用户名: 密码: 验证码:
基于复杂网络理论的城市公交网络生成与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国汽车产业得到前所未有的发展,城市居民出行结构发生了深刻的变化,小汽车出行比例大幅度增加,居民出行机动性提高,同时导致道路资源极度短缺,交通拥堵现象从最初的北上广逐渐向二线城市蔓延,目前已成为我国各大中城市屡见不鲜的事情,并越来越严重。如何缓解和治理城市交通拥堵是摆在交通学者面前的一道难题。大力发展城市公共交通来缓解城市交通拥堵已成为共识,但城市公共交通尤其是常规公交,与小汽车共享道路资源,交通拥堵对其影响较大,为使城市公共交通有效应对交通拥堵,最大限度发挥其优势,必须合理生成和优化城市公交网络。
     城市公交网络的生成与优化是一项复杂性较强的研究,复杂网络理论研究全面展开后,许多学者便将其用于城市公交网络复杂性的研究,探索它的演化机制和形成机理,但对于公交网络生成与优化层面,多是通过研究公交网络复杂统计指标分布规律,定性分析其存在的问题,并提出一些措施对网络进行优化,对于公交网络应具有的网络拓扑结构特征及其生成优化的数学模型鲜有研究,同时在公交网络生成与优化模型中,考虑交通拥堵对公交系统和居民出行需求的影响,现有文献尚未对其进行有针对性的研究。
     为此本文在国内外研究的基础上,依托国家自然科学基金项目“城市公交网络一体化设计中关键模型与算法研究(51078168)”,基于复杂网络理论和交通拥堵分析,对城市公交网络生成与优化相关方法进行研究,以站点研究为切入点,分别设计了基于效率驱动的复杂公交网络生成算法、基于引力驱动的复杂公交网络生成算法和基于边介数的城市公交网络优化模型,并对城市公交站间距优化进行了研究。本文所完成的科研成果具体如下:
     1.以城市公交站点为研究中心,首先对城市公交站点进行分析,然后基于分形理论对站点需求特征进行了分析,结果表明统计间隔为2min时,站点需求具有明显的分形特征;对公交站点类型进行分析,并根据客流量对首末站点、中途站点的数量确定和网络生成优化中的处理方法进行了分析,在交通小区OD矩阵已知的基础上,基于双约束重力模型研究了公交站点OD矩阵的预测方法。
     2.对城市公交网络生成与优化的基础问题进行研究,在分析Dijkstra算法的基础上,设计了基于k-1最短路的k最短路算法;分析城市公共交通线网规划的规划目标和约束条件,设计了基于站点容量限制的城市公交效率网络生成算法。
     3.为解决最优城市公交网络问题,分析随机网络、小世界网络和无标度网络三种典型的复杂网络,在网络中客流需求较大的情况下,无标度网络的优势比较突出,这是由其拓扑性质决定的。以Barabasi和Albert提出的经典BA模型为基础,基于增长机制和偏好机制提出两个复杂公交网络生成算法:基于效率驱动的复杂公交网络生成算法和基于引力驱动的复杂公交网络生成算法,它们都遵循运输效率最高,网络容量最大的公交网络生成目标,不同之处在于前者以运输效率为驱动,后者考虑了站点之间的阻抗和线路方向的问题,以站点之间的引力为驱动。
     4.为优化城市公交网络时缓解交通拥堵对公交系统的影响,通过分析居民出行策略和拓展边介数,引入相关参数以模拟居民在交通拥堵时的出行策略变化,并定义了有效权重、有效路径、有效线路和有效网络,从而构建基于边介数的城市公交网络优化模型及其求解算法;分析零流网络效率、拥挤网络效率、网络效率损失、平均出行时间、平均出行距离、平均出行速度等网络指标与模型参数的关系,确定模型参数的物理意义,并对其进行标定。
     5.为结合数学模型和经验设置站点的优势,提出二步骤法计算实际站间距。第一步根据模型假设,建立了站间距最优模型,计算理想条件下的最优站间距;第二步通过分析站间距影响因素,将其归为五个综合因素,即当量加速度、车辆区间平均速度、车辆站点停车时间、乘客平均出行距离和乘客平均到站速度,从而建立站间距修正模型,通过对最优站间距的修正,完成城市公交站点的设置。
     6.借鉴《长春经济技术开发区公共交通规划(2011-2020)》项目的相关成果,对本文提出的模型和算法进行实证。首先分析长春经开区公交概况,确定首末站点和中途站点数量及布局,并对站点需求进行预测;然后生成长春经开区的新增线路、优化其现有不合理线路;最后对公交站间距重新进行优化和布局,并对长春经开区公交网络生成优化结果进行评价分析。
     本文的研究成果可拓展复杂网络理论的应用范围,丰富城市公共交通规划理论体系,提高城市公交网络对交通拥堵的应对能力,促进城市公交系统健康有序的发展,具有较高的理论价值和实际意义。
China's automobile industry had obtained an unprecedented developmentduring the global economic crisis. The urban trips structure had undergone profoundchanges. The proportion of car trips had obtained a significant increase. Residents′travel mobility had improved. These had caused roads blocked and the phenomenonis spreading from initial Beijing, Shanghai, Guangzhou to second-tier cities. NowTraffic congestion has been common things in the cities and it has been more andmore serious. The scholars have to solve the problem that how to relieve and governurban traffic congestion. Vigorously developing urban public transport to ease urbantraffic congestion has become a consensus. But urban public transport, especially thecommon bus, has to share the road resources with cars. Therefore traffic congestionhas comparatively large effects on it. In order to make urban public transporteffectively deal with traffic congestion and play to its maximized advantages wehave to reasonably generate and optimize the urban public transport network.
     Urban public transport network generation and optimization are complexstudies. Multi scholars used complex network theory for the complexity of the urbanpublic transport network after the beginning of its studies. They explored itsevolution mechanism and formation mechanism. But for transit network generationand optimization these scholars studied the distribution law of its complex statisticalindicators, qualitatively analyzed its problems and proposed measures to optimizethe network. They rarely study the bus network topology characteristics and thenetwork mathematical models. When generating and optimizing bus network,consider the effects of traffic congestion on the public transport system and residentstravel demand. The existing literature has not yet targeted research on it.
     Therefore the paper relies on the National Natural Science Foundation of“Research on the key models and its algorithms in urban transit network integrateddesign(51078168)” to study transit network on the base of domestic and foreignstudies. Make the station research as an entry point, Three models were established,namely complex public transport network model based on efficiency-driven, complex public transport network model based on gravitation-driven and urbantransit network optimization model based on the edge betweenness. Then urban busstop spacing optimization was studied. The completed research results are asfollows:
     1. Make urban bus station as research center. Firstly analyze urban bus station,then analyze station demand characteristics on the base of Fractal Theory. Theresults show that when the statistics interval is2min the station demand haveapparent fractal characteristics. Analyze bus stop type, then according to the trafficdetermine the number of first and last stop, the middle stop and their treatmentmethods. Apply double constrained gravity model to predict the bus stops OD matrixwith obtaining traffic zone OD matrix.
     2. Study the basic issue of urban public transport network generation andoptimization. Design k shortest path algorithm with k-1shortest path on the base ofDijkstra algorithm. Analyze planning objectives and constraints of urban publictransit network planning, build urban public transport efficiency networkinfrastructure model based on station capacity restrictions.
     3. In order to obtain best urban transit network, analyze three typical complexnetworks of random networks, small world networks and scale-free networks. Whenlarge passenger demand appear in the network the scale-free networks get theadvantage because of their topological properties. Analyze classic BA model fromBarabasi and Albert, propose two complex public transport network generationalgorithms based on growth mechanisms and preferences mechanism, namelycomplex public transport network generation algorithm based on efficiency-drivenand complex public transport network generation algorithm based on thegravity–driven. They all follow the maximized transport efficiency and networkcapacity as bus networks generation targets. The difference is that the former wasdriven by transport efficiency and the latter had considered the impedance betweenthe stations and the line direction, it is driven by the gravitation between the stations.
     4. In order to relieve traffic congestion on the public transport system in theurban public transport network optimization this research introduced relevantparameters to simulate the residents travel strategy changes in the traffic congestionby analyzing the residents travel strategy and expanding the edge betweenness, Thendefine the effective weight, the effective path, the effective lines and the effectivenetwork to build the urban public transport network optimization model and its algorithm based on edge betweenness. It also determined the physical meaning of themodel parameters and their calibration by analyzing the relationship between themodel parameters and network indicators such as zero-flow network efficiency, thecrowded network efficiency, network efficiency loss, the average travel time, theaverage trip distance, the average trip speed etc.
     5. The paper proposed a two-step method which could calculate the actualstation spacing to combine the advantage of mathematical models and experience toset up stations. The first step is to establish the station spacing optimal model tocalculate the optimal station spacing under the ideal conditions based on modelassumes. The second step is to analyze the affect factors of station spacing andclassify them into five combination factors, namely the equivalent acceleration, thespace mean speed of the vehicle, the parking time of vehicle at stop, averagepassenger trip distance and average arrival speed of passenger. This researchcompleted the setting of urban bus stops through building a station spacingcorrection model to correct the optimal station spacing.
     6. By learning from the related outcomes about the project of “Public transportplanning in Changchun Economic and Technological Development Zone(2011-2020)”, the paper made the empirical study on the proposed model andmethod. Firstly analyze the current situation of public transit in Changchun,determine the number and layout of the first and last station and middle station, thenpredict station requirements. Next generate new lines in Changchun and optimizetheir existing unreasonable lines. Finally re-optimized the station spacing, evaluatethe generation and optimization results of transit network in Changchun Economicand Technological Development Zone.
     The results of this research can expand the range of applications of complexnetwork theory, rich urban public transport planning theory system, improve theresponse capacity of urban public transport network to traffic congestion, promotethe healthy and orderly development of the urban public transport system, have hightheoretical value and practical significance.
引文
[1]刘波.城市公共交通管理[M].北京:中国发展出版社,2007.
    [2]刘灿齐.现代交通规划学[M].北京:人民交通出版社,2000.
    [3]王炜,杨新苗,陈学武.城市公共交通系统规划方法与管理技术[M].北京:科学出版社,2002.
    [4] Wu J J, Gao Z Y, Sun H J, Huang H J. Urban transit system as a scale-freenetwork[J]. Modern Physics Letters B,2004,18:1043-1049.
    [5] Wu J J, Gao Z Y, Sun H J. Complexity and efficiency of Beijing transitnetwork[J]. International Journal of Modern Physics B,2006,20:2129.
    [6]吴建军,高自友,孙会君,赵晖.城市交通系统复杂性—复杂网络方法及其应用[M].北京:科学出版社,2010.6.
    [7]陈永洲.城市公交巴士复杂网络的实证与模拟研究[D].南京:南京航空航天大学经济与管理学院,2007.
    [8]王波.基于派系的复杂网络及其在公交网络上的应用研究[D].杭州:浙江工业大学信息工程学院,2009.
    [9]王波,王万良,杨旭华.一种基于加权复杂网络的最优公交换乘算法[J].武汉理工大学学报(交通科学与工程版),2008,32(6):1113-1116.
    [10]周明.基于复杂网络的城市公交演化机制研究[D].济南:山东师范大学信息科学与工程学院,2009.
    [11]张胜虎.基于复杂网络的南昌市公交网络优化研究[D].南昌:南昌大学理学院,2010.
    [12]顾前.城市公共交通网络分布及其应用研究[D].杭州:浙江工业大学软件学院,2007.
    [13]赵莉莉.复杂网络理论在城市公交系统中的应用[D].石家庄:河北师范大学物理科学与信息工程学院,2010.
    [14]王炜.实用公交网络规划方法研究[J].东南大学学报,1990,20(4):81-88.
    [15]陆建,胡刚.常规公交线网布局层次规划法及其应用[J].城市交通,2004,2(4):34-37.
    [16]韩印,李维斌,李晓峰.城市公交线网调整优化PSO算法[J].中国公路学报,1999,12(3):100-104.
    [17]韩印,刘文选,李晓峰.城市公交线网优化数学模型及其应用[J].佳木斯工学院学报,1994,12(4):195-199.
    [18]王进.基于GIS的公交规划技术研究[D].武汉:华中科技大学交通科学与工程学院,2004.
    [19]单连龙.城市公交系统连续平衡网络设计的双层规划模型及求解算法[J].系统工程,2000(7):85-87.
    [20]张欣环.基于GIS-T的城市公交线网优化方法研究与应用[D].乌鲁木齐:新疆农业大学机械交通学院,2008.
    [21]文娟娟.基于随机均衡配流的公交线网优化双层规划模型的研究[J].山东交通学院学报,2008,16(2):45-49.
    [22]孙传姣.快速公交调度优化研究[D].西安:长安大学汽车学院,2008.
    [23]康凯.城市公交线网方法研究[D].广州:华南理工大学土木与交通学院,2011.
    [24]王瑶.城市公交线网优化方法研究与应用[D].成都:西南交通大学交通运输学院,2006.
    [25]王鹤,邵良彬,邱云飞.蚁群算法在城市公交线网优化中的应用[J].微计算机信息,2011,27(3):217-235.
    [26]汤新昌.沿海中等城市常规公交线网优化方法研究[D].哈尔滨:哈尔滨工业大学交通科学与工程学院,2006.
    [27]宋安.基于双层规划的城市公交线网优化研究[D].长沙:长沙理工大学交通运输工程学院,2010.
    [28]王峰,郭大忠,李淑庆.基于功效系数法的城市公交线网优化模型[J].公路交通技术,2007,5:105-108.
    [29]龙卓珉.衡阳市公交线网优化研究[D].长沙:中南大学商学院,2009.
    [30]王志栋.公交线网优化模型的建立[J].大连铁道学院学报,1997,18(4):31-34.
    [31]黄永.改进蚁群算法及其在公交线网优化中的应用[D].上海:华东师范大学信息科学技术学院,2009.
    [32]胡鑫.多目标公交线网优化模型的研究[D].西安:长安大学汽车学院,2010.
    [33]李发.城市公交线网优化研究[D].长沙:长沙理工大学交通运输工程学院,2009.
    [34]胡启洲,张卫华.城市公交线网优化的灰色关联度决策模型[J].系统工程学报,2007,22(6):607-612.
    [35]胡启洲,石琴,张卫华,张爱萍.城市公交线网优化的理想决策方法[J].交通运输工程学报,2005,5(1):82-85.
    [36]胡启洲,邓卫,周媛.公交线网优化的物元分析法[J].武汉理工大学学报(交通科学与工程版),2009,33(1):25-28.
    [37]邓卫,胡启洲.基于灰色模糊数的公交线网优化研究[J].中国工程科学,2007,9(11):21-25.
    [38]胡启洲,邓卫,田新现.基于四维消耗的公交线网优化模型及蚁群算法[J].东南大学学报(自然科学版),2008,38(2):304-308.
    [39]周媛,邓卫,胡启洲.基于遗传禁忌算法的城市公交线网优化研究[J].武汉理工大学学报(交通科学与工程版),2011,35(1):42-45.
    [40]常玉林,胡启洲.城市公交线网优化的线性模型[J].中国公路学报,2005,18(1):95-98.
    [41]胡启洲,张卫华.基于功效函数的公交线网优化[J].交通与计算机,2007,3(25):42-46.
    [42]朱永刚.城市公交线网优化方法CVO法及其应用研究[D].长春:吉林大学交通学院,2007.
    [43]刘好德.公交线网优化设计理论及实现方法研究[D].上海:同济大学交通运输工程学院,2008.
    [44]刘好德,杨晓光.基于改进遗传算法的公交线网优化设计研究[D].计算机工程与应用,2007,43(8):10-14.
    [45]满英,刘三阳,陈小娟.基于改进的模拟退火遗传算法的公交线网优化[J].四川理工学院学报(自然科学版),2008,21(1):1-3.
    [46]赵德川,赵建武,林杨.基于免疫遗传算法的公交线网优化研究[J].交通信息与安全,2009,6(27):43-51.
    [47]赵建武.基于免疫遗传算法的公交线网优化研究[D].大连:大连理工大学管理科学与工程学院,2009.
    [48]张春梅.城市公交线网优化方法研究[J].公路与汽车,2009,5:34-37.
    [49]刘阳明.宁波市公交线网优化研究[D].宁波:宁波大学建筑工程与环境学院,2011.
    [50]孙静.基于可靠性分析的城市公交线网优化决策[D].西安:长安大学汽车学院,2011.
    [51]戴帅,陆化普,胡启洲.基于一体化的多层次公交线网优化研究[J].数学的实践与认识,2011,41(1):85-93.
    [52]戴帅,刘小明,陈艳艳.基于站距的公交网络优化模型[J].北京工业大学学报,2007,33(6):608-612.
    [53]胡刚.城市公交网络及站点优化技术研究[D].南京:东南大学交通学院,2004.
    [54]葛宏伟.城市公交停靠站点交通影响分析及优化技术研究[D].南京:东南大学交通学院,2006.
    [55]田春春.常规公交停靠站优化设置研究[D].南京:东南大学交通学院,2009.
    [56] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks[J].Nature(London),1998,393:440-442.
    [57] Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science,1999,286:509-512.
    [58] Vito Latora, Massimo Marchiori. Is the Boston subway a small-worldnetwork?[J]. Physica A,2002,314(l):109-113.
    [59] Julian Sienkiewiez, Janusz A. Holyst. Statistical analysis of22Public transportnetworks in Poland[J]. Phys. Rev. E,2005,72(4):046127.
    [60] Chua, T. A. and Silcock, D. T. The practice of British bus operators in planningurban bus serviees[J]. Traffic Engineering and Control23,1982:6670.
    [61] Chua, T. A. The planning of urban bus routes and frequencies: a survey[J].Transportation,1984,12(2):147-172.
    [62] Ceder, A., Israeli, Y.. Design and evaluation of transit routes in urbannetworks[C]. Proceedings of the3rd International Conference on Competitionand Ownership in Surface Passenger Transport, Ontario, Canada,1993.
    [63] Baaj, M.H., Mahmassani, H.S.. Hybrid route generation heuristic algorithm forthe design of transit networks[J]. Transportation Research Part C,1995,3:31-50.
    [64] Carrese, S., Gori, S.. An urban bus network design procedure[J]. AppliedOptimization,2002,64:177-196.
    [65] Lee, Y., Vuchic, V.R.,. Transit network design with variable demand[J]. Journalof Transportation Engineering,2005,131(1):1-10.
    [66] Ernesto Cipriani, Stefano Gori, Marco Petrelli. Transit network design: Aprocedure and an application to a large urban area[J]. Transportation ResearchPart C,2012,20:3-14.
    [67] Mariano Gallo, Bruno Montella, Luca D’Acierno. Erratum to The transitnetwork design problem with elastic demand and internalisation of externalcosts: An application to rail frequency optimization[J]. Transportation ResearchPart C,2012,19(6):1276-1305.
    [68] Luigi dell’Olio, Angel Ibeas, Francisco Ruisánchez. Optimizing bus-size andheadway in transit networks[J]. Transportation,2012,39:449-464.
    [69] A. Ceder, B. Golany, and O. Tal. Creating bus timetable with maximumsynchronization[J]. Transportation Research Part A,2000,35:913-928.
    [70] F. Cevallos, F. Zhao. Minimizing transfer times in public transit networks withgenetic algorithm[J]. Transportation Research Record,2006,74-79.
    [71] Y. Shafahi, A. Khani. A practical model for transfer optimization in a transitnetwork: model formulations and solutions[J]. Transportation Research Part A,2010,44(6):377-389.
    [72] Alireza Khani, Yousef Shafahi. Transfer optimization in transit networks:headway and departure time coordination[J].14th International IEEEConference on Intelligent Transportation Systems, Washington, DC, USA.October5-7,2011.
    [73] Giannopoulos, G.A. Bus Planning and Operation in Urban Areas: A PracticalGuide. Avebury, Gower Pub. Co. Ltd., UK,1990.
    [74] Mezyad M. Alterkawi. Acomputer simulation analysis for optimizing bus stopsspacing: The case of Riyadh, Saudi Arabia. Habitat International30,2006, pp.500-508.
    [75] Steven I. Chien, Zhaoqiong Qin. Optimization of bus stop locations forimproving transit accessibility. Transportation Planning and Technology27(3),2004, pp.211-227.
    [76] Fernandez, R. An expert system for the preliminary design and location ofhigh-capacity bus-stop. Traffc Engineering and Control34(11),1993, pp.533-539.
    [77] Ammons, D. N. Municipal benchmarks: Assessing local performance andestablishing community standards (2nd ed.),2001, Thousand Oaks: Sage.
    [78] Demetsky, M. J., Lin, B. Bus stop location and design. TransportationEngineering Journal ofASCE108,1982, pp.313-327.
    [79]. Sankar, R., Kavitha, J., Karthi, S. Optimization of bus stop locations using GISas a tool for Chennai City—A case study. Map India Conference2003, Postersession,2003.
    [80] El-Shair, I. GIS and remote sensing in urban transportation planning: A casestudy of Birkenhead, Auckland. Map India Conference2003,2003,Transportation.
    [81] Levinson, H. S. Analyzing transit travel time performance. TransportationResearch Record915,2002, pp.1-6.
    [82] Fernandez, R. Why buses and bus stops. Ciencia Abierta,10,2000.
    [83] Wirasinghe, S. C., Ghoneim, N. S. Spacing of bus-stops for many to manytravel demand. Transportation Science15,1981, pp.210–221.
    [84] Furth, P. G., Rahbee, A. B. Optimal bus stop spacing through dynamicprogramming and geographic modeling. Transportation Research Record1731,2000, pp.15-22.
    [85] Dwi Retnani Poetranto Gro. Horst W. Hamacher. Simone Horn. Anita Sch bel.Stop location design in public transportation networks:Covering andaccessibility objectives. Sociedad de Estadística e Investigación Operativa17,2008, pp.335-346.
    [86] ángel Ibeas, Luigi dell’Olio, Borja Alonso and Olivia Sainz. Optimizing busstop spacing in urban areas. Transportation Research Part E46,2010, pp.446-458.
    [87] Bard, J.F. Practical Bilevel Programming: Algorithms and Applications, KluwerAcademic Publishers, Dordrecht,1998.
    [88] Gleason, J.M. Set covering approach to the location of express bus stops.Omega3,1973, pp.605-608.
    [89] Sch bel, A., H.W. Hamacher, A. Liebers, D. Wagner.“The Continuous StopLocation Problem in Public Transportation.” Technical report, Universit atKaiserslautern. Report inWirtschaftsmathematik81,2002.
    [90] Anita Sch bel. Locating stops along bus or railway lines—a bicriteria problem.Annals of Operations Research136,2005, pp.211-227.
    [91] Van Nes, R. Optimal stop and line spacing for urban public transport networks,analysis of objectives and implications for planning practice, TRAIL Studies inTransportation Science, S2000/1, Delft University Press,2000, ISBN90-407-2081-9.
    [92] Van Nes, R., Bovy, P.H.L. Importance of objectives in urban transit networkdesign. Transportation Research Record No.1735,2000, pp.25–34.
    [93] Ghoneim, N.S.A., Wirasinghe, S.C. Optimum zone confguration for plannedurban commuter rail lines. Transportation Research21,1987, pp.106–114.
    [94] Wirasinghe, S.C. Nearly optimal parameters for a rail/feeder-bus system on arectangular grid. Transportation Research Part A14A,1980, pp.33–40.
    [95] Kuah, Geok K., Perl, J. Optimization of feeder bus routes and bus-stop spacing.Journal of Transportation Engineering114(3),1988, pp.341–354.
    [96] Laporte, G., J.A. Mesa, F.A. Ortega.“Maximizing trip coverage in the locationof a single rapid transit alignment.” ISOLDE IX, Fredericton&St. Andrews,New Brunswick, Canada,2002.
    [97] Hamacher, H.W., A. Liebers, A. Sch bel, D. Wagner, F. Wagner.“Locating newstops in a railway network.” Electronic Notes in Theoretical Computer Science50(1),2001.
    [98] Anthony A. Saka, Member, ASCE. Model for determining optimum bus-stopspacing in urban areas. Journal of Transportation Engineering127(3),2001,195-199.
    [99]孙施文.英国城市规划近年来的发展动态[J].国外城市规划.2005,20(6):11-15.
    [100]何海宁,倪晓雯.建在铁轨上的东京[EB/OL].http://www.infzm.com/content/51803,2010.10.27.
    [101]李士勇,田新华.非线性科学与复杂性科学[M].哈尔滨:哈尔滨工业大学出版,2006.
    [102]李忠.迭代,混沌,分形[M].北京:科学出版社,2007.
    [103] Takens F. Determining strange attractors in turbulence[J]. Lecture notes inMath,1981,898:361-381.
    [104] Grassberger, Procaccis. Measuring the strangeness of strange attractors[J].Physical Review Letters,1983,31(2):189-208.
    [105]巫兆聪.分形分析中的无标度区间确定问题[J].测绘学报,2002,3:240-244.
    [106] Ishak S, AI-Deek H. Performance Evaluation of Short-Term Time-SeriesTraffic Prediction Model[J]. Jounal of Transportation Engineering,2002(11-12):490-498.
    [107] Andrew M F, Swinney Harry L. Independent coordinates for strange attractorsfrom mutual information[J]. Physical Review A,1986,33(2):2.
    [108] Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times andembedding windows[J]. Physical D,1999,127:48-60.
    [109] Douglas B. West.图论导引(原书第2版)[M].北京:机械工业出版社,2006.
    [110]李明哲,金俊,石端银.图论及其算法[M].北京:机械工业出版社,2010.
    [111]谢金星,邢文训,王振波.网络优化(第2版)[M].北京:清华大学出版社,2009.
    [112]王志平,王众托.超网络理论及其应用[M].北京:科学出版社,2008.
    [113] Chrobakm, Larmore. An optimal on-line algorithm for k-servers on trees[J].SIAM J. Comput,1996,20(l):144-148.
    [114]胡海波,王林.幂律分布研究简史[J].物理,2005,34(12):889-896.
    [115] Amaral L A N, Scala A, Barthélémy M, Stanley H E. Class of small-worldnetworks[C]. USA: Proceedings of the National Academy of Sciences,2000,97:11149-11152.
    [116]方锦清.网络科学的理论模型探索及其进展[J].科技导报,2006,24(12):67-72.
    [117] Erdǒs P, Rényi A. On the evolving of random graphs[J]. Publications of theMathematical Institute of the Hungarian Academy of Science,1960,5:17-61.
    [118] Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U. Complex networks:structure and dynamics[J]. Physics Reports,2006,424:175-308.
    [119] Wasserman S, Faust K. Social Network Analysis[M]. Cambrige: CambrigeUniv. Press,1994.
    [120] Bollobás B. RandomGraphs[M]. NewYork:Academic Press,2001.
    [121] Newman M E J, Watts D J. Renormalization group analysis of the small-worldnetwork model[J]. Physical LettersA,1999,263:341-346.
    [122] Newman M E J, Moore C, Watts D J. Mean field solution of the small-worldnetwork model[J]. Physical Review Letters,2000,84:3201-3204.
    [123] Barrat A, Weigt M, On the properties of small world networks[J]. EuropeanPhysical Journal B,2000,13:547-560.
    [124] Albert R, Jeong H, Barabási A L. Attack and error tolerance of complexnetworks[J]. Nature,2000,406:378-382.
    [125] Bollobás B, Riordan O. Mathematical results on scale-free random graphs[M].In: Bornholdt, S, Schuster H G (ed.) Handbook of Graphs and Networks: Fromthe Internet, Berlin: Wiley-VCH:1-34.
    [126] Cohen R, Havlin S. Scale-free networks are ultrasmall[J]. Physical ReviewLetters,2003,90:058701.
    [127] Fronczak A, Fronczak P, Holyst J A. Mean-field theory for clusteringcoefficients in Barabá-Albert networks[J]. Physical Review E,2003,68:046126.
    [128] Barabási A L, Albert R, Jeong H. Mean-field theory for scale-free randomnetworks[J]. PhysicalA,1999,272:173-187.
    [129] Dorogovtsev S N, Mendes J F F, Samukhin A N. Structure of growingnetworks with preferential linking[J]. Physical Review Letters,2000,85:4633-4636.
    [130] Krapivsky P L, Redner S, Leyvraz F. Connectivity of growing randomnetworks[J]. Physical Review Letters,2000,85:4629-4632.
    [131]高鹏.动态限制搜索区域的带约束K则最优路径算法研究[D].长春:吉林大学交通学院,2009.
    [132] R B Dial, F Glover, D Karney, et al. A Computational Analysis of AlternativeAlgorithms and Labeling Techniques for Finding Shortest Path Trees[J].Network,1979,9:215-248.
    [133]徐海云.动态最短路径的拟物方法的研究[D].青岛:山东科技大学信息科学与工程学院,2005.
    [134]白轶多,胡鹏,夏兰芳,郭峰林.关于k次短路径问题的分析与求解[J].武汉大学学报:信息科学版,2009,34(4):492-494.
    [135]吕林.城市公交站点优化设计方法研究[D].南京:东南大学交通学院,2006.
    [136]朱永刚.城市公交网络设计与优化方法研究[D].长春:吉林大学交通学院,2010.
    [137]费舍里桦(任福田译).城市交通[M].北京:中国建筑工业出版社,1984.
    [138]胡启洲,邓卫.城市常规公共交通系统的优化模型与评价方法[M].北京:科学出版社,2009.
    [139]张生瑞,严海.城市公共交通规划的理论与实践[M].北京:中国铁道出版社,2007.
    [140]张泉,黄富民,杨涛.公交优先[M].北京:中国建筑工业出版社,2010.
    [141] Avishai Ceder(关伟译).公共交通规划与运营——理论、建模及应用[M].北京:清华大学出版社,2010.
    [142]宋瑞.快速公交系统规划理论与方法[M].北京:中国建筑工业出版社,2009.
    [143]闫平,宋瑞.城市公共交通概论[M].北京:机械工业出版社,2011.
    [144] Tadic B, Thurner S, Rodgers G J. Traffic on complex networks: Towardsunderstanding global statistical properties from microscopic densityfluctuations[J]. Physical Review E,2004,69:036102.
    [145] Guimerá R, Arenas A, Díaz-Guilera A, Giralt F. Dynamical properties ofmodel communication networks[J]. Physical Review E,66:065103(R).
    [146] Wu J J, Gao Z Y, Sun HJ, Huang H J. Congestion in different topologies oftraffic networks[J]. Euor-physics Letters,2006,74:560-566.
    [147]Barrat A., Barthélémy M. and Vespignani A. The effects of spatial constraintson the evolution of weighted complex networks[J]. Journal of statisticalmechanism,2005, P05003.
    [148]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006.
    [149] Porta S, Crucitti P, Latora V. The network analysis of urban streets: A dualapproach[J]. Environment and Planning B: Planning and Design.2006,33(5):705-725.
    [150] Motter AE, Lai Y-C. Cascade-based attacks on complex networks[J]. PhysicalReview E.2002,66:065102(R).
    [151]Yan G, Zhou B, Hu B, Fu Z Q, Wang B H. Effcient routing on complexnetworks[J]. Physical Review E.2006,73:046108.
    [152] Wang W X, Yin C Y, Yan G, Wang B H. Integrating local static and dynamicinformation for routing traffc[J]. Physical Review E.2006,74:016101.
    [153] Wang W X, Wang B H, Yin C Y, Xie Y B, Zhou T. Traffc dynamics based onlocal routing protocol on a scale-free network[J]. Physical Review E.2006,73:026111.
    [154] Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U. Complex networks:Structure and dynamics[J]. Physics Reports,2006,424:175-308.
    [155]春其.城市公共站点布局优化研究[D].南京:东南大学交通学院,2002.
    [156] Giannopoulos, G.A. Bus Planning and Operation in Urban Areas: A PracticalGuide[M]. Avebury, Gower Pub. Co. Ltd., UK,1990.
    [157]裘瑜,吴霖生.城市公共交通运营管理实务[M].上海:上海交通大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700