用户名: 密码: 验证码:
季节冰冻区道路路基差异沉降控制标准及预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的季节冻土面积超过了国土面积的一半,季节冻土的开发和利用在我国经济建设和社会发展中占有极其重要的战略地位。随着我国西部大开发战略和振兴东北老工业基地战略的不断深化,加快基础设施建设将成为这些地区社会经济快速发展的有力保障,其中道路建设是最首要的基础前提,势必需要修建数量更多,等级更高的道路。然而,道路路基冻害问题一直是困扰我国季节冰冻区道路建设的一个重要问题。
     路基的季节性冻结和融化引起的路基不均匀变形已成为季节冰冻区路基路面早期破坏的重要原因之一。由于路基路面是一个整体,路基不均匀融沉变形引起路基的差异沉降,从而导致路面发生不均匀变形,在路面结构层中产生融沉附加应力,当不均匀变形值超过某一限值时,路面结构层因较大的附加应力和路面的荷载应力叠加超过路面材料的容许拉应力而发生破坏。路基的强度和稳定性是保证道路正常使用的基本条件,路基的稳定与否,主要反映在路基沉降变形量的大小,因此建立路基差异沉降控制标准和准确预测路基的沉降变形规律对保证道路的安全运行具有重要的意义。
     为确保路基具有足够的稳定性,需要实时获取路基强度状态,有必要对路基强度进行监测。由于季节冰冻区路基的含水量、压实度、干湿类型都与回弹模量呈指数关系,所以采用回弹模量能较好的反映整体路基工程状况,科学合理地判定路基的稳定状态。目前,测定路基回弹模量主要有承载板法、贝克曼梁法和落锤式弯沉仪法等。由于现场承载板法和贝克曼梁法的整个过程为人工操作,费时费力,受人为因素和环境影响较大,精度较低,无法满足大面积快速检测与路面管理系统数据采集的需要。而落锤式弯沉仪法的费用昂贵,测试荷载偏大、塑性变形对测试结果有影响,另外它的反算是个非常复杂且困难的问题。因此,有必要对路基土回弹模量的动态监测方法进行深入、科学的研究,以求能为沥青路面结构设计提供科学的测试方法和准确的参考值,具有重要的实际价值和研究意义。
     由于气候环境和地质条件等原因,季节冰冻区公路路基每年在冬季发生冻胀、春季发生融沉,路基很容易发生不均匀变形,过大的差异沉降会使路基结构破坏,因此对季节冰冻区路基的变形预测显得尤为重要。由于目前采用的许多预测模型和方法大多局限于单个监测点的建模和预测,没有考虑各监测点之间的相互影响关系,仅仅是一种对监测对象的局部变形分析研究。实际上,在路基沉降过程中,单个监测点受其他监测点变形的影响,同时也影响其他监测点的变形,各监测点相互影响、相互制约,是一个系统变化过程,故应从系统整体角度研究路基沉降的变形规律,从整体上对沉降观测数据进行恰当的处理,以便对沉降变形作出准确的预报,对减少道路灾害的发生、保证行驶安全、提高经济效益具有广泛的现实意义。
     本文依托国家高新技术研究发展项目(863项目)“季节冰冻区大范围道路灾害参数监测与辨识预警系统研究”(项目号:2009AA11Z104),基于季节冰冻区路基差异沉降控制标准、路基稳定性判断分析方法,改进灰色多变量预测模型用于路基沉降预测进行了系统的研究,主要开展了以下几方面工作:
     1、通过对不同差异沉降条件下的路面力学响应进行分析,定量的计算出当路基产生多少差异沉降量时,路面将产生破坏,进而建立基于路面结构性要求的差异沉降控制标准。同时,考虑路面功能性对差异沉降的要求,综合两方面因素,确定针对季节冰冻区道路路基差异沉降控制标准,分为安全、比较安全、比较危险、危险、非常危险五个级别。
     2、由于路基回弹模量能较好的反映整体路基工程状况,可以科学合理地判定路基的稳定状态。因此,基于弹性层状体系理论,考虑到路基回弹模量与基层顶面应变的内在联系,且基层顶面应变可以实时、准确监测,采用BP神经网络算法为反演方法,以特征截面处的基层顶面应变为输入变量,以路基回弹模量为输出变量,建立了基于实测应变数据的路基回弹模量数学反演模型。
     3、季节冰冻区路基沉降变形是一个复杂的系统过程,常用的数学预测模型仅局限于单个监测点时间序列的建模和预测,不能考虑到各监测点之间的相互影响关系,不足以反映路基整体的变形趋势。从系统的角度综合考虑变形体上各监测点的变形,将单变量GM(1,1)模型在n元多变量情况下扩展为多变量MGM(1, n)模型,从而实现对路基中相互影响的多个监测点变形预测模型的建立和预测。通过分析传统多变量MGM(1, n)模型背景值计算存在的误差,利用非齐次指数函数拟合模型中各变量的一次累加生成序列,提出了新的背景值计算公式,建立了优化的多变量MGM(1, n)模型。
     4、在实际路基沉降监测过程中,通常存在非等时距的监测时序问题,导致观测数据采样周期难以保持一致,从而出现原始观测数据时距不等的情况,极大降低了预测模型的精度和应用范围。因此,针对非等时距的多变量MGM(1, n)模型的建模机理进
     摘要行理论分析,进而建立非等时距的多变量MGM(1, n)模型,用以拟合预测多变量间具有相互影响、相互制约关系的非等时距的路基沉降监测原始数据序列。同时,鉴于背景值的计算方法是决定灰色预测模型精度和适应性的重要因素,利用非齐次指数函数模拟多变量MGM(1, n)模型中的一次累加生成序列,提出了一种优化模型背景值的方法,以提高非等时距多变量MGM(1, n)模型的拟合预测效果。
The seasonal frozen soil area of China is up to more than50%of the land area of thenation, so the development and use of seasonal frozen soil occupies an extremely importantstrategic position in China's economic construction and social development. With thedeepening of China's western development strategy and the revitalization of northeast oldindustrial base strategy, Speeding up infrastructure construction will be in these areas rapidsocio-economic development of effective protection, where road construction is the mostimportant basic premise. However, the road subgrade frost damage has been an importantissue for the problem in China's road construction season frozen zone.
     Subgrade uneven thawing settlement deformation caused by subgrade seasonal freezingand thawing has become one of the important causes of the subgrade and pavement earlydamage in season frozen zone. Due to the subgrade and pavement as a whole, subgradeuneven thawing settlement deformation leads to inhomogeneous deformation of thepavement, and additional stress appears in the pavement structure layer. When thenon-uniform deformation value exceeds a certain limit, the sum of large additional stress andload stress of pavement is greater than the allowable tensile stress of pavement materials sothat the pavement structure layer is damaged. Subgrade strength and stability is the guaranteeof the basic conditions of the road normal use, which is mainly reflected in the size of thesubgrade settlement deformation. Therefore, the establishment of subgrade differentialsettlement control standard and accurate prediction of subgrade settlement deformation lawhas the vital significance to ensure safe operation in the road.
     In order to ensure that the roadbed has a sufficient stability, it is necessary to obtain thereal-time status of subgrade strength and carry out subgrade strength monitoring. Subgrademoisture content, degree of compaction, wet and dry type have exponential relationship withthe resilient modulus in seasonal frozen zone, so the resilient modulus can better reflect theoverall subgrade conditions, which is used to scientifically and reasonably determine thestability of subgrade. At present, the determination method of subgrade resilient modulus arebearing plate method, beckman beam method and falling weight deflection instrumentmethod, etc. Because the whole operation of the site bearing plate method and Beckmanbeam method is time-consuming and laborious, which is greatly influenced by human factors and the environment so that the precision is low, the two methods cannot satisfy the rapiddetection of large area and data acquisition of the pavement management system. For thefalling weight deflectometer method, its cost is expensive, its test load is too large, the tplastic deformation of pavement structure layer affects its test results, and its backcalculation is a very difficult problem. Therefore, it is necessary to conduct in-depthscientific research on the dynamic monitoring method of resilient modulus of subgrade soil,in order to provide scientific testing methods and accurate reference value for asphaltpavement structure design, which has important practical value and significance.
     Because of the climatic environment and geological conditions and other reasons in theseasonal frozen area, frost heave in the winter and thawing settlement in the spring occurevery year on highway, and subgrade is very prone to non-uniform deformation. Meanwhile,excessive differential settlement can make subgrade structure damage, so the subgradedeformation prediction is particularly important in the seasonal frozen zone. Many predictivemodels and methods are mostly confined to the modeling and prediction of individualmonitoring points at present, without considering the interaction relationship between eachmonitoring point, which is only a local deformation analysis research of monitoring object.In fact, the deformation of a single monitoring point is affected by other monitoring points,but also affects the deformation of other monitoring points in the process of subgradesettlement, which is a systematic process of changing with mutual influence restrictionbetween monitoring points. As a result, subgrade settlement deformation law should isresearched from the system perspective, and settlement observation data is properly treatedas a whole, in order to make an accurate prediction of settlement deformation, which hasgreat realistic significance and broad application to reduce road disasters, ensure drivingsafety, and improve economic efficiency.
     This paper relies on the National High Technology Research and Development Project(863Project) of China (Project No.2009AA11Z104) named “Research on a wide range ofroad hazard parameters monitoring and identification of early warning system in seasonalfrozen area”. Subgrade differential settlement control standard, subgrade stability judgmentanalysis method, and improved gray multivariable predictive model for subgrade settlementprediction are researched systematically, mainly in the following aspects:
     1. Through analyzing pavement mechanical response under different conditions ofdifferential settlement, the size of differential settlement is calculated quantitatively when theroad is destroyed, and then the differential settlement control standard is established based requirement for differential settlement, the differential settlement control standard of roadsubgrade in the seasonal frozen area is determined, which is divided into five levels: safer,safe, dangerous, more dangerous, and very dangerous.
     2. Since the resilient modulus can well reflect the overall subgrade conditions, itscientifically determines the subgrade stability. Based on the multi-layer elastic systemtheory, there is an inherent relationship between subgrade resilient modulus and strain ofbase top surface, and the strain of base top surface can be monitored in real-time andaccurately. By using BP neural network algorithm as an inversion method, the mathematicalinversion model of subgrade resilient modulus is established, in which the strain of base topsurface in the characteristic cross-section is taken as an input variable and subgrade resilientmodulus is considered as as an output variable.
     3. Subgrade settlement deformation is a complex system process in seasonal frozen area.The commonly used mathematical prediction models are limited to modeling and forecastingof time series data for a single monitoring point, without considering the mutual influencebetween each monitoring point, so they are not enough to reflect the overall deformationtrend of subgrade. Considering the deformation of monitoring points in the deformable bodyfrom a systems perspective, the multivariable MGM (1, n) model is an extension of thesingle variable GM (1,1) model in the case of n variables, so as to achieve building andforecasting of the deformation prediction of interactional multiple monitoring points.Through analyzing the calculation error of background value for traditional multivariableMGM (1, n) model, a new calculating formula of background value is put forward, and theoptimized multivariable MGM(1, n) model is established by using non-homogeneousexponential function fitting the accumulation generation sequence of each variable in themodel.
     4. In actual subgrade settlement monitoring process, there is usually the unequalinterval sequence problem, namely the sampling period of monitoring data is difficult tomaintain consistent. The original non-equidistant monitoring data greatly reduces theaccuracy and application range of predictive model. Therefore, through theoretical analysisfor modeling mechanism of the non-equidistant sequence, the non-equidistant multivariableMGM (1, n) model is established to fit and predict the non-equidistant sequence of subgradesettlement monitoring for the multivariable with mutual influence and restriction relationship.At the same time, the calculation method of background value is one of important factors which affect the accuracy and adaptability of gray forecast model, so the non-homogeneousexponential function is used to fit the accumulation generation sequence of multivariableMGM (1, n) model, an optimization approach of background value for the model is putforward in order to improve the prediction effect of the non-equidistant multivariable MGM(1, n) model.
引文
[1]徐学祖,王家澄,张立新.冻土物理学[M].北京:科学出版社,2001.
    [2]周幼吾,邱国庆,程国栋,郭东信.中国冻土[M].北京:科学出版社,2000.
    [3]郑秀清,樊贵盛,邢述彦.水分在季节性非饱和冻融土壤中的运动[M].北京:地质出版社,2002.
    [4]中国科学院兰州冰川冻土沙漠研究所.冻土[M].北京:科学出版社,1975.
    [5]崔凌秋.东北地区公路路基模量特征与确定方法研究[D].西安:长安大学,2007.
    [6]程培峰,侯恩创.哈尔滨市道路路基强度变化特性及预测[J].中外公路,2010,1:57-59.
    [7]中华人民共和国交通部. JTG E40-2007公路土工试验规程[S].北京:人民交通出版社,2007.
    [8]中华人民共和国交通部. JTG E40-2008公路路基路面现场测试规程[S].北京:人民交通出版社,2008.
    [9]李宇峙,邵腊庚.路基路面工程检测技术[M].北京:人民交通出版社,2003.
    [10]张起森,王选仓,查旭东.公路路基回弹模量的研究报告[R].长沙:长沙理工大学,2004.
    [11]邓卫东,张兴强,陈波,等.路基不均匀沉降对沥青路面受力变形影响的有限元分析[J].中国公路学报,2004,17(1):12-15.
    [12]涂许杭,王志亮,梁振淼,李永池.修正的威布尔模型在沉降预测中的应用研究[J].岩土力学,2005,26(4):621-623.
    [13]赵明华,刘煜,曹文贵.软土路基沉降变权重组合S型曲线预测方法研究[J].岩土力学,2005,26(9):1443-1447.
    [14]赵明华,龙照,邹新军.路基沉降预测的Usher模型应用研究[J].岩土力学,2008,29(11):2973-2974.
    [15]王星运,陈善雄,余飞,周博.曲线拟合法对路基小变形情形适用性研究[J].岩土力学,2009,30(9):2763-2769.
    [16]郑建国,王婷,张继文.黄土路基沉降量预测方法的研究[J].岩土力学,2010,31(1):321-326.
    [17]陈善雄,王星运,许锡昌,余飞,等.路基沉降预测的三点修正指数曲线法[J].岩土力学,2011,32(11):3355-3360.
    [18]杨庆刚.软土地基高速公路路面结构组合研究[D].南京:东南大学,2006.
    [19]张永清.山区高速公路路基差异沉降特性与控制措施研究[D].西安:长安大学,2009.
    [20]高力侠.山区高速公路差异沉降控制技术研究[D].西安:长安大学,2007.
    [21]刘林芽,雷晓燕,刘晓燕.既有线路桥过渡段的设计与动力学性能评价[J].铁道标准设计,2004,1:9-10.
    [22]付宏渊.桥头台背路基工后沉降取值标准的研究[J].湖南交通科技,2003,29(4):76-78.
    [23]周虎鑫.软土地基上修筑高等级公路工后沉降指标的研究[D].南京:东南大学,1993.
    [24]王宁.软土地基上不均匀沉降指标的研究[D].南京:东南大学硕士论文,1989.
    [25]叶见曙.桥头引道工后沉降控制标准的研究[J].东南大学学报,1997,27(3):12-17.
    [26]王末顺.北方冰冻地区高等级公路桥头跳车的容许工后沉降值的研究[D].哈尔滨:东北林业大学,2002.
    [27]朱学雷.成都绕城高速公路软土地基不均匀沉降对路面结构性能影响的研究[D].成都:西南交通大学,1999.
    [28]陈晓麟.路桥过渡段沉降控制指标及控制方法研究[D].西安:长安大学,2003.
    [29]张兴强.循环荷载作用下土工格栅加筋路基路面变形受力与变形特性研究[D].天津:天津大学,2004.
    [30]钱劲松.新老路基不协调变形及控制技术研究[D].上海:同济大学,2004.
    [31]邢启军,朱学文,刘金年.浅谈工后容许不均匀沉降指标及其在高等级公路的研究[J].黑龙江交通科技,2003,3:21-22.
    [32]廖荣辉.路基差异沉降引起的路表附加应力分析[J].广西交通科技,2003,28(6):69-70.
    [33]张嘉凡,张慧梅.软土地基路基不均匀沉降引起路面结构附加应力[J].长安大学学报(自然科学版),1998,23(3):21-25.
    [34]何兆益,周虎鑫.高等级公路软土地基容许工后不均匀沉降指标研究[J].重庆交通学院学报,1996,15(l):48-54.
    [35]何兆益,周虎鑫.软土地基容许工后不均匀沉降指标值探讨[J].华东公路,1996,1:16-17.
    [36]董海,王末顺,张宇.高等级公路容许工后不均匀沉降指标的研究[J].森林工程,2002,18(2):53-54.
    [37]张军辉.软土地基上高速公路加宽变形特性及差异沉降控制标准研究[D].南京:东南大学,2006.
    [38]张军辉.软基老公路加宽的沉降分析[J].路基工程,2009,3:82-84.
    [39]杜艳军.高等级公路路堤加宽理论分析[D].哈尔滨:东北林业大学,2005.
    [40]王斌.高速公路拼接段沉降变形特性及地基处理对策研究[D].南京:河海大学,2004.
    [41]章定文.软土地基上高速公路扩建工程变形特性研究[D].南京:东南大学,2004.
    [42]胡锋.新老路基结合部处治技术研究[D].西安:长安大学,2004.
    [43]孙云.高填方路堤沉降变形规律研究与压实技术[R].成都:四川公路桥梁建设集团有限公司,2004.
    [44]颜春.填方路基不均匀沉降原因分析及处治措施[J].重庆交通学院学报,2003,22(1):63-68.
    [45]颜春.路基不均匀沉降机理分析及强夯处治措施研究[D].重庆:重庆交通学院,2003.
    [46]王俊梅.土基回弹模量及其测试方法研究[D].西安:长安大学,2004.
    [47]沈金安.国外沥青路面设计方法总汇[M].北京:人民交通出版社,2004.
    [48]邓露,李向东.路基土的CBR强度与压实度关系的试验研究[J].华中科技大学学报,2005,22(增刊):109-115.
    [49]陈晓光,李俊超,冯立群.新疆高等级公路半刚性基层土基强度等级划分[J].公路交通科技,1999,16(3):13-16.
    [50]杨永红,王选仓,韩国杰,常学亮.甘肃黄土地区土基回弹模量[J].长安大学学报(自然科学版),2005,25(3):7-10.
    [51]叶燕呼,孙长新.广东省公路路基土强度及其分级研究[J].公路,2000,3:14-20.
    [52]吴德华,王选仓,姚爱玲.陕西关中地区土基回弹模量研究[J].公路交通科技,2005,22(2):27-30.
    [53]李喜安,彭建兵,范文,陈志新,等.公路黄土路基动力学参数的影响因素及其规律研究[J].公路交通科技,2005,22(6):87-91.
    [54]杨广庆.细粒土路基的弹性模量[J].路基工程,2000,91(4):42-44.
    [55]卢永贵,罗强,曹新文,蔡英.成都粘土及其石灰稳定土的动力特性试验研究[J].路基工程,1998,77(2):34-37.
    [56]张洪华.应用FWD测定土基回弹模量的研究[J].中国公路学报,1994,17(增1期):9-13.
    [57] George K P. Subgrade Characterization Employing the Falling Weight Deflectometer[A]. TRB.82th Annual Meeting,2003.
    [58] Chai G. The Structural Response and Behavior Prediction of Subgrade Soils UsingFalling Weight Deflectometer in Pavement Construction[A]. Proceedings, ThirdInternational Conference on Road&Airfield Pavement Technology, Beijing, China,1998.
    [59]王端宜,黄耕,朱一鸣.手持式落锤式弯沉仪用于路基强度评价的尝试[J].公路,2002,9:108-110.
    [60] Livneh M. Use of Falling Weight Deflectometer and light Drop_weight for QualityAssessment During Road Formation and Foundation Construction[A]. TRB.80thAnnual Meeting,2001.
    [61] Scrivner F H, Michalak C H, Moore W M. Calculation of the elastic moduli of atwo-layer pavement system from measured surface deflection[J]. Highway ResearchRecord No.431,1973.
    [62] Yih Hou T. Evaluation of layered material properties from measured surfacedeflections[D]. Ph. D. dissertation, University of Utah,1977.
    [63] Ullidtz P. Computer simulation of pavement performance[R]. Report No.18, theInstitute of Roads, Transport, and Town Planning, The Technical University ofDenmark,1978.
    [64] Lytton R L, Michalak C H. Flexible pavement deflection equation using elasticmoduli and field measurements[R]. Research Report207-7F, Texas TransportationInstitute, Texas A&M University, College Station, TX,1979.
    [65] Bentsen R A, Nazarian S, Harrison J A. Reliability testing of seven nondestructivepavement testing devices[R]. Nondestructive Testing of Pavements andBackcalculation of Moduh, ASTV STP1026, A.J. Bush III and G Y Baladi, Eds., American Society for Testing and Materials, Philadelphia,1989:41-58..
    [66] Anderson M. A data base method for backcalculation of composite pavement layermoduli[R]. Nondestructive Testing of Pavements and Backcalculation of Moduli,ASTM STP1026, A.G Y ush III and G.Y Baladi, Eds., A merican Society for Testingand Materials, Philadelphia,pp,1989:201-216.
    [67] Lyton R L. Backcalculation of pavement layer properties[R]. Nondestructive Testingof Pavements and Backcalculation of Moduli, ASTM STP1026, A.J. Bush III and GY. Baladi, Eds., American Society for Testing and Materials, Philadelphia,1989:7-38.
    [68] Meier R W, Rix G J. Backcalculation of flexible pavement moduli using artificialneural networks[J]. Transportation Research Record,1994,1448.
    [69] Khazanovich L, Roesler J, DIPLOBACK: Neural-network-based backcalculationprogram for composite pavements[J]. Transportation Research Record,1997,1570.
    [70] Fwa T F, Tan C Y, Chan W T. Backcalculation analysis of pavement-layer moduliusing genetic algorithms[R], Transportation Research Record,1997.
    [71] Himeno K, Kameyama S, Kasahara A, Maruyama T. Backcalculation of pavementlayer moduli using genetic algorithms[A]. Eighth International Conference onAsphalt Pavements,1997.
    [72]倪富健,邓学钧.柔性路面结构层模量反算方法研究[J].中国公路学报,1994,7(增1):25-31.
    [73]王旭东,秦勤,平长德.一种动态弯沉盆的模量反算方法[J].公路交通科技,1999,16(1):13-16.
    [74]王复明,魏翠玲,周晶.路面结构的动态反分析[J].工程力学,2002,19(1):121-125.
    [75] Xu-dong Zha, Qi-sen Zhang. Study on backcalculation for pavement moduli usinggenetic algorithm[A]. Proceedings of the Third International Conference on Road andAirfield Pavement[C]. Beijing: People's Communications Publishing House,1998:530-537.
    [76]查旭东,王秉纲.基于人工神经网络的路面模量反算[J].交通运输工程学报,2002,2(2):12-15.
    [77]查旭东,王秉纲.基于同伦方法的路面模量反算研究[J].中国公路学报,2003,16(1):1-5.
    [78]刘鹏,陈泽松,赵明,夏元友,等.高速公路软土路基沉降预测方法分析[J].土工基础,2005,19(3):52-55.
    [79]董汉刚,胡建军.高速公路软土路基沉降机理及计算方法[J].岩土力学,2002,23(增):96-99.
    [80]周焕云,黄晓明.高速公路软土地基沉降预测方法综述[J].交通运输工程学报,2002,2(4):7-10.
    [81]刘银生,杨东援.公路软土地基总沉降预测研究[J].公路交通科技,1999.16(3):22-24.
    [82]王琛艳.高填方路基沉降变形规律计算分析与研究[D].重庆:重庆交通学院,2005.
    [83] Miskasa M. Consolidation of soft clay[M]. Tokyo: Kajima Shuppan kai,1963.
    [84] Asaoka A, Misumi K. Analysis and prediction of consolidation settlement of normallyconsolidated clay foundation under embankment loading. soils and Foundations[J].1988,28(3):35-50.
    [85] Sridbaran A, Sreepada Rao A. Rectangular hyperbola fitting method for onedimemioml comolldation[J].Geotechnial Testing Journal.1981,4(4):161-168.
    [86] Sridharan A, Murthy N S, Prskash K. Rectangular hyperbola method of consolidationanalysis[J].Geotechnique,1987,37(3):355-368.
    [87] Tan S A. Validation of hyperbolic method for settlement in clays with verticaldrains[J]. Soils and Foundations,1995,35(1):101-113.
    [88]宰金珉,梅国雄.泊松曲线的特征及其在沉降推算中的应用[J].重庆建筑大学学报,2001,23(1):30-35.
    [89]宰金珉,梅国雄.成长曲线在地基沉降预测中应用[J].南京建筑工程学院学报,2000,2:8-13.
    [90]徐跃.利用沉降观测值推求最终沉降量和固结系数的方法[J].公路,1994,2:23-26.
    [91]李开言.地基沉降预测的新方法[J].路基工程,20033:23-24.
    [92]中华人民共和国交通部. JTJ017-96公路软土地基路堤设计与施工技术规范[S].北京:人民交通出版社,2004.
    [93]陈希哲.土力学地基基础[M].北京:清华大学出版社,2002.
    [94] Asaoka A. Observational procedure of settlement of predication[J]. Soils andFoundations,1978,18(4):87-101.
    [95]刘勇健.用人工神经网络预测高速公路软土地基的最终沉降[J].公路交通科技,2000,17(6):15-18.
    [96]何秉顺,刘建坤,房建宏.使用人工神经网络预测冻土区公路路基沉降[J].公路交通科技,2005,22(11):42-44.
    [97]祁长青,吴青柏,施斌,吴继敏,等. BP神经网络在冻土路基变形预测中的应用[J].水文地质工程地质,2007,4:27-30.
    [98]张留俊,黄晓明,冯炜,王晓谋.人工神经网络在路堤沉降预测中的应用[J].公路交通科技,23(5):7-10.
    [99]肖专文,张奇志,梁力,林韵梅.遗传进化算法在边坡稳定性分析中的应用[J].岩土工程学报,1998,20(l):44-46.
    [100]李敏强.遗传算法的基本理论与应用[M].北京:科学出版社,2002.
    [101]刘思峰,郭天榜,党耀国,等.灰色系统理论及其应用[M].北京:科学出版社,1999.
    [102]冯震,许兆义,王连俊,阎文发.路基沉降的灰色理论预测及其应用[J].北方交通大学学报,2004,28(4):23-26.
    [103]赵治广,王登杰,田云飞.基于灰色理论的路基沉降研究[J].山东大学学报(工学版),37(3):86-88.
    [104]张耀锋.动态灰色理论模型在路基沉降预测中的应用[J].公路,2010,4:45-47.
    [105]孙晓红,莫志兵,李斯洋.非等时距灰色模型在软土路基沉降预测中的应用[J].中外公路,2010,30(5):60-62.
    [106]邹德强.高填方路基沉降反演及预测方法德研究[D].长沙:长沙理工大学,2004.
    [107]傅珍,王选仓,陈星光,李宏志,等.高速公路拓宽差异沉降对路面结构的影响[J].长安大学学报(自然科学版),2008,28(3):36-39.
    [108]张永清.山区高速公路路基差异沉降特性与控制措施研究[D].西安:长安大学,2009.
    [109]曹东伟,胡长顺.多年冻土区路基冻融沉变形的附加应力[J].重庆交通学院学报2001,20(3):57-61.
    [110]张嘉凡,张慧梅.软土地基路基不均匀沉降引起路面结构附加应力[J].长安大学学报(自然科学版),2003,23(3):6-9.
    [111]张军辉,黄晓明.软土地基上高速公路加宽工程的数值分析[J].公路交通科技,2006,23(6):32-35.
    [112]张军辉.软土地基上高速公路加宽变形特性及差异沉降控制标准研究[D].南京:东南大学,2006.
    [113]邱清琼.高速公路填砂路堤拓宽加筋土工程施工支护结构的力学分析[D].重庆:重庆交通大学,2011.
    [114]何兆益,周虎鑫.软土地基容许工后不均匀沉降指标值探讨[J].华东公路,1996,1:216-17.
    [115]毕艳祥.半刚性基层沥青路面设计研究[D].上海:同济大学,2001.
    [116]何兆益,周虎鑫.高等级公路软土地基容许工后不均匀沉降指标研究[J].重庆交通学院学报,1996,15(1):48-54.
    [117]黄琴龙,凌建明,钱劲松.新老路基工后差异变形对路面结构的影响[J].同济大学学报(自然科学版),2005,33(6):759-762.
    [118]郑悦锋,徐飞龙,谢经保,凌建明.基于不协调变形控制的道路工程河浜处理设计[J].同济大学学报(自然科学版),2005,33(4):466-470.
    [119]中华人民共和国交通部. JTG D50-2006公路沥青路面设计规范[S].北京:人民交通出版社,2006.
    [120]张永清,土选仓,土朝辉.拓宽路基差异沉降计算参数的确定[J].长安大学学报(自然科学版),2009,29(2):13-18.
    [121]邓卫东,张兴强,陈波,闫澍旺.路基不均匀沉降对沥青路面受力变形影响的有限元分析[J].中国公路学报,2004,17(1):12-15.
    [122]廖荣辉.路基差异沉降引起的路表附加应力分析[J].广西交通科技,2003,28(108):69-70.
    [123] Kim J S, Barker R M. Effect of live load surcharge on retaining walls and abutments[J]. Journal of Geotechnical and Geoenviroment Engineering, ASCE,2002,128(10):439-448.
    [124] Kutara K, Miki H, Mashita Y, Seki K. Settlement and countermeasures of the roadwith low embankment on soft ground[J]. Technical Reports of Civil Engineering,JSCE,1980,22(8):12-16.
    [125] Kim J S, Barker R M. Effect of live load surcharge on retaining walls and abutments[J]. Journal of Geotechnical and Geoenviroment Engineering, ASCE,2002,128(10):439-448.
    [126] Han J, Gabr M A. Numerical Analysis of Geosynthetic-Reinforced and Pile-SupportedEarth Platforms over Soft Soil[J]. Journal of geotechnical and geoenvironmentalengineering, ASCE,2002,128(5):44-53.
    [127]臧恩穆,吴紫汪.多年冻土退化与道路工程[M].兰州:兰州大学出版社,1999.
    [128]曹东伟,窦明健,胡长顺.青藏公路路基路面综合设计研究报告[R].西安:长安大学,2000.
    [129]姬杨蓓蓓,马骉,王秉纲.冻土地区路基融沉变形对沥青路面结构的影响[J].中国公路学报,2006,19(5):1-5.
    [130]汪双杰,黄晓明,侯曙光.多年冻土区路基路面变形及应力的数值分析[J].冰川冻土,2006,28(2):217-222.
    [131]马骉,鲍燕妮,姬杨蓓蓓.多年冻土地区路基不均匀融沉变形计算分析[J].公路交通科技,2007,24(1):6-9.
    [132]姬杨蓓蓓.多年冻土地区沥青路面结构设计方法研究[D].西安:长安大学,2005.
    [133]马骉.多年冻土地区沥青路面材料组成与结构设计研究[D].西安:长安大学,2006.
    [134]钱霞.多年冻土路基路面结构附加应力分析[D].南京:东南大学,2008.
    [135]朝晖,张国平.考虑融沉的冻土地区沥青路面结构设计[J].交通标准化,2011,20:39-44.
    [136]中华人民共和国交通部. JTG B01-2003公路工程技术标准[S].北京:人民交通出版社,2003.
    [137] Santamarina J C, Goodings D. Centrifuge modeling: a study of slmilarity[J].Geoteehnical Testing Journal,1989,12(2):163-166.
    [138]杨德.试验设计与分析[M].北京:中国农业出版社,2002.
    [139]吴贵生.试验设计与数据处理[M].北京:冶金工业出版社,1997.
    [140]中华人民共和国交通部. JTG F80/1-2004公路工程质量检验评定标准[S].北京:人民交通出版社,2004.
    [141]中国民用航空总局机场司. MHJI-85民用航空运输机场飞行区技术标准[S].北京:中国民用航空总局,1985.
    [142]周虎鑫,陈荣生.高等级公路工后不均匀沉降指标研究[J].东南大学学报,1996,26(l):54-56.
    [143]高志伟.基于目标的山区高速公路差异沉降主动控制研究[D].西安:长安大学,2009.
    [144]傅珍.高速公路拓宽工程路基差异沉降及控制技术研究[D].西安:长安大学,2007.
    [145]吴紫汪,程国栋,朱林楠,等.冻土路基工程[M].兰州:兰州大学出版社,1988.
    [146]张冬青.季节性冰冻路基病害及防治措施研究[D].长春:吉林大学,2008.
    [147] Seed H B, Chan C K, Lee C E.Resilience characteristics of subgrade soils and theirrelation to fatigue failures in asphalt pavements [C]//International Conference on theStructural Design of Asphalt Pavements. California: Institute of Transportation andTraffic Engineering,University of California,1962:611-636.
    [148] Dragos A, Matthew W W, Charles W S, et al. Harmonized resilient modulus testmethod for unbound pavement materials[C]//82th Annual Meeting of TransportationResearch Board, Washington,2003.
    [149]邱欣,钱劲松,张世洲.基于基质吸力的粘性路基土动回弹模量预估模型研究[J].水文地质工程地质,2011,38(3):49-53.
    [150] AASHTO. Guide for mechanistic-empirical design of new and rehabilitated pavementstructures [S]. Washington: American Association of State Highway andTransportation Officials,2004.
    [151]戴裕聪.土壤吸力对路基土壤之力学特性影响探讨[D].台湾:国立中央大学,2004.
    [152]张翛,赵队家,刘少文,申俊敏.美国路基土回弹模量确定方法研究现状[J].重庆交通大学学报(自然科学版),2012,31(4):795-798.
    [153]肖军华.循环荷载下压实粉土的回弹模量试验研究[J].公路,2010,8:199-205.
    [154]陈声凯,凌建明,罗志刚.路基土回弹模量应力依赖性分析及预估模型[J].土木工程学报,2007,40(6):95-100.
    [155]邓学钧.路基路面工程(第二版)[M].北京:人民交通出版社,2006.
    [156]尹金华.基于使用性能的沥青路面设计研究[D].西安:长安大学,2006.
    [157]王向恒.沥青路面层间剪切破坏和层间功能层研究[D].西安:长安大学,2009.
    [158] Fredric M. Ham, Ivica Kostanic. Principles of Neurocomputing for Science&Engineering[M].北京:机械工业出版社,2003.
    [159] Norhisham Bakhary, Hong Hao, Andrew J. Deeks. Damage detection using artificialneural network with consideration of uncertainties[J]. Engineering Structures,2007,29:2806-2815.
    [160] M. Mehrjoo, N. Khaji, H. Moharrami, A. Bahreinineja. Damage detection of trussbridge joints using Artificial Neural Networks[J]. Expert Systems with Applications,2008,35:1122-1131.
    [161]李国勇.神经模糊控制理论及应用[M].北京:电子工业出版社,2009.
    [162]李仁厚,张平安. Matlab神经网络辅导与指南[M].西安:西安交通大学出版社,1998.
    [163]徐秉铮.神经网络理论与应用(第二版)[M].广州:华南理工大学出版社,1999.
    [164] K.M.Hornik, M.stinchcombe, H.White. Mutilayer feedforward networks are universalapproximators[J]. Neural Networks,1989,2(5):359-366.
    [165]戴奎.神经网络实现技术[M].北京:国防科技大学出版社,1998.
    [166]徐丽娜.神经网络控制[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [167] H.M.Chen. Neural networks for structure control[J]. Journal of Computing inEngineering,1995(2):168-176.
    [168]程正群,李岐强.一种快速有效的神经网络新算法[J].浙江大学学报,2000,34(3):336-340.
    [169] K.M.Hornik, M.stinchcombe, H.White. Mutilayer feedforward networks are universalapproximators[J]. Neural Networks,1989,2(5):359-366.
    [170]覃绮平.土基回弹模量影响因素及其相关关系研究[D].西安:长安大学,2005.
    [171]武红娟.土基回弹模量变化对路面设计的影响分析[D].西安:长安大学,2005.
    [172]王伟,卢廷浩,王晓妮.软土路基线性加载沉降曲线的研究[J].岩土力学,2006,27(5):791-94.
    [173]潘林有,谢新宇.用曲线拟合的方法预测软土地基沉降[J].岩土力学,2004,25(7):1053-1058.
    [174]杨涛,李国维,杨伟清.基于双曲线法的分级填筑路堤沉降预测[J].岩土力学,2004,25(10):1551-1554.
    [175]景宏君,苏如荣,苏霆.高路堤沉降变形预测模型研究[J].岩土力学,2007,28(8):1762-1766.
    [176]钟才根,丁文其,王茂和,等.神经网络模型在高速公路软基沉降预测中的应用[J].中国公路学报,2003,16(2):31-34.
    [177]夏江,严平,庄一舟,等.基于遗传算法的软土地基沉降预测[J].岩上力学,2004,25(7):1131-1134.
    [178]黄亚东,张土乔,俞亭超,等.公路软基沉降预测的支持向量机模型[J].岩土力学,2005,26(12):1987-1990.
    [179]翟军,盛建明,冯英浚. MGM(l, n)灰色模型及其应用[J].系统工程理论与实践,1997,5(5):109-113.
    [180]王穗辉,潘国荣.基于MATLAB多变量灰色模型及其在变形预测中的应用[J].土木工程学报,2005,38(5):24-27.
    [181]潘国荣,刘大杰.顾及邻近点变形因素项的动态模型辨识及预测[J].测绘学报,2001,30(1):32-35.
    [182]邓聚龙.灰理论基础[M].武汉:华中理工大学出版社,2002.
    [183]曾闳.电力工业发展和灰色预测[J].中国电机工程学报,1992,12(4):22-27.
    [184]郑雅楠,李庚银,周明.大用户模糊优化购电组合策略的研究[J].中国电机工程学报,2010,30(10):98-104.
    [185]王有元.基于遗传算法的大型电力变压器内部故障预测模型研究[D].重庆:重庆大学,2003.
    [186]柴艳有.灰色成分数据在一类经济结构中的应用[D].哈尔滨:哈尔滨工程大学,2007.
    [187]熊萍萍,党耀国,朱晖.基于非等间隔的多变量MGM(1, m)模型[J].控制与决策,2011,26(1):49-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700