用户名: 密码: 验证码:
大连地铁分岔隧道施工风险评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在建的大连地铁1号线大连海事大学至高新园区区间隧道渡线段工程是大连地铁1号线的重难点控制性工程之一。本工程分岔隧道由大跨度结构经非对称小净距结构过渡到分离式结构,断面形式变化复杂,施工工序转换大,施工过程中开挖与支护相互影响,围岩应力多次重分布,支护与衬砌结构上荷载转换复杂;另外,施工过程中隧道变形控制难度大,稍有不慎,就会造成塌方。不管是设计还是施工,分岔隧道结构相对来说是十分复杂的。因此,对大连地铁进行施工阶段风险评估具有重要的理论意义和工程实用价值。
     主要研究内容包括:
     (1)分岔隧道施工力学分析
     基于地层—结构模型,采用数值模拟分析方法,建立分岔隧道的6个特征断面数值模型,模拟隧道实际施工方法,分析分岔隧道的受力变形特征。
     (2)分岔隧道施工风险评估
     总结归纳分岔隧道施工风险的主要影响因素,建立隧道施工风险因素的层次结构模型,采用层次分析法进行施工风险因素的敏感性分析及隧道安全状况内在关系研究。采用模糊回归和BP人工神经网络等数学方法,建立分岔隧道施工风险预测模型。并对大跨度、高水位、小净距等特征断面进行风险评估,基于评估结果进行风险控制管理。
     (3)分岔隧道施工风险管理
     在大连地铁隧道建设过程中,将风险控制理论与大连地铁隧道工程充分结合,在隧道施工中不断调整、完善、提高,最终形成一套有针对性的隧道工程建设的风险控制管理措施制度。通过建立以超前地质预报、风险评估和监控量测为核心的“三位一体”的动态信息管理系统,可以全方位立体地将隧道开挖前、开挖中和开挖后的安全状态全部以数据形式显示出来,为工程施工提出技术参考,对施工技术负责人做出施工决策有重大的帮助。
     通过上述研究,得到以下结果:
     (1)分岔隧道施工的重点是施工工序的控制,通过合理安排双洞的开挖、支护的间隔和顺序,可有效地控制两隧道之间由于净距较小引起的围岩变形,从而保证隧道结构的安全。
     (2)确定了大连地铁隧道施工风险评估指标为围岩变形、地表沉降、结构受力、塑性区范围、涌水以及塌方。然后采用模糊回归和人工神经网络等数学方法,建立了分岔隧道施工风险预测模型。对大跨、小净距等特征断面进行了风险预测,基于预测结果提出了风险控制管理。
     (3)地铁分岔隧道施工过程数值模拟及隧道安全状况内在关系研究的结论与工程原位的实测数据拟合度较高,隧道施工风险评估及隧道施工风险管理等研究结论较为全面地控制了地铁分岔隧道施工的风险,可用于指导施工。同时现场实测值较好地弥补数值分析的不足,检验并深化了分岔隧道施工风险评估理论系统,为后续施工方法选择及改进工艺提供实测数据参考。
The being built new Line1of Dalian Metro between Maritime University and High-tech zone is one of the important controlling project. The engineering tunnel transition asymmetric small clear space structure by the large span structures change to the structure, cross-section in the form of separate complex construction process to convert, the construction process of excavation and support mutual influence, surrounding rock stress multiple distribution support and lining structural load conversion complex. In addition, the construction process in the tunnel deformation control difficult, the slightest mistake, it will cause a collapse. Regardless of design or construction, bifurcation tunnel structure is relatively very complicated. Therefore, has important practical significance and value of the works carried out a risk assessment of the construction phase of Dalian Metro.
     The main contents include:
     (1) Bifurcation tunnel construction mechanics analysis
     Six feature sections numerical model, numerical simulation analysis method based on stratigraphic-structural model, forked tunnel simulation of the actual tunnel construction method, analysis of the force-deformation characteristics of the bifurcation tunnel.
     (2) Bifurcation tunnel construction risk assess
     Subway tunnel construction risk assessment modeling and application Randomness and fuzziness of the subway tunnel construction risk, the use of fuzzy regression model and neural networks theory to risk prediction. Subway tunnel collapse data through statistical analysis, and summarize the risk factors affect the construction of the tunnel, the main factors were selected as fuzzy regression analysis of the impact factor. Adopt-level analysis and membership functions, respectively, calculated tunneling various risk factors the relative rights weight and risk factors of tunnel construction risk level of membership degree, the various related risk factors of the weight and the risk factors on the level of risk attached to the degree carried fuzzy integrated computing to draw tunnel construction risk level. And research on intrinsic relationship of tunnel security situation.
     (3) The bifurcation identification and sensitivity analysis of the risk factors of tunnel construction
     Main factors establish the model of the hierarchy of the tunnel construction risk factors summarized the bifurcation tunnel construction risk, construction risk factors using the analytic hierarchy sensitivity analysis. Mathematical methods using fuzzy regression and BP artificial neural network to establish the bifurcation tunnel construction risk prediction model. Fixed BP artificial neural network technology, using the negative gradient descent algorithm and using iterative computing to solve network weights heavy and the threshold corresponding network learning memory process, adding hidden nodes so that the optimization problem of adjustable parameters increases, which can be more precise the solution. The assessment system in the process of compiling the built-in core of artificial neural network algorithm, node sample training layers weight threshold input evaluation system, constitutes a complete neural network evaluation model. Based on the current conditions of the tunnel construction risk factors evaluation, the evaluation results into the input layer of the artificial neural network model has been calculated, the output layer evaluation index values of the tunnel. Reference to the the assessment index value calculated will get the size of the tunnel construction risk. The large cross, small clear space and other features section for risk assessment, and risk control management based on the results of the assessment.
     Through the study, the following results were obtained:
     (1) The bifurcation tunnel construction the focus is the control of the construction process, reasonable arrangements for the excavation of the two-hole interval and order of support, can effectively control the surrounding rock deformation caused clear distance smaller between the two tunnels, in order to ensure the safety of the tunnel structure.
     (2) Determine the Dalian metro tunnel construction risk assessment indicators surrounding rock deformation, surface subsidence, the structure of the force, the plastic zone, gushing and landslides. Then regression and artificial neural networks using fuzzy mathematical methods, bifurcation tunnel construction risk prediction model. The large cross, small clear space and other features section risk prediction, risk control management based on the predicted results.
     (3) Higher subway bifurcation tunnel construction process inherent relationship between the conclusions of the study of the numerical simulation and tunnel security situation and Engineering in situ measured data fit, more comprehensive conclusions of the tunnel construction risk assessment and tunnel construction risk management control subway bifurcation tunnel construction risk, can be used to guide the construction. The measured values are good to make up for the lack of numerical analysis, inspection, and deepen the bifurcation tunneling theory of risk assessment system provides measured data reference for subsequent construction methods and process improvements.
引文
[1]陈赤坤,杨雄,郑长青.铁路隧道风险评估与管理关键技术[C].自主创新与持续增长第十一届中国科协年会论文集(2).2009.
    [2]张果.我国BOT项目的风险管理与案例分析[D](硕士论文).重庆:重庆大学,2006.
    [3]郭明香.水下隧道施工风险评价模型及其工程应用研究[D](硕士论文).长沙:中南大学,2009.
    [4]吴波,刘维宁,高波,等.地铁分岔隧道施工性态的三维数值模拟与分析[J].岩石力学与工程学报,2004,23(18):3081-3086.
    [5]张庆松,李术才,李利平.分岔隧道大拱段围岩稳定性监控与爆破振动效应分析[J].岩石力学与工程学报,2008,27(7):1462-1468.
    [6]蔚立元,李术才,郭小红.分岔隧道过渡段稳定性研究[J].中国公路学报,2011,24(1):89-94.
    [7]Li, C., Stillborg, B. Analytical models for rock bolts. International Journal of Rock Mechanics and Mining Sciences,2011,36 (8),1013-1029.
    [8]王汉鹏,李术才,张强勇.分岔隧道模型试验与数值模拟超载安全度研究[J].岩土力学,2008,29(9):2521-2529.
    [9]胡剑兵,褚以惇,乔春江.分岔隧道施工三维数值仿真模拟研究[J].公路,2009,3:193-199.
    [10]周峰,郭小红,张涛,等.分岔公路隧道锚杆轴力现场监控量测与分析[J].现代隧道技术,2009,46(3):93-99.
    [11]刘强,漆泰岳.大跨度分岔隧道施工优化与地表沉降控制[J].地下空间与工程学报,2010,6(5):1034-1038.
    [12]重庆交通科研设计院.万石山隧道与既有钟鼓山隧道立体交叉设计说明[R].重庆交通科研设计院,2005.
    [13]王良,刘元雪,李忠友,等.地下立交的三维有限元数值分析[J].地下空间与工程学报,2009,5(3):455-458.
    [14]靳晓光,张宪鑫,李勇,等.大型地下立交动态施工过程3D有限元分析[J].地下空间与工程学报,2009,5(2):215-219.
    [15]李勇,李晓春,胡学兵.地下互通式立交隧道设计与施工[J].公路交通技术,2007,增:100-103.
    [16]王者超,李术才,陈卫忠.分岔隧道变形监测与施工对策研究[J].岩土力学,2007,28(4):785-789.
    [17]H. H. Einstein. Risk and risk analysis in rock engineering[J]. Tunnelling and Underground Space Technology,1996,11(2):141-155.
    [18]B. Nilsen, A. Palmstrom, H. Stille. Quality control of a subsea tunnel project in complex ground conditions[C]. Challenges for the 21st century,1992:137-145.
    [19]Norwegian Tunnelling Society:ITA recommendations of contractual sharing of risks. Second edition March 1992;
    [20]A. J. M. Snel, D. R. S. Van Hasselt. Risk managment in the Amsterdam North South metro line:a matter of process communication instead of calculation[C]. Proceedings of the world tunnel congress,1999:179-186.
    [21]R. Sturk, L. Olsson, J. Johanson. Risk and decision analysis for large underground projects, as applied to the stockholm ring road tunnelling Tunnelling and Underground Space Technology,1996,11(2):152-164.
    [22]Heinz D. Challenges to tunnelling engineerings[J]. Tunnelling and Underground Space Technology,1996,11(1):510-510.
    [23]佐藤久,田中胜雄.日本隧道工程的发展和灾害情况统计[J].隧道与地下工程,1998,5(4):1-9.
    [24]. S. Degn Eskesen. Guidelines for Tunneling Risk Management, International Tunnel Association Working Group No.2[J]. Tunnelling and Underground Space Technology,2004,19(3): 217-237.
    [25]Kwangho You, Yeonjun Park, Jun S. Lee. Risk analysis for determination of a tunnel support pattern[J]. Tunnelling and Underground Space Technology,2005,20(1):479-486.
    [26]Chungsik Yoo, Young-Woo Jeon, Byoung-Suk Choi. IT-based tunnelling risk management system (IT-TURISK)-Development and mplementation[J]. Tunnelling and Underground Space Technology,2006,21(1):190-202.
    [27]Eun-Soo Hong, In-Mo Lee, Hee-Soon Shin, et al. Quantitative risk evaluation based on event tree analysis echnique:Application to the design of shield TBM[J]. Tunnelling and Underground Space Technology,2009,24(1):269-277.
    [28]Alan N. Beard. Tunnel safety, risk assessment and decision-making [J]. Tunnelling and Underground Space Technology,2010,25(1):91-95.
    [29]Ondrej Nyvlt, Samuel Privara, Lukas Ferkl. Probabilistic risk assessment of highway tunnels[J]. Tunnelling and Underground Space Technology,2011,26(1):71-82.
    [30]王梦恕.厦门海底隧道设计、施工、运营安全风险分析[J].施工技术,2005,13(增):1-4.
    [31]陈龙.城市软土盾构隧道施工期风险分析与评估研究[D].上海:同济大学,2004.
    [32]陈亮,黄宏伟,胡群芳.盾构隧道施工风险管理数据库系统开发[J].地下空间与工程学报,2005,6(1):964-967.
    [33]袁勇,王胜辉,彭定超.盾构隧道全寿命防水风险模糊评价[J].自然灾害学报,2005,14(2):81-88.
    [34]胡志平,冯紫良,刘学山,等.盾构隧道管片衬砌结构稳定性风险分析[J].同济大学学报,2005,32(5):596-600.
    [35]苏燕,周健.隧道抗震风险评估初探[J].福州大学学报(自然科学版),2004,32(1):65-68.
    [36]陈洁金,周峰,阳军生,等.山岭隧道塌方风险模糊层次分析[J].岩土力学,2009,30(8):2365-2370.
    [37]苏永华,邹志鹏,赵明华.基于模糊集重心理论的岩体分类[J].岩土力学,2007,28(6):1118-1122.
    [38]姚浩,周红波,蔡来炳,等.软土地区土压盾构隧道掘进施工风险模糊评估[J].岩土力学,2007,28(8):1753-1756.
    [39]黄宏伟,陈龙,胡群芳,等.隧道及地下工程的全寿命风险管理[M].北京:科学出版社,2010.
    [40]中国中铁二院集团有限责任公司.铁路隧道风险评估指南[M].北京:中国铁道出版社,2007.
    [41]汪培庄,李洪兴.模糊系统理论与模糊计算机[M].北京:科学出版社,1996.
    [42]Karwowski. Applications of approximate reasoning in risk analysis[C]. Applications of Fuzzy Set Theory in Human Factors. New York:Elsevier,1986.
    [43]郭亚军.综合评价理论、方法及应用[M].北京:科学出版社,2008.
    [44]王文正.公路双连拱隧道开挖方法及施工过程数值模拟研究[D](硕士论文).西安:长安大学,2003.
    [45]李兵.地铁车站施工风险管理研究[D](硕士论文).北京:交通大学,2006.
    [46]周峰.山岭隧道塌方风险模糊层次评估研究[D](硕士论文).长沙:中南大学,2008.
    [47]宫志群.地铁盾构区间隧道施工风险分析及评价[D](硕士论文).天津:天津大学,2006.
    [48]陈洁金.下穿既有设施城市隧道施工风险管理与系统开发[D](博士论文).长沙:中南大学,2009.
    [49]王迎超.山岭隧道塌方机制及防灾方法[D](博士论文).杭州:浙江大学,2010.
    [50]王书刚.八字岭分岔隧道稳定性分析及其安全控制[D](硕士论文).济南:山东大学,2006.
    [51]李冬梅.铁路隧道风险评估指标体系及方法研究[D](硕士论文).成都:西南交通大学,2008.
    [52]李锋.翔安隧道强风化层施工的风险管理[D](硕士论文).上海:同济大学,2007.
    [53]王汉鹏.分岔式隧道设计施工的关键技术研究[D](博士论文).济南:山东大学,2006.
    [54]刘大园.软岩三线车站隧道开挖围岩力学响应分析[D](硕士论文).成都:西南交通大学,2007.
    [55]徐冲.分岔隧道设计施工优化与稳定性评价[D](博士论文).北京:北京交通大学,2011.
    [56]王玉喜.隧道安全风险分析探讨[J].内蒙古科技与经济,2008.
    [57]Wang ZZ, Zhang Z. Seismic damage classification and risk assessment of mountain tunnels with a validation for the 2008 Wenchuan earthquake. Soil Dynamics and Earthquake Engineering.2013,45:45-55.
    [58]李彬.地铁地下结构理论分析与应用研究[D].(博士论文).北京:清华大学,2005.
    [59]史常青.浅埋明挖地下铁道车站结构的抗震性能研究[D].(博士论文).西南交通大学,2006.
    [60]庄海洋.土-地下结构非线性动力相互作用及其大型振动台试验研究[D](博士论文),南京:南京工业大学,2006.
    [61]王明年.高地震区地下结构减震技术原理的研究[D].(博士论文).西南交通大学,2009.
    [62]Brown ET, Hudson JA. Fatigue failure characteristics of some models of jointed rock. Earthquake Engineering and Structural Dynamics 2012; 2(4):379-386.
    [63]Aguaron J, Moreno-Jimenez M. The geometric insistency index:approximated thresholds. European Journal of Operational Research 2010; 147:137-145.
    [64]Argyroudis SA, Pitilakis KD. Seismic fragility curves of shallow tunnels in alluvial deposits, Soil Dynamics and Earthquake Engineering 2012; 35:1-12.
    [65]季倩倩.地铁车站结构振动台模型试验研究[D].同济大学博十研究生论文,2002.
    [66]刘永芳.遗传算法和BP网络及其在城市系统评价中的应用[D](硕士论文).合肥:合肥工业大学,2004.
    [67]高瑞忠,李和平,格日乐,等.基于复合Sigmoid函数的国内生产总值预测方法[J].工业技术经济.2010.
    [68]金菊良.遗传算法及其在水问题中的应用[D](博士论文).南京:河海大学,1998.
    [69]王进志.雪峰山特长铁路隧道不良地质风险再评估与风险动态管理[J].隧道建设.2009.
    [70]Merifield, R.S., Smith, C.C.. The ultimate uplift capacity of multi-plate strip anchors in undrained clay. Computers and Geotechnics,2010,37 (4),504-514.
    [71]Li B, Qi TY. Back analysis of grouted rock bolt pullout strength parameters from field tests[J]. Tunnelling and Underground Space Technology,2012,28(2):345-349.
    [72]陈绍华.关角隧道风险评估[J].现代隧道技术.2009.
    [73]袁龙.基于模糊层次综合评估法的隧道洞口段塌方风险评估[D](硕士论文).西安:长安大学,2010.
    [74]李连升.河南省高速公路路面坑槽与裂缝养护维修率的模糊回归应用研究[D](硕士论文).西安:长安大学,2007.
    [75]王志强.科尔沁沙地土壤水力特性的推算[D](硕士论文).内蒙古:内蒙古农业大学2003.
    [76]张乐英.城镇用水量预测方法研究及制定合理水价的探索[D](硕士论文).合肥:合肥工业大学,2004.
    [77]付海军.数字钻孔摄像技术原理及其在海底隧道含水构造注浆效果检验中的应用研究[D](硕士论文).济南:山东大学,2010.
    [78]卫俊.青岛胶州湾海底隧道地下水特征研究[D](硕士论文).北京:中国铁道科学研究院,2011.
    [79]何红忠.海底隧道渗流场分析及施工数值模拟[D](硕士论文).长沙:中南大学,2009.
    [80]雷军军.望垄江隧道监控量测技术研究[D](硕士论文).长沙:中南大学,2011.
    [81]涂国华.浅谈软件项目风险管理[J].中国科技信息.2008.
    [82]张跃飞.苏北地区中小型水利工程造价估算系统[D](硕士论文).江苏:扬州大学,2007.
    [83]肖磊.建筑承包商施工风险分析与评价[D](硕士论文).杭州:浙江大学,2006.
    [84]黄森信.浅谈隧道工程施工中的风险控制管理[J].科技信息.2009.
    [85]姚勇,何川,张玲玲.紫坪埔隧道小净距段现场监测试验研究[J].岩石力学与工程学报.2010.
    [86]张昌勇,周勇.古滑坡体上小净距隧道施工工艺研究[J].西部探矿工程.2007.
    [87]王文正.公路双连拱隧道开挖方法及施工过程数值模拟研究[D](硕士论文).西安:长安大学,2003.
    [88]杜荣强.混凝土静动弹塑性损伤模型及在大坝分析中的应用[D].(博士论文).大连:大连理工大学,2006.
    [89]刘光福.肇兴特长高速公路隧道施工监测技术[J].公路隧道.2010,
    [90]唐文哲,强茂山,陆佑楣,陈云华.基于伙伴关系的项目风险管理研究[J].水利发电,2006,32(7):1-4.
    [91]高云莉.工程项目集成风险管理理论与方法研究[D](博士论文).大连:大连理工大学,2008.
    [92]寇建涛.输变电工程项目风险管理研究[D](硕士论文).北京:华北电力大学,2007.
    [93]游珠玉.旅游项目投资风险分析及风险决策[D](硕士论文).天津:天津大学,2006.
    [94]贺琼.靓丽东环绕林城[N].贵州日报.2011,09,05.
    [95]Crawford G, Williams C. A note on the analysis of subjective judgment matrices. Journal of Mathematical Psychology 2012; 29:387-405.
    [96]Day RW. Geotechnical earthquake engineering handbook, McGraw-Hill, New York,2012.
    [97]Krajcinovic D. Damage mechanics:accomplishments, trends and nees[J]. Int J Solids Struct.,2010,37:267-277.
    [98]刘伟.胶州湾隧道二次衬砌混凝土的耐久性研究[D].青岛:青岛理工大学,2008.
    [99]Chen ZY, Shi C, Li TB. Damage characteristics and influence factors of mountain tunnels under strong earthquakes. Nat Hazards 2012; 61 (2):387-401.
    [100]Dowding CH, Rozen A. Damage to rock tunnels from earthquake shaking. Journal of the Geotechnical Engineering Division - ASCE 2011; 104(GT2):175-191.
    [101]Nard H Le, Bailly P. Dynamic behavior of concrete:the structural effects on compressive strength increase[J]. Mech. Cohens-Frict. Mater.,2010,5:491-510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700