用户名: 密码: 验证码:
简支梁自振频率的预应力效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力桥梁在我国应用广泛,而竣工后桥梁中的有效预应力检测与识别一直是个难题。桥梁自振频率对预应力值具有一定的敏感性,利用桥梁的动力特性进行有效预应力识别是一个十分有价值的研究方向。由于预应力改变桥梁动力特性的机理还不十分明确,利用桥梁的动力特性进行有效预应力识别还未达到实用的程度。为此,本文针对预应力影响桥梁动力特性的机理这一问题开展研究。依托863国家高科技研究发展计划项目“季节冻土区大范围道路灾害参数监测与辨识预警系统研究”(2009AA11Z104)和高等学校博士点学科基金项目“预应力混凝土梁自振频率计算方法及有效预应力检测技术研究”项目,利用弹性动力学方法、非线性动力学理论、有限元方法,对两端锚固中间无接触预应力简支梁、无粘结预应力简梁和体外预应力简支梁等三种不形式预应力结构的动力特性进行了理论分析和试验研究。分析中考虑了预应力值大小、预应力筋布置形式、几何非线性效应、材料非线性效应等四种因素。对各因素影响预应力简支梁自振频率的机理进行探讨。
     本文的主要创新在于将非线性动力学理论引入到预应力简支梁的动力分析当中,利用此理论推导了预应力简支梁的动力方程,并给出了自振频率的近似解,利用模型试验进行了验证;推导了不同布筋形式下的无粘结预应力简支梁的自振频率计算公式;在对无粘结预应力混凝土梁的动力分析中,考虑了初始静载作用下混凝土弹性模量改变对预应力混凝土梁自振频率的影响;提出了一种利用有限元方法分析体外预应力简支梁这种耦合振动体系动力特性的方法,介绍了利用频率法检测体外预应力筋有效预应力的方法。本文主要的研究工作及取得的成果如下:
     (1)在考虑几何非线性情况下,利用非线性动力学方法对轴向受压简支梁进行了自由振动分析,推导并求解了自振频率的近似解。结果表明:考虑几何非线性效应的受轴向压力作用简支梁的横向自由振动方程是带有时变参数的非线性偏微分方程,在忽略梁的纵向惯性效应情况下,受轴向压力作用简支梁的横向自由振动方程为带三次项和五次项的自治系统。利用Galerkin法对方程进行求解,得出了考虑几何非线性效应的受轴向压力作用简支梁的1阶自振频率近似解。近似解的结构形式表明,梁的1阶自由振动频率将受到振动幅值的影响。通过对两端锚固的预应力简支钢梁进行动力试验,验证了考虑几何非线性效应的受轴向压力作用简支梁的1阶自振频率近似解有效性。利用HHT方法分析了试验梁的瞬时频率,结果表明,受轴向压力作用简支梁的固有频率是一个时变量,其值受到振动幅值和轴向作用力大小的影响。
     (2)对轴心直线布筋、偏心直线布筋和曲线布筋三种无粘结预应力简支梁的自由振动方程进行了推导,对自振频率进行了求解。考虑几何非线性效应后,轴心直线布筋简支梁的简支梁的一阶自振频率会随着预应力值的增大而增大,增大程度受到位移振幅的影响。对于偏心直线布置的预应力简支梁,在同样的张拉力情况下,自振频率会随着偏心距的增大而增大。在同样偏心距的情况下,频率会随着预应力值的增大而增大,偏心距越大,增大趋势越明显。曲线布筋的无粘结预应力简支梁的频率会随着预应力值的增大而增大。
     (3)参考国内外对受初始静载作用下混凝土弹性模量变化的研究成果,在预应力混凝土简支梁的动力分析中,考虑了预应力引起的混凝土弹性模量的改变对动力特性的影响。通过数值算例,分析了预应力引起弹性模量的改变对预应力简支梁自振频率的影响程度。得到三种无粘结预应力混凝土梁的修正后频率解析式。利用数值算例分析了1阶频率随预应力大小的改变规律。结果表明,在考虑材料非线性后,三种无粘结预应力混凝土梁的1阶自振频率均会随着预应力值的增大而增大,增大趋势比不考虑材料非线性的情况更加明显。
     (4)利用耦合振动分析方法和有限元理论,分析了体外预应力简支梁的自振特性。分析结果表明,沿钢梁截面形心布置预应力筋情况下,钢梁的基频随预应力值的增大呈现非线性增大的关系;采用不同偏心距布置预应力筋情况,钢梁一阶频率均随预应力值的增大而增大;在预应力值相同的情况下,随着预应力筋布置偏心距的增大,钢梁一阶频率增大。以工程实际为例,对频率法在体外预应力桥梁有效预应力测试当的应用进行了分析。分析了体外预应力边界条件对其固有频率的影响。结果表明,固支边界条件下一阶频率比铰支边界大,二者的相对差随着预应力筋的张拉力的增大而减小;而在张拉力相同的情况下,二者的相对差则随着索长的减小而增大。在实际工程测试当中利用实测的预应力筋频率仅能得到有效预应力的上、下限值,实际有效预应力值介于二者之间。
Prestressed bridges are widely used in China, however, the effective prestress detectionand identification for the bridges after completion has always been a problem. The bridgenatural frequencies have a certain sensitivity to the prestress values, so applying the bridgedynamic characteristics into the effective prestress identification is a valuable researchdirection. At present, the mechanism that prestress can change the bridge dynamiccharacteristics is not yet very clear. Accordingly, using the bridge characteristics to identifythe effective prestress has not reached the practical state. Considering the above situation,this paper conducts researches on the mechanism of the effects that prestress has on thebridge dynamic characteristics. Relying on the National High Technology Research andDevelopment Program of China (863Program)“Research on the System for Monitoring,Identification and Early-warning of Wide Range Road Hazards in Seasonal Frozen SoilRegion”(2009AA11Z104) and the Ph.D. Program Foundation of Ministry of Education ofChina “Research on the Calculation Method for Natural Frequencies of Prestressed ConcreteBeams and the Effective Prestress Detection Technique”, this paper uses the elastic dynamicmethod, nonlinear dynamic method and the finite element method to conduct researches onthe dynamic characteristics of three different types of prestressed structures, which areprestressed beams with pressure at both ends and no contact in the middle, simply supportedbonded prestressed beams and external prestressed simply supported beams. In analysis, theprestress values, the layout of prestressed steels, geometrical non-linearity and materialnonlinear behavior, all these four factors are considered. Then it discusses the mechanism ofthe effects of each factor on the natural frequencies of the simply supported prestressedbeams.
     The main innovation of this paper is to introduce the nonlinear dynamic theory into thedynamic analysis of the simply supported prestressed beam. And use this theory to deducethe dynamic equations of three different prestressed structures and calculate the approximatesolutions of natural frequencies which are testified by the model experiment; deduce thenatural frequency calculation formula of unbonded simply supported prestressed beam; inthe dynamic analysis of the unbonded prestressed concrete beams, consider the effects of the change in concrete elastic modulus on the natural frequencies of the prestressed concretebeam under the initial static loads; provide a method for analyzing the dynamiccharacteristics of the external prestressed simply supported beams by means of the finiteelement theory and detecting the effective prestress of the external prestressed tendons bymeans of frequency method. The main researches of this paper and the achieved results areas follows:
     (1) Considering the case of geometrical non-linearity, it analyzes the free vibration ofthe simply supported beams by nonlinear dynamic method, deduces and solves theapproximate solutions of the natural frequencies. The results show that, considering thegeometrical non-linearity, the free lateral vibration equation of the simply supported beamunder axial pressure is a nonlinear partial differential equation with a time-varying parameter.Regardless of the vertical inertial of the beam, the free lateral vibration equation of the beamunder axial pressure is an autonomous system with cubic term and quintic term. Solve theequation with Galerkin method and obtain the approximate solution of the first order naturalfrequency of the simply supported beam under axial pressure in the case of geometricalnon-linearity. The form of the approximate solutions shows that the first order free vibrationfrequencies of the beam are affected by the vibration amplitudes. The dynamic test of thesimply supported prestressed steel beam anchored at both ends testifies the practicability ofthe approximate solutions of the first order free vibration frequencies of the simplysupported beam under the axial pressure considering the geometrical non-linearity. Itanalyzes the instantaneous frequencies of the test beam by means of HHT method. And theresults show that, the natural frequencies of the simply supported beam under axial pressureare time-varying, which are affected by the vibration amplitude values and the axial forcevalues.
     (2) It deduces the free vibration equations of the three kinds of unbonded prestressedsimply supported beams, which respectively are with axial liner tendon distribution, witheccentric liner tendon distribution and with curved tendon distribution, and solves the freevibration frequencies. Analysis results show that, regardless of the geometrical non-linearity,the natural frequencies of the simply supported prestressed beam in linear tendon distributionhave nothing to do with the prestress values, but have something to do with the layout.However, to the simply supported prestressed beam in curved tendon distribution, the naturalfrequencies are not only affected by the prestress values, but also affected by the layoutshape and layout position. The first order natural frequencies increase with the eccentric moments of the prestressed tendons. Taking the geometrical non-linearity into consideration,the natural frequencies of the bonded prestressed simply supported beams are affected by theprestress values, the eccentric moments of the prestressed tendons, the prestressed tendonlayout shapes and the structural vibration amplitudes. And the natural frequencies increasewith the prestress values.
     (3) Referring to the research results of concrete elastic modulus changes under initialstatic loads at home and abroad, in the dynamic analysis of the simply supported prestressedconcrete beams, it considers the effects of the changes in the concrete elastic modulus causedby the prestress on the dynamic characteristics. Through a numerical example, it analyzesthe influence extent of the changes in elastic modulus caused by the prestress on the naturalfrequencies of the simply supported prestressed beams. Results show that, the concreteelastic modulus increases with the prestress, which increases the natural frequencies of thesimply supported prestressed concrete beam. Because elastic modulus increases with theprestress in nonlinearity, the natural frequency of the simply supported prestressed concretebeam increases in nonlinearity.
     (4) It analyzes the vibration characteristics of the external prestressed simplysupported beam by means of the finite element method. Results show that, in the conditionof arranging the prestress along the section gravity center of the steel beam, the fundamentalfrequency of the steel beam increases with the prestress in nonlinearity. Under differenteccentric moments of the prestressed tendons, the first order frequencies of the steel beamincrease with the prestress. With the same prestress, the first order frequencies of the steelbeam increase with eccentric moments of the prestressed tendons. Based on a practicalproject, it analyzes the application of the frequency method in the effective prestress test ofthe external prestressed bridges. And it analyzes the effects of the boundary condition of theexternal prestress on the natural frequencies. Results show that, the first order frequencyvalue in fixed boundary condition is higher than that in the simply supported boundarycondition, and the relative difference between them decreases with the tensions of theprestressed tendons; with the same tension, the difference between them increases with thedecrease of the cable length. In the practical project test, we can only obtain the maximumand the minimum values of the effective prestress based on the measured frequencies of theprestressed tendons, however, the actual effective frequency values are between them.
引文
[1]贾艳敏,王佳伟,韩基刚.预应力简支钢箱梁固有频率影响因素分析[J].工程力学,2009,26(增刊1):37-40.
    [2] Alkhairi F M, Naaman A E. Analysis of beam prestressed with unbolted internal orexternal tendons [J]. Journal of Structural Engineering,1993,119(9):2680-2700.
    [3]王立军,马津渤.预应力与偏心矩对简支梁一阶振动频率的影响分析[C].第十四届中国海洋(岸)工程学术讨论会论文集,2009:1615-1618.
    [4]薛刚,胡行飞.体外预应力混凝土简支梁固有频率研究[J].广西大学学报:自然科学版,2012,37(4):671-675.
    [5] Kim Jeong-Tae, Ryu Yeon-Sun, Yun Chung-Bang. Vibration-based method to detectprestress-loss in beam-type bridges[J]. Proceedings of the SPIE-The InternationalSociety for Optical Engineering,2003:559-568.
    [6] Ayaho Miyamoto, KatsujiTei, Hideaki Nakamura, John W Bull. Behavior ofPrestressed Beam Strengthened with Extemal Tendons[J]·JOURNAL OFSTRUCTURALENGINEERING,2009:1033-1044.
    [7] Saiidi M, Douglas B, Feng S. Prestress force effecton vibration frequency of concretebridges[J]. Journal of Structural Engineering,1994,120(7):2233-2241.
    [8] T.H.T. Chan, S.S. Law, T.H. YungMoving force identification using an existingprestressed concrete bridge[J]. Engineering Structures,2000,22(10):1261–1270.
    [9]李维奇,张耀庭,李进.基于损伤机理的预应力混凝土梁振动频率研究[J].华中科技大学学报(城市科学版),2009,26(2):90-94.
    [10]Clough R.W., Penzien J. Dynamic of Structures[M]. McGraw Hill, USA.1982.
    [11]T.Y.Lin., Ned H.Burns. Design of Prestressed Concrete Structures[M].ThirdEdition,John Wiley&Sons, New York,1981
    [12]Cawley, P., Adams R.D. The location of defects in structures from measurements ofnatural frequencies[J]. Journal of Strain Analysis,1979,14(2):49-57.
    [13]Moises A.Abraham,Sooyong Park,Norris Stubbs.Loss of prestress prediction based onnondestructive damage location algorithms[J].Proceedings of SPIE.USA.1995,2446:60-67.
    [14]SudhirK. Jain,Subhash C. Goe,l Discussion about Prestress force effect on vibrationfrequency of concrete bridges[J]. Journal of Structural Engineering,1996,122(4):459-460.
    [15]王勋文,刘建亮.关于“预应力对混凝土桥梁振动频率的影响”一文的讨论[J].国外桥梁,1998,(3):32-34.
    [16]Jagmoban L.H., Ahmed H.K.. Discussion of Prestress Force Effect on VibrationFrequency of Concrete Bridges[J]. Journal of Structural Engineering,1995,121(1):458-460.
    [17] A.Dall Asta, L. Dezi St. Discussion about Prestress force effect on vibration frequencyof concrete bridges[J]. Journal of Structural Engineering,1996,122(4):458.
    [18]张耀庭,汪霞利,李瑞鸽.全预应力梁振动频率的理论分析与试验研究[J].工程力学,2007,24(8):116-120.
    [19]张耀庭.体外预应力简支混凝土梁基频的理论与实验研究[J].铁道工程学报,2005,(2):.34-37.
    [20]熊辉霞,张耀庭,司马玉洲.基于损伤理论的预应力混凝土简支梁弹性模量分析[J].工程力学,2010,18(S2):175-180.
    [21]徐飞鸿,周凯,熊辉霞.直线型体外预应力混凝土简支梁自振频率分析[J].南阳理工学院学报,2009,1(3):51-53.
    [22]张耀庭,张长跑.体外预应力梁基频的理论与实验研究[J].华中科技大学学报(城市科学版),2005,23(14):21-26.
    [23]刘龄嘉,贺拴海,赵小星.预应力对混凝土简支梁振动频率影响的试验研究[J].铁道建筑,2007,(8):10-12.
    [24]刘龄嘉,赵小星,贺拴海.混凝土模型梁模态试验方法[J].长安大学学报(自然科学版),2007,27(5):58-61.
    [25]贺拴海,宋一凡,赵小星,崔军.钢筋混凝土梁式结构裂缝特征与损伤评估方法试验研究[J].土木工程学报,2003,36(2):6-9.
    [26]Jeong-Tae Kim, Yeon-Sun Ryu, Hyun-Man Cho, Norris Stubbs,Damage identificationin beam-type structures: frequency-based method vs mode-shape-based method[J].Engineering Structures,2003,25(1):57-67.
    [27]熊学玉,王寿生.体外预应力梁振动特性的分析与研究[J].地震工程与工程振动,2005,25(2):55-61.
    [28]熊学玉,沈小东.基于动力刚度法的体外预应力梁自振频率分析[J].振动与冲击,2010,29(11):180-182.
    [29]E.Hamed, Y.Frostig. Natural frequencies of bonded and unbonded prestressedbeams–prestress force effects[J]. Journal of Sound and Vibration,2006,295:28-39.
    [30]楼梦麟.预应力梁横向振动分析的模态摄动方法[J].工程力学,2006,23(l):107-11
    [31]张耀庭,蔡利建.基于摄动法的体外预应力梁基频分析[J].华中科技大学学报(自然科学版),2006,34(6):118-121.
    [32]熊健民,周俊荣,周金枝.基于ANSYS预应力简支梁固有频率的研究[J].固体力学学报,2008,29(专辑):158-161.
    [33]张耀庭,邱继生. ANSYS在预应力钢筋混凝土结构非线性分析中的应用[J].华中科技大学学报:城市科学版,2003,20(4):20-23.
    [34]吴泽玉,贾燕.等效荷载法求预应力对频率的影响分析[J].混凝土,2012,(4):9-14.
    [35]熊辉霞,张耀庭.体外预应力混凝土梁自振频率分析[J].工程力学,2008,25(增刊II):173-176.
    [36]Zhang Yaoting; Zheng Yi; Li Hongjian. A dynamic test of fully prestressed concretebeams[J]. Advanced Materials Research,2012,368-373:2483-2490.
    [37]Zhang Jun; Zhou Ziwen; Ni, Xiaolu; Chen Hao; Zhu Pengcheng. Modal test on anexternal prestressed steel beam[J]. Advanced Materials Research,2012,446-449:3123-3127.
    [38]Li Fengge, Li Rong. Theoretical analysis of natural vibration frequency for unboundedprestressed concrete beams[J]. Advanced Materials Research,2012,594-597:882-885.
    [39]Ho, Duc-Duy, Kim Jeong-Tae, Stubbs, Norris, Park, Woo-Sun. Prestress-forceestimation in PSC girder using modal parameters and system identification[J].Advances in Structural Engineering,2012,15(6):997-1012.
    [40]Li Ruige; Yang Guoli. Nature frequency identification of prestressed concrete beamwith RBF network[J]. Advanced Materials Research,2012,446-449:362-365.
    [41]Norden E. Huang, Zhaohua Wu. A REVIEW ON HILBERT-HUANGTRANSFORM:METHOD AND ITS APPLICATIONS TO GEOPHYSICAL STUDIES[J],Reviews of Geophysics,46, RG2006/2008.
    [42]R.T. Rato, M.D. Ortigueira. On the HHT, its problems, and some solutions [J],Mechanical Systems and Signal Processing22,1374–1394,2008.
    [43]Tomas Kalvoda,Yean-Ren Hwang. Analysis of signals for monitoring of nonlinear andnon-stationary machining processes [J],Sensors and Actuators A,1619-45,2010.
    [44]Kung S. Y. A new identification method and reduction algorithm via singular valuedecomposition[C].12th Asilomar Conf. on Circuits, Systems and comp,1978.
    [45]Peeters, B. and De Roeck, G. Stochastic system identification for operational modalanalysis: a review[J]. Journal of dynamic systems measurement, and control,2001,123:659-667.
    [46]Basseville M, Benveniste A, Goursat, M. Output only subspace based structuralidentification: from theory to industrial testing practice[J]. Journal of Dynamic systems,Measurement, and control,2001,123:1-9.
    [47]Peeters B., De Roeck, G. Pollet T. and Schueremans L. Stochastic subspace techniquesapplied parameter identification of civil engineering structures[C]. Proc. of NewAdvance in Modal Synthesis of Large Structures: Nonlinear, Damped andNondeterminstic Cases,1995,151-162.
    [48]M. Scionti, J.P. Lanslots. Stabilisation diagrams: Pole identification using fuzzyclustering techniques [J]. Advances in Engineering Software,2005,36:768-779.
    [49]Edwin Reynders, Rik Pintelon, Guido De Roeck. Uncertainty bounds on modalparameters obtained from stochastic subspace identification [J]. Mechanical Systemsand Signal Processing,2008,22:948-969.
    [50]Bilge Alicioglu, Hilmi Lus, A.M.ASCE. Ambient vibration analysis with subspacemethodsand automated mode selection: case studies[J]. Journal of StructuralEngineering,2008:1016-1029.
    [51]Filipe Magalhaes, Alvaro Cunha, Elsa Caetano. Online automatic identification of themodal parameters of a long span arch bridge [J]. Mechanical Systems and SignalProcessing,2009,23:316–329.
    [52]Norden E. Huang, Zheng Shen, Steven R. Long, et al. The empirical modedecomposition and the hilbert spectrum for nonlinear and nonstationary time seriesanalysis[C]. Proceedings of the Royal Sosiety A,1998,454:903-995.
    [53]Pandit S M,S M Wu,Time series and system analysis with application[J],JohnWiley&Sons,1993.
    [54]Juang J N,Pappa R S,An Eigensystem Realization Algorithm for Modal ParameterIdentification and Model Reduction,J.Guidance,1985,8(5):620~627.
    [55]Quek S T,Wang W P and Koh C G,System identification of linear MDOF structuresunder ambient excitation,Earthquake Engineering Structural Dynamics,1999,28(1):51-77.
    [56]张笑华,任伟新,禹丹江.结构模态参数识别的随机子空间法[J].福州大学学报:自然科学版,2005,33(增刊):46-49.
    [57]吴勇,Ibrahim时域法中噪音模态的实质—论ITD法[J],振动与冲击,1986.
    [58]杨转运,刘会,张金梅,刘鹏,王羽.桥梁风振试验颤振导数识别的Ibrahim时域优化研究[J].武汉理工大学学报(交通科学与工程版),2009,33(5):908-910.
    [59]郑敏,申凡,陈同纲.采用互相关复指数法进行工作模态参数识别[J].南京理工大学学报,2002,26(2):113-116.
    [60]郭中阳,胡子正,参数辨识的特征系统实现算法(ERA)及实践,振动工程学报,1992,5(4):326-334.
    [61]李蕾红,陆秋海,任革学,特征系统实现算法的识别特性研究及算法的推广,工程力学,2002,19(1):109-114.
    [62]邢丹丹,张立涛,段雨芬.基于小波分析的大跨径桥梁健康监测数据预处理研究[J].公路工程,2012,37(2):33-36.
    [63]禹丹江,任伟新.基于经验模式分解的随机子空间识别方法[J].地震工程与工程振动,2005(25):61-66.
    [64]赵坚.机械系统动态特性参数时频域辨识理论与方法研究[D].天津大学,2007.
    [65]张景绘,邱阳.时间序列分析在振动中的应用[J].振动与冲击.1983,(1):34-38.
    [66]姜大正.环境激励下船舶结构模态分析实验与理论研究[D].大连理工大学2009.
    [67]黄方林,何旭辉,陈政清等.随机减量法在斜拉桥拉索模态参数识别中的应用[J].机械强度,2002,2(3):331-334.
    [68]何旭辉,余志武,陈政清.基于EMD和随机减量技术的大型桥梁模态参数识别[J].铁道科学与工程学报,2007,4(4):6-10.
    [69]常军,张启伟,孙利民.随机子空间在桥塔模态参数识别中的应用[J].地震工程与工程振动,2006,26(5):183-187.
    [70]常军,张启伟,孙利民.稳定图方法在随机子空间识别模态参数中的应用[J].工程力学,2007,24(2):39-44.
    [71]常军,张启伟,孙利民.基于随机子空间结合稳定图的拱桥模态参数识别方法[J].地震工程与工程振动,2007,24(1):21-25.
    [72]彭细荣,路新瀛,陈肇元.结构应变模态识别的随机子空间方法[J].振动与冲击,2008,27(6):4-6.
    [73]张家滨,陈国平.基于随机子空间的递推在线模态识别算法[J].振动与冲击,2009,(28):42-45.
    [74]樊可清,倪一清,高赞明.改进随机子空间系统辨识方法及其在桥梁状态监测中的应用[J].中国公路学报,2004,17(4):70-73.
    [75]Jiangling Fan, Zhiyi Zhang, Hongxing Hua. Data processing in subspace identificationand modal parameter identification of an arch bridge[J]. Mechanical SystemsandSignalProcessing21,2007,27:1674-1689.
    [76]侯立群,欧进萍.基于NExT/ERA法的斜拉桥模态参数辨识[C].第二届全国土木工程研究生学术论坛,2004:462-466.
    [77]续秀忠,华宏星,陈兆能.基于环境激励的模态参数辨识方法综述[J].振动与冲击,2002,21(3):1-5.
    [78]程锌,玉磊,吕镜清.基于双FFT的单频信号高精度频率估计[J].电子信息对抗技术,2013,28(1):13-16.
    [79]Dengl, Caics.Bridge Model Updating Using Response Surface method and geneticalgorithm[J]. Joutnal of Bridge Engineering,2010,15(5):553-564.
    [80]李德葆,陆秋海,实验模态分析及其应用[M],北京:科学出版社,2001.
    [81]Khoa Viet Nguyen, Hai Thanh Tran.Multi–cracks detection of a beam-like structurebased on the on-vechicle vibration signal and wavelet analysis [J]. Journal of Soundand Vibration2010,329:4455-4465.
    [82]孙增寿,韩建刚,任伟新.基于曲率模态和小波变换的简支梁桥损伤识别方法[J].郑州大学学报:工学版,2005,26(3):24-27,31.
    [83]Zhu X.Q., Law S.S.. Wavelet-based crack identification of bridge beam from operationaldeflection time history[J]. International Journal of Solids and Structures2006,43:2299–2317.
    [84]罗光坤,张令弥.Morlet小波用于环境激励下的模态参数识别研究[J].地震工程与工程振动,2007,27(4):109-115.
    [85]伊廷华,李宏南,王国新.基于小波变换的结构模态参数[J].振动工程学报,2006,19(1):51-56.
    [86]Norden E. Huang, Zheng Shen, et al. The Empirical Mode Decomposition and theHilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[J]. Proc RoySoc London,1998(454):903-995.
    [87]屈文忠,陈明祥,曾又林.利用HHT方法进行结构损伤检测研宄[J].武汉大学学报(工学版),2007,40(5):77-81.
    [88]Dejie Yu, Yu Yang,Junsheng Cheng. Application of Time-frequency Entropy Methodbased on Hilbert Huang Transform to Gear Fault Diagnosis[J]. Measurement2007,40:823-830.
    [89]Z. Y. Shi, S. S. Law, X. Xu. Identification of Linear time-varying mdof dynamic systemsfrom forced excitation using Hilbert transform and EMD method [J]. Journal of Soundand Vibration.2009.321:572-589.
    [90]李书进,铃木祥之.Hilbert-huang变换在结构健康诊断中的应用研宄[J].武汉理工大学学报,2007,29(8):78-81
    [91]董银峰,李英民,赖明.基于EMD和VARMA模型的结构损伤识别[J].振动与冲击.2010,29(12);141-147.
    [92]于彩霞,魏文博,景建恩,希尔伯特一黄变换在海底大地电磁测深数据处理中的应用[J],地球物理学进展,2011,25(3):325-329.
    [93]黄诚惕,希尔伯特-黄变换及其应用研究[D],西南交通大学硕士论文,2006.
    [94]耿婷婷,金荣洪,耿军平,HHT的改进及其在时频信号分析中的应用研究[J],中国电子科学研究院学报,2010,5(5):513-517.
    [95]林振华,李宝清,魏建明,刘海涛,基于震动信号HHT的车辆分类[J],计算机仿真,2010,27(3):281-285.
    [96]R.T. Rato, M.D. Ortigueira, A.G. Batista. On the HHT, its problems, and somesolutions[J]. Mechanical Systems and Signal Processing,2008,22:1374-1394.
    [97]C. Junsheng, Y. Dejie, Y. Yu, The application of the energy operator demodulationapproach based on EMD in machinery fault diagnosis[J]. Mechanical Systems andSignal Processing,2007,21:668–677.
    [98]C. Junsheng, Y. Dejie, Y. Yu, Research on intrinsic mode function (IMF) criterion inEMD method[J]. Mechanical Systems and Signal Processing,2006,20:817–824.
    [99]N.E. Huang, Z.H. Wu, S.R. Long. On Instantaneous Frequency[C]. In: Workshopon the Recent Developments of the Hilbert-Huang Transform. Methodology and ItsApplications, Taipei, China,2006:15-17.
    [100]杨光亮,朱元清,于海英,基于HHT的地震信号自动去噪算法,大地测量与地球动力学[J],2010,30(3):39-42.
    [101]孟宗,戴桂平,刘彬,基于EMD时频分析方法的性能研究[J],传感技术学报,2006,19(5):1029-1032.
    [102]程磊,瞿伟廉.基于Hilbert-Huang变换理论的结构损伤检测.防灾减灾工程学报,2007,27(3):318-322.
    [103] Kaplan S A1Factors affecting the relationship between rate of loading and measuredcompressive strength of concrete[J].Magazine of Concrete Research,1980,32(111):79-88.
    [104]马怀发,陈厚群,黎保琨.应变率效应对混凝土动弯拉强度的影响[J].水利学报,2005,36(1):69-76.
    [105]郑丹.基于细观机理的混凝土动力强度与动力本构研究[D].北京:清华大学,2005.
    [106]闫东明,林皋.不同初始静态荷载下混凝土动态抗压特性试验研究[J].水利学报,2006,(3):360-364.
    [107]闫东明,林皋,王哲.变幅循环荷载作用下混凝土的单轴拉伸特性[J].水利学报,2005,(5):593-597.
    [108]徐超.加载历史对混凝土动态特性的影响[D].三峡大学硕士论文,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700