率船用齿轮箱关键技术的研究与应用》(2009C11062)。研究对象为与船用中速柴油发动机匹配的某款大型减速齿轮箱系统。项目是针对目前我国在大型船用减速齿轮箱系统的动态设计手段欠缺、更新换代缓慢、自主设计和研发能力薄弱而确立的,其目的是研发和完善能与10000-50000吨大型运输船舶和舰只相配套的大功率减速齿轮箱系统,为开发更大功率的船用减速齿轮箱系统作技术储备,并形成基于动态性能分析方法的箱体优化、减振降噪和抗冲击性能的设计技术。
     作为运输船舶和舰船主动力系统关键设备的大型减速齿轮箱正朝着高效率、高可靠性、高稳定性、高速重载、轻量化、低振动、低噪声和短设计制造周期的方向发展,对基于动态分析方法的设计能力提出了更高的要求。另外,本文所研究的大型减速齿轮箱系统是作为军民两用设计的,依照相关军用规范,须保障其结构在水下爆炸冲击作用下的强度安全性能。本文主要着眼于某款大型船用减速齿轮箱系统,查阅大量国内外技术资料和学术文献,通过理论研究、数值模拟与实验研究相结合的手段,系统的将转子动力学、齿轮系统动力学、有限元方法、机械振动理论和测试原理等理论和技术集成,对齿轮箱系统的动态性能进行了系统的考察和评估,为形成大型船用齿轮箱系统关键动态性能的计算方法提供了理论依据和技术解决方案。论文的主要研究内容可归纳如下:
     1)建立了耦合的啮合齿轮传动多平行轴转子的动力学模型,并将其用于分析大型船用齿轮箱传动系统中执行顺车工况的传动轴系,计算了该多轴系统耦合和未耦合情况下的临界转速,以及耦合系统的弯曲、扭转振动的振型,分析了在啮合齿轮多轴传动系统中考虑扭转振动的必要性;计算了不同啮合刚度时,耦合系统转子的各阶涡动转速,得到工作转速下各阶弯曲、扭转振动的自然频率随啮合刚度变化的规律,从转子稳定性的角度为齿轮箱传动系统的啮合齿轮副提供了最小设计刚度参考值;
     2)建立了齿轮箱系统零部件的三维有限元模型,采用装配有限元技术将各零部件按原空间位置集成,并通过节点间自由度耦合、1D刚/柔性单元、1D弹簧阻尼单元和接触控制等方法,在轴承与轴承座、轴承座与转轴、啮合齿轮对的啮合面之间建立了耦合关系,使箱体、轴承座、转轴、联轴器和齿轮形成了一个可以用于计算分析的总装模型。
     3)计算得到了齿轮箱系统及其传动系统的0-5000Hz内的模态频率和模态振型,在采用锤击法对该大型船用齿轮箱系统进行了模态试验的基础上,将试验模态分析得到的数据与理论计算值进行对比,对理论模型进行了验证。
     4)基于转子动力学、齿轮啮合原理和有限元方法,研究了齿轮箱系统所受到的外部激励和内部激励,基于振型叠加法计算了系统的动态响应,得到了各输出节点的位移、速度、速度响应的时频域信号,并通过与振动试验数据对比,验证了理论模型的合理性。在此基础上,分析了该齿轮箱系统在频域上的振动特性,并对系统的振动烈度和结构噪声进行了量化评估。
     5)基于军用规范中设计冲击谱的计算方法,结合齿轮箱系统的固有振动参数,制作了该系统在其各阶固有频率上的DDAM设计冲击谱,并将该设计谱拟合为二折线的冲击响应谱,以冲击响应谱为激励,计算了在左右舷向、垂向和艏艉向三个冲击加载方向上,齿轮箱系统的加速度、位移和应力响应峰值情况。
     6)推导了静态应力与响应谱分析得到的动态应力的合成方法,得到了齿轮箱系统在正常工作状况下,突然受到冲击载荷作用时的有效应力,对齿轮箱系统在水下非接触性爆炸冲击作用下的安全性能进行评估。同时,采用衰减正弦基波组合法对冲击响应谱进行了拟合,得到了既具有时域爆炸冲击信号特点,又能在能量上匹配军用规范设计冲击响应谱的模拟时域冲击信号,并分析了箱顶在瞬态爆炸信号作用下的响应情况。
     7)在箱体设计和改进中引入了拓扑优化技术,结合箱体的实际运行工况和动态性能分析方法,推导了动响应目标函数。采用优化准则算法,按照变密度法求解了多约束、多目标的箱体拓扑优化SIMP模型,根据优化分析得到的材料密度分布图,对箱体进行了优化改进。
This study originates from one of the Key Industrial Projects founded by Zhejiang Province Science and Technology Department:"Investigation and Application of the Key Technologies for Large Marine gearboxes"(2009C11062). The research object is a type of large marine reduction gearboxes matching the medium-speed diesel engines. This project is aimed at developing and improving the dynamic performances of large marine gearboxes which can match the10000~50000-tons large transport ships and warships, for technical reserves of the development for more powerful reduction-gearbox systems, and the formation of dynamic performances for box structural-design and optimization, vibration and noise reduction, shock resistance performance assessment.
     As one of the most important equipments for the transport ship and warship main power system, the large marine reduction gearbox is developing towards high rotating speed, high efficiency, high stability, light-weight design, low vibration and noise, heavy-duty, short cycle of design and manufacturing, which put towards higher requirements on the dynamic transmission characteristics of gear transmission system and the manufacturing capabilities. In addition, the large marine gear system is designed for both military and civilian use, because of that, the design, construction and improvement should be subjected with relevant military specifications, in which the particular important ones are about the shock resistance performance assessment under the under-water explosion. This paper focuses on a certain models of large marine reduction gearbox systems, by accessing to a large number of domestic and foreign technical materials and academic literatures. By the means of combining theoretical investigations, numerical simulations and experimental studies, and systematically utilizing geared rotor dynamics, gear system dynamics, finite element method, modal analysis theories and techniques, dynamic response analysis methods, vibration test theories and methods, response spectrum analysis methods and etc., this study conducts a comprehensive survey and assessment of the dynamic performances for the large marine gearbox system, and provides theoretical basis and technical solutions for the dynamic performance design methods formation of large-scale marine gearbox systems. The main investigation contents can be summarized as follows:
     1). Based on finite element theories, coupling geared multi-transmission parallel shafts rotor dynamics model is established. Then the model is utilized to analyze the geared dual parallel shafts in cis-turner working conditions for driving shafts of the large marine gearbox transmission system. The critical speed of coupled and uncoupled system is calculated, and then by analyzing the modal shapes of bending and torsional vibration for the coupled system, the necessity to consider the torsional vibration in the geared rotors is investigated. The critical rotating speeds of the coupled system with different gear meshing stiffness are computed to gain the bending and torsional vibration frequencies changing trends versus meshing stiffness changing. The investigation provides the minimum meshing stiffness for the design of the gearbox transmission system from the perspective of rotor dynamics. After that, the unbalance response is calculated for the drive system, and the sensitivities of different parts for the dual-rotor are studied.
     2). The refined3D finite element models for components of the large marine gearbox system are built, then the assembled finite element technology is used to integrate the various components in accordance with the original spatial location for the entire gearbox system. Coupling functions, such as inter-node freedom coupling,1D connecting elements,1D spring-damper elements, contacting control coupling and etc are used to build the relationships between bearings, bearing houses, shafts, mating surfaces of gears. Then the computational model of the entire gearbox system is established, including box, bearing houses, shafts, and gears.
     3). Modal frequencies and modal shapes between0-5000Hz of the large marine gearbox system are analyzed utilizing modal analysis theories. By means of simulated tests before real modal experiments, frequency responses of different parts on the box to force-hammer pulse excitation are extracted to provide a reference of location choices for the real tests. Then hammering method of modal experiments is adopted for modal tests of the large marine gearbox system. The theoretical modal analysis data are compared with experimental modal analysis data, to verify the effectiveness of the theoretical model.
     4). Based on rotor dynamics, gear system dynamics and finite element method, the inner and outside excitations are studied for the large marine gearbox system. Then, based on modal superposition method of vibration theories, the dynamic response simulation is carried out. By means of comparing the theoretically analyzed response data and experimental vibration data, the rationality of the theoretical model is proved. On this basis, the main vibration frequencies are analyzed, and then the vibration intensity and structural noise are assessed for the gearbox system.
     5). Based on calculation method of military specification, combined with the vibration parameters of the large marine gearbox system, DDAM design shock spectrum of natural frequencies is produced. Then the DDAM design shock spectrum was fitting into dual-polyline shock response spectrum, which is exerted as excitation of under-water explosion to the foundation of the gearbox system. After that, the response peak values of acceleration, velocity, displacement and stress for the marine gearbox of vertical, athwartship and fore-aft loading directions are computed.
     6). Mapping relationship between nodes and elements of each sub-system and entire assembly finite element system is established. Synthetic method is derived to combine the static stress under normal working condition and dynamic stress obtained from response spectrum analysis. Then, this method is used to assess the safety performance for the gearbox system under under-water explosion. At last, damping sinusoid method is used to fitting the time domain explosion shock signal from the shock response spectrum, and the time domain signal is utilized to analyze the transient response characteristics of the gearbox system.
     7). Topology optimization technology was introduced to improve the structural design and optimization for the gearbox. The objective function of dynamic response was derived according to the actual operation condition and dynamic performance analysis method. Multi-constraint and multi-objective optimized model was established according to the SIMP algorithm optimization criteria. After optimization analysis, optimized improvement was done to the gearbox structure.
引文
[1]覃峰,詹志刚,杨波,肖金生.基于遗传算法的船舶推进系统船、机、桨匹配优化设计[J].武汉理工大学学报(交通科学与工程版),2003,01:50-52.
    [2]刘柱.几种船舶推进系统的比较[J].青岛远洋船员学院学报,2003,03:40-44.
    [3]任旭东,陈刚.船舶推进系统的选择[J].世界海运,2004,04:41-42.
    [4]曾凡明,吴家明,庞之洋.舰船动力装置原理[M].北京:国防工业出版社,2005:71-108.
    [5]高速船舶推进系统减速器[J].传动技术,2001,01:1-17.
    [6]胡义,杨建国.船舶推进系统集成设计平台的设计与开展[J].船海工程,2009,38:84-87.
    [7]余放,王明为.舰船减速齿轮装置的加工与设计[M].北京:国防工业出版社,2009:3-102.
    [8]王世安,田广,游克全,等.船用齿轮设计技术的发展趋势[J].热能动力工程,2003,18(06):544-551.
    [9]李润方.齿轮传动的刚度分析和修型方法[M].重庆:重庆大学出版社,1998:1-5.
    [10]张展.渐开线变为齿轮传动[M].北京:国防工业出版社,2011:2-3.
    [11]江旭.大变位齿轮[M].北京:中国建材工业出版社,2001.
    [12]浙江省交通运输厅.振兴内河航运带动产业发展[OL]. http://www.moc.gov.cn/st2010/zhejiang /zj_jiaotongxw/jtxw_wenzibd/201302/t20130205_1364868.html.
    [13]徐翔.船舶复杂推进轴系耦合振动理论及试验研究[D].2012:1-3.
    [14]中国船舶工业年鉴编辑部.中国船舶工业年鉴2010[R].2010:3-5.
    [15]姜春明,肖民,姚寿广,等。国内外船用中高速柴油机产业现状和发展动态[J].船舶工程,2003,25(1):9-11.
    [16]王振慧.西门子船用齿轮箱在中国市场的营销困境与策略研究[D].2010:13-20.
    [17]夏晓雯.船用齿轮箱市场竞争愈发激烈[OL].http://www.eworldship.com/html/2012/Manufa cturingMarket_0604/51620.html.
    [18]中国水运报.中国船配业与造船业应均衡发展国产化率仅有50%[OL]. http://www.ccgp.gov .cn/gysh/jdjx/xgbd/201106/t20110609_1641564.shtml.
    [19]李润方.齿轮系统动力学:振动、冲击、噪声[M].北京:科学出版社,1997:2-10.
    [20]闻邦椿.高等转子动力学:理论、技术与应用.北京:机械工业出版社,2000:1-5.
    [21]张文.转子动力学理论基础[M].北京:科学出版社,1990.
    [22]顾家柳.转子动力学[M].北京:国防工业出版社,1985.
    [23]韩清凯.于涛,王德友,等.故障转子系统的非线性振动分析与诊断方法[M].北京,科学出版社,2010.
    [24]虞烈,刘恒.轴承-转子系统动力学[M].西安:西安交通大学出版社,1999.
    [25]S. S. Sutar. S. V. Kadam. Dynamic Analysis of Geared rotors-A review[J]. International Journal of Emerging Technology and Advanced Engineering,2012,2(10):422-424.
    [26]钟一谔,何衍宗,王正,等.转子动力学[M].北京:清华大学出版社,1987.
    [27]T. C. Lim. H. R. Sing. Vibration transmission through rolling element bearings, part I:bearing stiffness formulation[J]. Journal of Sound and Vibration,1990,139(2):179-199.
    [28]F. R. Wachel Szerasi. Field verification of lateral-torsional coupling effection rotor instabilities in centrifugal compressors [A]. NASA Conference Publication[C]. USA,1980:15-34.
    [29]孟光.转子动力学研究的回顾与展望[J].振动工程学报,2002,15(1):1-8.
    [30]L. D. Mitchell, D. M. Mellen. Torsional-Lateral Couple In a Geared High-Speed Rotor System[J]. Journal of Mechanical Design.1975,97(12):95.
    [31]J. W. Lund. Critical speeds, stability and response of a geared train of rotors[J]. Journal of Mechanical Design,1978.100(3):535-538.
    [32]B. M. Hamad, A. Selreg. Simulation of Whirl Interaction In Pinion-Gear Systems Supported on Oil Film Bearings. J. Eng. Power,1980,102(2):508-510.
    [33]H. lida, A. Tamura, K. Kikuch et al. Coupled torsional-flexural vibration of a shaft in a geared system of rotor[J]. Bulletin of the JSME,1980,23(186):2111-2117.
    [34]B. Hamad, A. Seireg. Simulation of whirl interaction in pinion-gear systems supported on oil film bearings[J]. Journal of Engineering for Power,1980,102(2):508-510.
    [35]T. Iwatsubo, H. T. Nan. Coupled lateral-torsional vibration of a rotor system trained by gears (10th report. Noise measurement by sound intensity method)[J]. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C.1989, 55(518):2527-2532.
    [36]A. S. Lee. J. W. Ha. A coupled unbalance response analysis of geared two-shaft rotor-bearing system[Z]. Honolulu, Hawaii:2002.
    [37]S. V. Neriya, R. B. Bhat, T. S. Sankar. Coupled Torsional-Flexural Vibration of a Geared Shaft System Using Finite Element Method. The Shock and Vibration Bulletin.1985. Part 3.55: 13-25.
    [38]A. Kahraman, H. N. Ozguven. D. R. Houser. et al. Dynamic analysis of geared rotors by finite elements[J]. American Society of Mechanical Engineers Journal of Mechanical Design,1992. 114:507-514.
    [39]A. Kahraman. Effect of axial vibrations on the dynamics analysis of a helical gear pair[J]. Journal of Vibration and Acoustics-Transactions of the ASME.1993.115:33-39.
    [40]C. Chen, S. Natsiavas. H. D. Nelson. Coupled Lateral-Torsional Vibration of a Gear-pair System Supported by a Squeeze Film Damper. Journal of Sound and Vibration,1998,120:860-867.
    [41]H. D. Nelson, J. M. Mcvaugh, The Dynamics of Rotor-Bearing Systems Using Finite Elements[J]. ASME Journal of Engineering for Industry,1976.98:593-600.
    [42]M. Rajan, H. D. Nelson. W. J. Chen. Parameter Sensitivity in the Dynamics of Rotor-Bearing Systems[J]. ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design,1986,108: 197~206.
    [43]J. S. Rao. J. R. Chang, T. N. Shiau. Coupled bending-torsion vibration of geared rotors[C]. USA. 1995:977-989.
    [44]J. S. Rao. T. N. Shiau, J. R. Chang. Theoretical Analysis of Lateral Response Due to Torsional Excitation of Geared Rotors. Mech. Mach. Theory,1998,33(6):761-783.
    [45]T. N. Shiau, J. S. Rao, J. R. Chang, et al. Dynamic Behavior of Geared Rotors[J]. Journal of Engineering for Gas Turbines and Power,1999,121:494-503.
    [46]M. A. Rao, J. Srinivas, V. R. Raju. et al. Coupled torsional-lateral vibration analysis of geared shaft systems using mode synthesis[J]. Journal of Sound and Vibration,2003,261:359-364.
    [47]S. T. Choi, S. Y. Mau. Dynamic Analysis of Geared Rotor Bearing System by the Transfer Matrix Method. ASME Journal of Mechanical Design, Dec 2001,123:562-568.
    [48]P. Schwibinger, R. Nordmem. The Influence of Torsional-lateral-coupling in Geared Rotor Systems on Its Eigenvalues, Modes and Unbalance Vibration [J]. Proc Meche.,1988,295(88): 275-287.
    [49]P. Schwibinger. R. Nordmem. The Influence of Torsional-lateral coupling on the Stability Behavior of Geared Rotor Systems[J]. Journal of Engineering for Gas Turbines and Power,1988, 110(4):563-571.
    [50]张瑞林,韩捷.齿轮一转子耦合系统中轮齿故障机理研究[J].振动工程学报,1988,03:48-54.
    [51]夏伯乾,虞烈,谢友柏.齿轮-转子-轴承系统弯扭耦合振动模型研究[J].西安交通大学学报.1997,12:95-101.
    [52]夏伯乾.齿轮耦合多平行转子-轴承系统动力学及其应用研究[D].西安交通大学博士论文.1998:2-13.
    [53]夏伯乾,虞烈,谢友柏.DH型压缩机齿轮-轴承-转子系统动力学分析[J].振动工程学报,2003,16(2):251-255.
    [54]石守红,韩玉强,张锁怀等.参数对齿轮耦合的转子-轴承系统响应的影响[J].机械科学与技术,2001,20(4):584-586.
    [55]余光伟.多平行轴齿轮-轴承-转子系统偶和振动的有限元分析[D].上海大学,1999:1-12.
    [56]伍良生,陈卫福.弯扭耦合齿轮传动系统固有频率与振型计算的传递矩阵法[J].北京工业大学学报,1999(1):94-98.
    [57]张建云,丘大谋.齿轮刚度及制造误差对多平行轴转子系统动力学性能的影响[J].机械科学与技术,1996(5):95-100.
    [58]李明,胡海岩.完整约束下齿轮啮合转子系统的弯扭耦合振动稳态响应[J].振动工程学报.2003,16(1):75-79.
    [59]M. Li, H. Y. Hu. Dynamic Aanlysis of a Spiral Bevel-geared Rotor-bearing System. Journal of Sound and Vibration,2003,259(3):605~624.
    [60]吴青凤,王一军,游思坤等.齿轮传动转子系统动力学特性的动态子结构法[J].机械设计,2008,25(5):31-34.
    [61]车永强,徐静霞,钱小东,等.齿轮传动转子系统弯扭耦合振动研究[J].机电工程,2012,29(6):632-635.
    [62]蒋庆磊,吴大转,谭善光等.齿轮传动多转子耦合系统振动特性研究[J].振动工程学报,2010,23(3):254-259.
    [63]M. S. Abbes, S. Bouaziz, F. Chaari, et al. An acoustic-structural interaction modeling for the evaluation of a gearbox radiated noise[J]. International Journal of Mechanical Sciences,2008, 50(3):569-577.
    [64]崔亚辉.齿轮-转子-滑动轴承系统非线性动力学特性的理论和试验研究[D].哈尔滨工业大学,2009:2-6.
    [65]A. S. Lee. J. W. Ha. D. H. Choi. Coupled lateral and torsional vibration characteristics of a speed increasing geared rotor bearing system[J]. Journal of Sound and Vibration.2003.263(4):725-742.
    [66]V. K. Amnarisha. R. G. Parker. Nonlinear dynamics of planetary gears using analytical and finite element models[J]. Journal of Sound and Vibration.2010.302(3):577-595.
    [67]M. S. ABBES, M. TRIGUl. F. CHAARI. et al. Dynamic behavior modeling of a flexible gear system by the elastic foundation theory in presence of defects[J]. European Journal of Mechanics-A/Solids,2010,29(5):887-896.
    [68]M. Ajmi, P. Velex. A model for simulating the quasi-static and dynamic behaviour of solid wide-faced spur and helical gears[J]. Mechanism and Machine Theory,2005.40(2):173-190.
    [69]Tengjiao LIN. H. OU. Runfang Li. A finite element method for 3D static and dynamic contact/impact analysis of gear drives[J]. Computer Methods in Applied Mechanics and Engineering,2007,196(9-12):1716-1728.
    [70]Jean-Luc Dion. Sylvie Le Moyne, Gael Chevallier, et al. Gear Impacts and Idle Gear Noise: Experimental Study and Non-linear Dynamic Model[J]. Mechanical Systems and Signal Processing,2009.23(08):2608-2628.
    [71]F. K. Choy, Y. F. Ruan, R. K. Tu, et al. Modal Analysis of Multistage Gear Systems Coupled with Gearbox Vibrations [J]. Journal of Mechanical Design,1992,114(03):486-497.
    [72]K. P. Maynard. Interstitial Processing:The Application of Noise Processing to Gear Fault Detection.Proceedings of the International Conference on Condition Monitoring[J]. April 1999, University of Wales Swansea, UK,12th-16th:77-86.
    [73]S. Le Moyne, J. L. Tebec, J. C. Kraemer. Source Effect of Ribs in Sound Radiation of Stiffened Plates, Experimental and Calculation Investigation[J]. Acta Acustica United with Acustica,2000, 86(03):457-464.
    [74]S. Le Moyne, J. L. Tebec. Ribs Effects in Acoustic Radiation of a Gearbox-Their Modeling in a Boundary Element Method[J]. Applied Acoustics,2002,63(2):223-233.
    [75]J. R. Ottewill, S. A. Neild, R. E. Wilson. An investigation into the effect of tooth profile errors on gear rattle[J]. Journal of Sound and Vibration,2010,329(2010):3495-3506.
    [76]P. Velex, P. Sainsot. An analytical study of tooth friction excitations in errorless spur and helical gears[J]. Mechanism and Machine Theory,2002,37:641-658.
    [77]Song He, Rajendra Gunda. Rajendra Singh. Effect of sliding friction on the dynamics of spur gear pair with realistic time-varying stiffness[J]. Journal of Sound and Vibration.2007,301: 927-949.
    [78]林腾蛟,廖勇军,李润方,等.齿轮箱动态响应及辐射噪声数值仿真[J].重庆大学学报,2009,32(08):892-896.
    [79]林腾蛟,廖勇军,李润方,等.双环减速器辐射噪声数值仿真及试验研究[J].振动与冲击,2010,29:43-47.
    [80]林腾蛟,李润方,杨成云等.增速箱内部动态激励及系统振动响应数值仿真[J].农业机械学报,2002,06:20-22.
    [81]林腾蛟,李润方,陶泽光.齿轮传动三维间隙非线性冲击-动力接触特性数值仿真[J].机械工程学报,2000,06:55-58.
    [82]林腾蛟,李润方,朱才朝等.斜齿轮的齿面载荷及啮合刚度数值分析[J].机械工艺师,2000,10:30-31.
    [83]林腾蛟,李润方,张宾.大型组装式齿轮弹塑性接触数值分析及改进设计[J].机械设计,1997,10:28-29.
    [84]林腾蛟,冉雄涛.正交面齿轮传动非线性振动特性分析[J].振动与冲击,2012,31(02):25-31.
    [85]Run-fang Li, Cheng-yun Yang, Teng-jiao Lin, et al. Finite Element Simulation of the Dynamical Behavior of a Speed-increase Gearbox[J]. Journal of Materials Processing Technology,2004, 150(1-2):170-174.
    [86]G. W. ZEN, X. Z. ZHU, Z. J. WEI. Study on nonlinear dynamic response of the gear-shaft-housing coupling system[C].2010 International Conference on Advanced Mechanical Engineering, September4-5,2010, Luoyang, China:AME 2010:805-808.
    [87]朱才朝,陆波,徐向阳等.大功率船用齿轮箱传动系统和结构系统耦合特性分析[J].船舶力学,2011,15:1315-1321.
    [88]陆波,朱才朝,宋朝省等.大功率船用齿轮箱耦合非线性动态特性分析及噪声预估[J].振 动与冲击,2009,28:76-80.
    [89]朱才朝,陆波,宋朝省等.大功率船用齿轮箱系统耦合非线性动态特性研究[J].机械工程学报,2009,45(09):31-35.
    [90]朱才朝,陆波,徐向阳等.大功率船用齿轮箱系统热弹耦合分析[J].船舶力学,2011,15(08):898-905.
    [91]陆波.基于热弹耦合大功率船用齿轮箱动态特性研究[D].重庆大学,2009.
    [92]朱才朝,徐向阳,王海霞等.大功率船用齿轮箱结构优化[J].重庆大学学报,2008,11:1221-1225.
    [93]刘文,林腾蛟,吕和生GWC6066船用齿轮箱振动噪声分析及试验[J].2011,34(8):48-54.
    [94]林雪妹.船用齿轮箱的结构优化及抗冲击性能研究[D],浙江大学,2011.
    [95]林雪妹,童水光,童小红,等.大型船用齿轮箱的模态分析及结构优化[J].机械设计与制造,2011、11:175-177.
    [96]李瑰贤.舰船用齿轮传动啮合刚度及动态性能研究[J].船舶工程,2000,24(5):41-43.
    [97]黄若波,杜俭业,王官祥.美国舰艇抗冲击标准规范研究分析[J].舰船科学技术,2007,29(2):138-142.
    [98]汪玉,赵建华,杜俭业、等.基于多体动力学有限元计算的一种舰用柴油机抗冲击性能仿真[J].振动与冲击,2009,28(11):87-90.
    [99]联邦德国海军舰艇建造规范,BV043/85,冲击安全性[S].中国舰船研究院科技发展部,1998.
    [100]Military specification, MIL-S-901D. Shock tests, H. I. (High Impact) shipboard machinery, equipment and systems, requirements for[S]. DODSIF Issue,1989.
    [101]Naval sea command.shock design criteria for surface ships[S]. NAVSEA 0908-LP-000-3010, 1995.
    [102]NAVSEA DDS-072-1, Design Data Sheet[S].1973.
    [103]NAVSHIPS 0902-001-5000, General Specifications for Ships of the U. S. Navy[S].1974.
    [104]国防科学技术工业委员会GJB1060.1-91舰船环境条件要求:机械环境[S].北京:中国标准出版社,1991.
    [105]汪国和,沈荣瀛,华宏星,等.舰船机械设备冲击隔离技术研究进展[J].船舶力学,2006,10(1):135-141.
    [106]R. J. Scavuzzo, H. C. Pusey. Naval shock analysis and design[M]. Falls Church:Booz Allen and Hamilton Inc.,2000
    [107]M. R. Brake. ANinverse shock response spectrum[J]. Mechanical Systems and Signal Processing. 2011,25:2654-2672.
    [108]赵应龙,何琳,吕志强.应用DDAM进行船舶浮筏隔振装置抗冲击计算[J].工程力学,2007,24(4):159-167.
    [109]R. O. Belsheim, G. J. O'Hara. Shock design of shipboard equipment, dynamic design analysis method[R]. NAVSEA Report 250-423-30,1961.
    [110]Supervisor of shipbuilding, conversion and repair, USN, shock design criteria for surface ships[S]. NAVSEA 0908-LP-000-3010,1976.
    [111]Edward Alexander J. A nonlinear DDAM procedure[A]. SAVIAC Proceeding of the 66th Shock and Vibration Symposium[C].1995.
    [112]Edward Alexander J. Structural analysis of a nonlinear system given a shock response spectrum input[A]. SAVIAC Proceeding of the 69th Shock and Vibration Symposium[C].1998.
    [113]Edward Alexander J. Nonlinear system mode superposition given a prescribed shock response spectrum input[A]. IMAC-XX:A Conference on Structural Dynamics[C]. Los Angeles. California,2002.
    [114]D. O. Smallwood. An improved recursive formula for calculating shock response spectra[J]. Shock and Vibration Bulletin,1980,51:4-10.
    [115]K. Ahlin. Shock response spectrum calculation-an improvement of the smallwood algorithm[A]. 70th Shock and Vibration Symposium[C]. SAVIAC,1999.
    [116]P. F. Cuniff, G. J. O'Hara. A Procedure for Generating Shock Design Values[J]. Journal of Sound and Vibration,1989,134:155-164.
    [117]MSC/NASTRAN quick reference guide[CP]. MSC(The MacNeal-Schwendler Corporation) Version 67,1993.
    [118]J. A. DeRuntz, T. L. Geers, C. A. Felippa. The underwater shock analysis code (USA-version 3)-reference manual[R].DNA Report 5615F,1980.
    [119]J. A. DeRuntz. The underwater shock analysis code and its applications[A].60th Shock and Vibration Symposium[C].SAVIAC,1989:89-107.
    [120]T. L. Geers. Residual potential and approximation methods for three-dimensional fluid-structure interaction problems[J]. Journal of Acoustic Society of America,1971,49:1505-1510.
    [121]T. L. Geers. Doubly asymptotic approximations for transient motions of submerged structures[J]. Journal of Acoustic Society of America.1978(64):1500-1508.
    [122]S. S. Young, L. D. Santiago. Surface ship shock modeling and simulation:two-dimensional analysis[J]. Shock and Vibration,1998. (5):129-137.
    [123]J. A. DeRuntz. C. C. Rankin. Applications of the USA-STAGS-CFA code to nonlinear fluid-structure interaction problems in underwater shock of submerged structures[A].60th Shock and Vibration Symposium[C]. SAVIAC.1989:121-138.
    [124]C. A. Felippa, J. A. DeRuntz. Finite element analysis shock-induced hull cavitation[J]. Computer Methods in Applied Mechanics and Engineering,1984(44):297-337.
    [125]J. E. Van Aanhold. G. J. Meijer, P. P. M. Lemmen. Underwater shock response analysis of a floating vessel[J]. Shock and Vibration,1998,5:53-59.
    [126]S. Goyal, G. W. Elko, E. K. Buratynski. Role of Shock Response Spectrum in Electronic Product Suspension Design[J]. The International Journal of Microcircuits and Electronic Packaging, 2000.23(2):182-190.
    [127]Cho-Chung Liang. Min-Fang Yang. Yuh-Shiou Tai. Prediction of shock response for a quadrupod-mast using response spectrum analysis method[J]. Ocean Engineering,2001,29 (2002):887-914.
    [128]Z. Zong, K. Y. Lam, Tessa Gan. Limiting performance analysis of underwater shock isolation of a system with biodynamic response using genetic algorithm[J]. Shock and Vibration.2000(7): 321-332.
    [129]林腾蛟,蒋仁科,李润方,等.船用齿轮箱动态响应及抗冲击性能数值仿真[J].振动与冲击,2007,26(12):14-17,22.
    [130]周其新,姚熊亮,张阿漫,等.舰用齿轮箱抗冲击能力时域计算[J].中国舰船研究,2007,2(03):44-48.
    [131]张阿漫,周其新,姚熊亮,等.基于船体与设备一体化的设备抗冲击阈值[J].爆炸与冲击,2009,29(04):375-379.
    [132]姚熊亮,戴绍仕,周其新,等.船体与设备一体化抗冲击分析[J].爆炸与冲击,2009,29(04):367-374.
    [133]姚熊亮,冯麟涵,张阿漫.舰船设备抗冲击时域模拟研究[J].汽轮机技术,2009,51(3):190-194.
    [134]陈海龙,姚熊亮,张阿漫等.船用典型动力设备抗冲击性能评估研究[J].振动与冲击,2009,28(2):45-50.
    [135]姚熊亮,刘东岳,赵新,等.舰船动力机组整体抗冲击数值试验研究[J].传感器与微系统,2007,26(12):54-57.
    [136]冯麟涵.舰用增压锅炉抗冲击特性研究[D].哈尔滨工程大学,2008.
    [137]YAO Xiong-liang, ZHOU Qi-xin, ZHANG A-man. Numerical simulation of the anti-shock performance of a gear case[J]. J. Marine. Sci. Appl.,2008,7:33-39.
    [138]杜志鹏,汪玉,杨洋,等.舰艇水下爆炸冲击信号拟合及应用[J].振动与冲击,2010,29(3):182-184.
    [139]曹源,汪凤泉,桂益俊.基于遗传算法的冲击信号拟合[J].东南大学学报,37(2):320-323.
    [140]陈小慧,闫兵,李华超.冲击响应谱时域合成算法研究[J].2007,包装工程,28(2):23-26.
    [141]计晨,汪玉,杨莉,等.水下爆炸载荷作用下舰用齿轮箱强度极限数值仿真研究[J].北京理工大学学报,2011,31(2):8-11.
    [142]计晨,王志刚,汪玉等.柴油机抗冲击性能实船水下爆炸冲击试验研究[J].舰船科学技术,2010,32(5):27-30.
    [143]黄建松,柯文棋,乐秀鸿,等.模拟非接触水下爆炸时舰船人员冲击损伤的安全性评估及防护措施[J].中华航海医学与高气压医学杂志,2005,12(03):133-135.
    [144]黄建松,华宏星,沈荣赢.舰船冲击运动引起人员损伤评估方法研究综述[J].振动与冲击,2008,27(05):60-63.
    [145]黄建松,华宏星,周建鹏.舰船人员冲击损伤标准及耐受性研究[J].北京生物医学工程,2008,27(03):300-304.
    [146]CB/T 4199-2011,中华人民共和国船舶行业标准,船用中速柴油机齿轮箱系列[S].2011:1-5.
    [147]曾凡明,吴家明,庞之洋.舰船动力装置原理[M].北京:国防工业出版社,2005:106-108.
    [148]徐跃进.齿轮箱中齿轮故障的振动分析与诊断[J].机械设计,2009,26(12):68-71.
    [149]T. A. Harris. Rolling Bearing Analysis (5th edition) [M]. Florida:CRC Press, Taylor & Francis Group,2007:6-20.
    [150]G. D. Hagiu, M. D. Gafitanu. Dynamic Characteristics of High Speed Angular Contact Ball Bearings[J].Wear,1997.211:22-29.
    [151]S. V. Neriya, R. B. Bhat, T. S. Sanker. Effect of coupled torsional-flexural vibration of a geared shaft system on dynamic tooth load[J]. The Shock and Vibration Bulletin,1984, Part 3.54: 67-75.
    [152]A. S. Lee. J. W. Ha. Prediction of maximum unbalance responses of a gear-coupled two-shaft rotor-bearing system[J]. Journal of Sound and Vibration.2005.283:507-523.
    [153]ISO. ISO 6336-1-1996. Calculation of Load Capacity of Spur and Helical Gears-Part 1:Basic principles, introduction and general influence factors[S]. Geneva:ISO,1996.
    [154]Siemens Inc. Basic Dynamic Analysis User's Guide. NX Nastran 8 Documentation,2012.
    [155]Siemens Inc. Advanced Dynamic Analysis User's Guide. NX Nastran 8 Documentation,2012.
    [156]徐向阳,朱才朝,张晓蓉,等.大功率船用齿轮箱试验模态分析[J].振动与冲击,2011,30(7):266-270.
    [157]李润方,陶泽光,林腾蛟、等.齿轮啮合内部动态激励数值模拟[J].机械传动,2001,25(2):1-3.
    [158]A. Palmeri. M. Lombardo. A new modal correction method for linear structures subjected to deterministic and random loadings[J]. Computers and Structures.2011.89(2011):844-854.
    [159]ISO. ISO 10816-1, Mechanical vibration—Evaluation of machine vibration by measurements on non-rotating parts—Part 1:General guidelines[S]. Geneva:ISO,1995.
    [160]GB/T 6404.2-2005.齿轮装置验收规范,第2部分:验收试验中齿轮装置机械振动的测定[S].2005.
    [161]朱才朝,闫春爱,李华斌,等.大功率船用齿轮箱振动与结构噪声试验[J].振动与冲击,201],34(6):20-25.
    [162]J. E. Alexander. Shock response spectrum—a primer [J]. Sound and Vibration,2009.43(2009): 6-15.
    [163]童水光,魏超,费钟秀,等.船用齿轮箱系统抗冲击特性数值仿真[J].振动与冲击,2012,31(12):79-85.
    [164]刘洪英,冯雪梅,马爱军.冲击响应谱控制系统的开发[J].振动与冲击,2006,25(6):132-134.
    [165]左孔天.连续体结构拓扑优化理论与应用研究[D].武汉:华中科技大学,2004:1-5.
    [166]W. DORN R. GOMORY, H. GREENBERG. Automatic design of optimal structures [J]. J. de. Mecanique,1964.3(1):25-52.
    [167]M. P. Bendsoe, N. Kikuchi. Generating optimal topologies in structural design using a homogenization method [J]. Comp. Meth. Appl. Mech. Engrg,1988.71(1):197-224.
    [168]M. P. BENDSOE, O. SIGMUND. Material interpolation schemes in topology optimization [J]. Archive Applied Mechanics,1999,69:635-654.
    [169]M. P. Bendsoe. O. Sigmund. Topology Optimization—Theory, Methods, and Applications [M]. Springer, Heidelberg.2003.
    [170]范文,杰范子,杰苏瑞.汽车车架结构多目标拓扑优化方法研究[J].中国机械工程.2008.19:1505-1507.
    [171]张桥,张卫红,朱继宏。动力响应约束下的结构拓扑优化设计,机械工程学报,2010,46(15):45-5].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700