用户名: 密码: 验证码:
分区进水ABR-多级垂直流人工湿地处理废水技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从废水处理实际需要出发,选取生活污水、养殖废水及垃圾渗滤液三种具有典型水质特点的废水作为研究对象,通过分区进水ABR-多级垂直流人工湿地对三种废水的处理,研究了系统对COD、NH_3-N、TN、TP等主要污染物的去除效能与机理,探讨了工艺的最适运行工况与参数。此外,本文还以实验结果为依据,对分区进水ABR和多级垂直流人工湿地两种废水处理技术的特点进行了分析总结,从技术角度明晰了分区进水ABR-多级垂直流人工湿地二级工艺处理后的废水用于农灌的可行性。研究成果为分区进水ABR-多级垂直流人工湿地组合工艺处理生活污水、养殖废水及垃圾渗滤液的工程应用提供了技术支撑。
     研究结果表明,创新设计的分区进水ABR可以有效降低反应器第1格室的有机负荷,增强反应器的水解酸化能力,显著减少反应器的启动时间,提高反应器的处理效能。同时,开发的多级垂直流人工湿地,改变了湿地内废水的流态,增加了湿地的容积利用率,优化了湿地内的好氧区与厌氧区的功能,强化了湿地的硝化与反硝化作用,提高了湿地的处理能力。
     分区进水ABR-多级垂直流人工湿地处理生活污水,分区进水ABR在水力停留时间(Hydraulic retention time, HRT)6h、湿地在HRT=1.5d条件下运行较为适宜。分区进水ABR对COD去除率平均保持在34.5%,最高可达44.2%。继之以多级垂直流人工湿地工艺处理,其冬季对COD、NH_3-N、TN与TP的去除率分别在70.7%-83.1%、53.60%-75.3%、72.5%-84.9%和55.8%-82.5%之间,夏季对COD、NH_3-N、TN与TP的去除率分别在87.3%-96.1%、78.2%-86.1%、94.4%-95.1%和81.8%-89.6%之间。经二级处理后,最终出水中COD、NH_3-N、TN与TP的浓度冬季最高为59.81mg/L、24.16mg/L、23.13mg/L和9.70mg/L,夏季可低至7.36mg/L、6.54mg/L、3.64mg/L和2.81mg/L。
     分区进水ABR-多级垂直流人工湿地处理养殖废水,分区进水ABR在HRT为8h-12h、湿地在HRT=3d条件下运行较为适宜。分区进水ABR对COD的去除率为35.0%-41.3%。继之以多级垂直流人工湿地工艺进行处理,其冬季对COD、NH_3-N、TN与TP的去除率分别在71.6%-86.4%、69.8%-77.5%、68.0%-79.6%和64.3%-71.2%之间,夏季对COD、NH_3-N、TN与TP的去除率分别在89.2%-93.9%、86.4%-91.2%、86.5%-89.4%和78.6%-85.6%之间。对COD、NH_3-N、TN与TP的去除率最高发生在8月份,最低在1月份。
     分区进水ABR-多级垂直流人工湿地处理垃圾渗滤液,分区进水ABR与湿地分别在HRT为12h和3d的条件下运行。分区进水ABR反应器对COD去除率为33.1%-36.7%。后继湿地对垃圾渗滤液中污染成分去除趋势和对生活污水、养殖废水的处理有很大差异,在7月份后期表现出对污染物去除有降低的趋势。经分区进水ABR-多级垂直流人工湿地二级工艺处理,渗滤液中COD、NH_3-N、TN与TP的去除率分别在73.5%-91.5%、62.6%-84.2%、59.7%-83.9%和71.5%-84.4%之间。芦苇对Zn~(2+)的吸收能力强于Cu2+,湿地在冬夏两季对Zn~(2+)的去除差异明显。
     分区进水ABR-多级垂直流人工湿地组合工艺对典型的高、低浓度有机废水均有较好的处理效果。分区进水ABR提高了反应器的水解酸化功能,多级垂直流人工湿地增强了系统的硝化与反硝化作用。经分区进水ABR-多级垂直流人工湿地二级工艺处理后的生活污水符合农业灌溉的标准。
This paper started with the practical wastewater treatment purposes, selected threekinds of typical wastewater, domestic sewage, aquaculture wastewater and landfillleachate, as the research objects, through the treatment of the three kinds of wastewaterby divisional influent ABR-multi-stage vertical-flow constructed wetland, theremoval efficiency and mechanisms were investigated for COD and NH_3-N, TN, TPand other major pollutants, the optimal operating conditions and parameters of thesetechnology were discussed. Besides, according to the experimental results, this workalso summarized the characteristics of divisional influent ABR and multi-stagevertical-flow constructed wetland for wastewater treatment and also revealed thefeasibility of wastewater reuse for agricultural irrigation using the two-stage process ofdivisional influent ABR and multi-stage vertical-flow constructed wetland technologyfrom a technical point of view. The results could provide technical support for theengineering applications of divisional influent ABR and multi-stage vertical-flowconstructed wetland technology in domestic sewage, aquaculture wastewater andlandfill leachate treatment.
     The results showed that the innovative design divisional influent ABR caneffectively reduce the organic load of the first cell of the reactor chamber, enhance thecapability of hydrolysis and acidification, significantly reduce the start-up time, andimprove the processing performance of the reactor. Meanwhile, the multi-stagevertical-flow constructed wetland changed the wastewater flow state, increased thecapacity utilization, optimized the function of the aerobic zone and anaerobic zone inthe wetland, strengthened the nitrification and denitrification effect, and improved theprocessing capacity of the wetland.
     The divisional influent ABR-multi-stage vertical flow constructed wetland wereused for treatment of domestic sewage; the optimal hydraulic retention time (HRT) fordivisional influent ABR and wetland were6h and1.5d separately. By divisionalinfluent ABR the removal efficiency of COD maintained at an average of34.5%, withthe maximum of44.2%. Multi-stage vertical-flow constructed wetland was followed, in winter the removal rate of COD, NH_3-N, TN and TP were in the range of70.7%-83.1%,53.60%-75.3%,72.5%-84.9%and55.8%-82.5%respectively; and insummer the removal rates of COD, NH_3-N, TN and TP were in the range of87.3%-96.1%,78.2%-86.1%,94.4%-95.1%and81.8%-89.6%separately. After thetwo-stage treatment, the maximum concentrations of COD, NH_3-N, TN and TP in thefinal effluent in winter were59.81mg/L,24.16mg/L,23.13mg/L and9.70mg/L; whilein summer the corresponding concentrations could be as low as7.36mg/L,6.54mg/L,3.64mg/L and2.81mg/L respectively.
     The divisional influent ABR-multi-stage vertical-flow constructed wetland wereused for treatment of aquaculture wastewater, the optimal HRT for divisional influentABR and wetland was8-12h and3d separately. By divisional influent ABR theremoval efficiency of COD was35.0%-41.3%. Multi-stage vertical-flow constructedwetland was followed, in winter the removal rate of COD, NH_3-N, TN and TP were inthe range of71.6%-86.4%,69.8%-77.5%,68.0%-79.6%and64.3%-71.2%respectively; and in summer the removal rates of COD, NH_3-N, TN and TP were in therange of89.2%-93.9%,86.4%-91.2%,86.5%-89.4%and78.6%-85.6%separately. Themaximum and minimum removal rate of COD, NH_3-N, TN and TP were in August andJanuary separately.
     The divisional influent ABR-multi-stage vertical-flow constructed wetland wereused for treatment of landfill leachate, the optimal HRT for divisional influent ABRand wetland was12h and3d separately. By divisional influent ABR the removalefficiency of COD was33.1%-36.7%. The removal trends of following multi-stagevertical-flow constructed wetland for the pollutants in landfill leachate weresignificantly different with that for domestic sewage and aquaculture wastewater, inlate July the removal efficiency of pollutants tended to decrease. After the two-stageprocess of divisional influent ABR and multi-stage vertical-flow constructed wetlandthe removal rate of COD, NH_3-N, TN and TP in landfill leachate were73.5%-91.5%,62.6%-84.2%,59.7%-83.9%and71.5%-84.4%. Reed had stronger absorption capacityfor Zn~(2+)than Cu2+; wetlands had significantly different removal efficiency for Zn~(2+)inwinter and summer.
     The divisional influent ABR-multi-stage vertical-flow constructed wetlandtechnology had better treatment effect on typical high or low concentration of organicwastewater. The divisional influent ABR reactor improved the capability of hydrolysis and acidification; multi-stage vertical-flow constructed wetland enhanced thenitrification and denitrification effect. Domestic sewage after treatment by thetwo-stage process of divisional influent ABR-multi-stage vertical-flow constructedwetland could reach the standards of agricultural irrigation.
引文
[1]中国环境年鉴[R].北京:中国环境年鉴社,2008.
    [2]龙小菊.浅析我国水资源污染状况及处理技术的应用[J].能源与环境,2011,(3):69-70.
    [3]中国环境年鉴[R].北京:中国环境年鉴社,2007.
    [4]谢良林,黄翔峰,刘佳,等.北方地区农村污水治理技术评述[J].安徽农业科学,2008,36(19):8267-8269.
    [5]蒲宏江,何辉.浅谈新农村建设中生活废水的治理途径[J].陕西水利,2011,(2):163-164.
    [6]冯刚.新农村建设中经济与生态保护协调发展模式研究[D].北京林业大学,2008.
    [7]王晓峰,陈鹏飞.社会主义新农村污水处理设施的选择探讨[J].新农村建设,2009,4:56-58.
    [8]杨胜敏,韩敏琦.新农村污水处理技术及经验探讨[J].水利水电技术,2011,42(4):66-70.
    [9]李根生.农村污水生态处理及饮水安全战略分析[J].水科学与工程技术,2010,(1):39-40.
    [10]姜立晖;刘广奇.新农村建设污水处理模式的选择[J]建设科技,2006,(13):50-51.
    [11]沈耀良,王宝贞.废水生物处理新技术-理论与应用[M].北京:中国环境科学出版社,2001.
    [12]许振良.膜法水处理技术[M].北京:化学工业出版社,2001.
    [13]刘锐,黄霞.膜-生物反应器中溶解性微生物产物的研究进展[J].环境污染治理技术与设备,2002,3(1):1-7.
    [14]顾国维,何义亮.膜生物反应器-在污水处理中的研究和应用[M].北京:化学工业出版社,2002.
    [15]殷峻,陈英旭.膜生物反应器中的膜污染问题[J].环境污染治理技术及设备,2001,2(3):62-68.
    [16] Huang X., Qian Y., Liu R. Behaviour of soluble microbial products in amembrane bioreactor [J]. Process Biochemistry,2000,36(5):401-406.
    [17]周富春,孙雪松.完全混合式活性污泥法处理生活污水试验研究[J].水处理技术,2009,6(35):50-56.
    [18] Irvine R.L., Wilderer P.A., Flemming H.C. Controlled unsteady state processesand technologies-An overview [J]. Water Science and Technology,1997,35(1):1-10.
    [19]李俊生. SBR法处理模拟淀粉废水的工艺研究[J].哈尔滨商业大学学报(自然科学版),2011,27(1):25-28.
    [20]温天兵. ABR-SBR-接触氧化-气浮工艺处理纤维板生产废水[J].给水排水,2011,37(5):43-47.
    [21]申欢,金奇庭,李明波,崔喜勤.膜生物法处理城市垃圾渗滤液[J].中国给水排水,2004,24(3):56-58.
    [22] Manning D.A.C., Bewsher A. Determination of anions in landfill leachates by ionchromatography [J]. Journal of Chromatography A,1997,770(1):203-210.
    [23] Moraes P.B., Bertazzoli R. Electrodegradation of landfill leachate in a flowelectrochemical reactor [J]. Chemosphere.2005,58(1):41-46
    [24] Huang L.N., Zhou H, Chen Y.Q, et al. Diversity and structure of the archaealcommunity in the leachate of a full-scale recirculating landfill as examined bydirect16S rRNA gene sequence retrieval [J]. FEMS Microbiology Letters.2002,214(2):235-240.
    [25]杨小俊,贾海涛,蔡亚君,等.一体化膜生物膜反应器处理农村生活污水试验研究[J].湖北农业科学,2011,50(1):44-48.
    [26]熊欢伟,郭勇,李礼,等.新型颗粒生物膜生物转盘处理有机废水的研究[J].中国给水排水,2009,25(2):75-77.
    [27]管凤伟,高戈,赵庆良. A/O生物膜工艺处理煤气废水的试验研究[J].中国给水排水,2009,25(13):74-76.
    [28] Jochimsan J.C., Jekel M.R. Partial oxidation effects during the combinedoxidative and biological treatment of separated streams of tannery wastewater [J].Water Science and Technology,1997,35(4):337-345.
    [29]曹群,佘佳荣.农村污水处理技术综述[J].2009,34(3):118-121.
    [30]张克强.农村污水处理技术[M].北京:中国农业科学技术出版社,2006.
    [31]苏东辉,郑正,王勇,等.农村生活污水处理技术探讨[J].2005,28(1):79-81.
    [32] Gomez, E., Casellas C., Picot B., et al. Ammonia elimination processes instabilisation and high-rate algae pond systems [J]. Water Science and Technology,1995,31(12):303-312.
    [33] Check G. G., Waller D. H., Lee S. A., et al. The lateral flow sand-filter system forseptic tank effluent treatment [J]. Water Environment Research.1994,66(7):919-928.
    [34]张希衡.废水厌氧生物处理工程[M].北京:中国环境科学出版社,1996.
    [35] Wang Z., Zhang Z., Lin Y., et al. Landfill leachate treatment by acoagulation-photooxidation process [J]. Journal of Hazardous materials.2002,95(1-2):153-159.
    [36] Legube B, Karpel Vel Leitner N. Catalytic ozonation: a promising advancedoxidation technology for water treatment [J]. Catalysis Today,1999,53(1):61-72.
    [37]彭军,吴分苗,唐耀武.组合式稳定塘工艺处理养猪废水设计[J].工业用水与废水,2003,3(34):44-46.
    [38] Barber WP, Stuckey DC. The use of the anaerobic baffled reactor (ABR) forwastewater treatment: a review [J]. Water Res1999,33:1559-1578.
    [39]吴平,吴慧芳.废水厌氧处理工艺的发展[J].工业安全与环保,2006,9(32):22-24.
    [40]胡纪萃.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2003.
    [41] Frankin R.J., Koevoets WAA, Vangils WMA, et al. Application of the biobedupflow fluidized-bed process for anaroebic waste-water treatment [J]. WaterScience and Technology,1992,25(7):373-382.
    [42]谭超,张军,何容信,等.城市污水厌氧处理技术研究进展[J].环境科学与管理,2007,32(10):94-96.
    [43]汪洪生.现代废水厌氧处理应用技术进展[J].污染防治技术,2002,15(3):15-20.
    [44]蒋柱武,方骁,张亚雷,等.生活污水厌氧处理研究进展[J].同济大学学报(自然科学版),2005,33(4):489-492.
    [45] Udeme J. Ndon, Richard R. Effects of temperature and hydraulic retention timeon anaerobic sequencing batch react or treatment of low-strength wastewater [J].Water Research.1997,31(10):2455-2466.
    [46] Zeeman G, Lettinga G. The role of anaerobic digestion of domestic sewage inclosing the water and nutrient cycle at community level [J]. Water Science andTechnology,1999,39(5):187-194.
    [47]徐竺,李正山,杨玖贤.上流式厌氧过滤器处理垃圾渗滤液的研究[J].中国沼气,2002,35(2):69-73.
    [48]马淑艳,李晶,李传举,等. UASB处理畜禽废水的启动试验研究[J].中国畜牧杂志,2011,47(1):69-71.
    [49]张玉华,高新红,任莹.厌氧复合床-序批式活性污泥法处理屠宰废水[J].工业用水与废水,2005,36(3):79-80.
    [50]方圣琼,张宏旺. ABR处理高浓度畜禽养殖废水的工艺研究[J].安徽农学通报,2011,17(15):22-24.
    [51]李广,王鹤立,李晶,等.内导流EGSB处理淀粉废水的工艺及污泥性质研究[J].中国给水排水,2011,37(7):141-144.
    [52]李平,徐文英.厌氧(IC反应器)/好氧联用处理淀粉生产废水[J].中国给水排水,2009,25(2):52-54.
    [53]严煦世,范瑾初.给水工程[M].北京:中国建筑工业出版社,1999.
    [54]严瑞.水处理剂应用手册[M].北京:化学工业出版社,2000.
    [55]何文,杜俊琪,刘刚.微波协同混凝处理油田回注水的研究[J].现代化工,2010,30(1):110-112.
    [56]俞志敏,金杰,吴克,等.生物垃圾处理过程中渗滤液混凝处理的实验研究[J].2005,22(6):25-28.
    [57]潘云霞,潘云霞,郑怀礼,等.絮凝法处理垃圾填埋场渗滤液的研究[J].环境工程学报,2007,1(7):97-100.
    [58]王宝贞,王琳.城市固体废物渗滤液处理与处置.化学工业出版社,2005:152-153.
    [59]刘斐文,王萍.现代水处理方法与材料[M].北京:中国环境科学出版社,2003.
    [60]易发成.沸石的活化处理及其对铅、钴的吸附性研究[J].矿物岩石,2005,25(3):118-121.
    [61]曹伟,傅佩玉,韩中华,等.天然沸石处理含铅废水的试验研究[J].环境导报,1998,2,20-22.
    [62]郑红,鲁安怀,张佥,等.富含Na+、Ca2+、Al3+、Cr3+蒙脱石对垃圾渗滤液中有机物的吸附[J].岩石矿物学杂志,2001,20(4):87-90.
    [63]高以烜,叶凌碧,膜分离技术基础,科技出版社,1989
    [64] Trebouet D. Stabilized landfill leachate treatment by combinedphysicochemical-nanofiltration processes [J].Water Research,2001,35(12):2935-2935.
    [65]膜技术处理废水在我国得到广泛推广,2009,10,慧聪皮革网
    [66]袁维芳,王国生,汤克敏.反渗透法处理城市垃圾填埋场渗滤液[J].水处理技术,1997,23(6):233-235.
    [67]李婷婷,王兴戬,刘天顺,等.一体式膜生物反应器处理中药废水的试验研究[J].哈尔滨商业大学学报,2009,25(4):419-423.
    [68]陈强,黎中宝,陈阳生.两种膜生物反应器处理印染废水的对比试验研究[J].环境科学与技术,2010,33(6):164-168.
    [69]杨协栋,李月中,张林生,等.新型MBR工艺对垃圾渗滤液TN去除的研究[J].污染防治技术,2009,22(6):21-23.
    [70] Wagner J, Rosenwinkel K H. Sludge Production in membrane bioreactors underdifferent conditions [J].Wat. Sci Tech.2000,41(10-11):251-258.
    [71] Roorda J H, J M vander Graa f. New parameter for monitoring fouling duringultrafiltration of WWTP effluent [J]. Water Science and Technology,2001,43(10):241-248
    [72]魏源送,郑祥,刘俊新.国外膜生物反应器在污水处理中的研究进展[J].工业水处理,2003,23(1):1-7.
    [73] Jules B van Lier, Nico Groeneveld, Gatze Lettinga. Development of thermophilicmethanogenic sludge in compartmentalized upflow reactors [J]. Biotechnologyand Bioengineering [J].1996,50(2):115-124.
    [74]沈耀良.厌氧折流板反应器(ABR)—一种新型的厌氧处理工艺[J].苏州城建环保学院学报,1994,7(4):33-39.
    [75]Grobicki A., Stuckey D.C. The role of formate in the anaerobic baffled reactor[J].Water Research,1989,23(12):1599-1602.
    [76] Holt C.J., Matthew R.G.S., Terzis E. A comparative study using the anaerobicbaffled reactor to treat a phenolic wastewater [J]. Proc.8th International Conf. OnAnaerobic Digestion, Sendi. Japan.1997,2:40-47.
    [77]蒲迅赤,李克锋,李嘉,等.紊动对水体中有机物降解影响的实验[J].中国环境科学.1999,19(6):485-489.
    [78]崔玉波,尹军,曲波,等.厌氧折流板反应器的启动试验[J].中国给水排水.2002,18(7):75-76.
    [79] Boopathy R., Tilche A. Anaerobic digestion of high strength molasses wastewaterusing hybrid anaerobic baffled reactor [J]. Water Research.1991,25(7):785-790.
    [80]郭静,郑培福,杨秀文,等.厌氧折流板反应器处理高浓度有机废水的研究[J].中国给水排水.1993,9(5):4-8.
    [81] Barber W. P. Use of the anaerobic baffled reactor (ABR) for wastewater treatment:a review [J]. Water Research,1999,33(7):1559-1578.
    [82] Grobicki A., Stuckey D. C. Hydrodynamic characteristics of the anaerobic baffledreactor [J]. Water Research,1992,26(3):371-378.
    [83] Vymazal J, Brix H, Cooper P F. Removal Mechanisms and Types of ConstructedWetlands [M]. Leiden: Backhuys Publishers,1998:35,41-43.
    [84] Barber W. P., Stuckey, D. C. The use of the anaerobic baffled reactor (ABR) forwastewater treatment: a review [J]. Water Res.,1999,33(7):1559-1578.
    [85]张宝军,白晓龙,冯启言.改良ABR预处理生活污水的启动研究[J].给水排水,2007,33(11):167-169.
    [86]庄金鹏,韩相奎,叶长兵,等.低温下悬浮物质对ABR处理城市污水的影响[J].中国资源综合利用,2008,126(4):4-6.
    [87] Dama P, Bell J, Faxon KM, et al. Pilot-scale study of an anaerobic baffled reactorfor the treatment of domestic wastewater [J]. Water Science Technology,2002,26(9):263-270.
    [88] Manariotis ID, Grigoropoulos SG. Low-strength wastewater treatment using ananaerobic baffled reactor [J]. Water Environment Research,2002,74(2):170-176.
    [89] Wang, J. L., Zhan, X.M., Feng Y. C.. Performance and characteristics of ananaerobic baffled reactor [J]. Bioresource Technol,2004,93(2):205-208.
    [90]邵丕红,姚力,韩相奎,等.异波折板厌氧反应器处理城市污水的中试研究[J].中国给排水,2008,24(11):97-100.
    [91]张寿通,郭海燕,费庆志,等.斜板式ABR水力特性及生活污水的处理[J].环境化学.2009,28(4):492-496.
    [92] Chynoweth D P, Srivastra V J, Research study to determine the feasibility ofproducing methane gas from sea kelp [R]. Annual Report for General ElectricCompany, IGT Project30502,1980.
    [93]喻学敏,白永刚,刘伟京,等. ABR反应器预处理综合印染废水研究[J].环境工程学报,2009,3(6):981-984.
    [94]崔玉波,朱宝英.低温下ABR酸化反应器的运行效果及微生物活性研究[J].环境工程学报2007,1(2):49-53.
    [95]李清雪,刘书燕,李龙和等.低温下厌氧折流板反应器处理生活污水的效能研究[J].中国给水排水2008,24(23):72-74.
    [96]徐金兰,等.厌氧折流板反应器(ABR)的工艺特征与处理性能[J].西安建筑科技大学学报,2002,12(4):362-365.
    [97] Orozco A. Anaerobic wastewater treatment using an open plug flow baffledreactor at low temperature [J].5th International Symposium on AnaerobicDigestion, Italy:1988,759-762.
    [98] Polprasert C, Kemmadamrong P, Tran F T. Anaerobic baffle reactor (ABR)process for treating a slaughterhouse wastewater [J]. Environmental Technology,1992,13(9):857-865.
    [99]刘衍君.人工湿地在污水处理中的应用及其展望[J].云南环境科学,2003,22(4):42-45.
    [100]王世和.人工湿地污水处理理论与技术[M].北京:科学出版社,2007:95-96.
    [101]冯华军.分散式生活污水处理工艺开发及机理研究[D].浙江大学,2008.
    [102]刘芳.芦苇湿地对污水中氮磷的净化能力研究[D].河北农业大学,2004.
    [103]李今.人工湿地与城市水体中生物膜特性及功能研究[D].中国科学院研究生院(水生生物研究所),2005.
    [104]叶建锋.垂直潜流人工湿地中污染物去除机理研究[D].同济大学,2007
    [105]于少鹏,王海霞,万忠娟,等.人工湿地污水处理技术及其在我国发展的现状与前景[J].地理科学进展,2004,23(1):22-27.
    [106]蔡佩英,马祥庆.人工湿地污水处理技术研究进展[J].亚热带水土保持,2008,20(1):8-11.
    [107]尹军,崔玉波.人工湿地污水处理技术[M].化学工业出版社,2006.
    [108]张修峰.长江口潮滩湿地底质对水体氮、磷营养盐含量的影响[D].华东师范大学,2005.
    [109] Prigent S., Belbezeb G., Painga, J. et al. Biological characterization andtreatment performances of a compact vertical flow constructed wetland with theuse of expanded schist [J]. Ecological Engineering2013,52:12-18
    [110] Brix, H.,&Arias, C. A. The use of vertical flow constructed wetlands for on-sitetreatment of domestic wastewater: new Danish guidelines [J]. EcologicalEngineering,2005,25(5):491-500.
    [111] Gikas, G. D.,&Tsihrintzis, V. A. A small-size vertical flow constructed wetlandfor on-site treatment of household wastewater [J]. Ecological Engineering,2012,44:337-343.
    [112] Garc′a-Pe′rez A, Harrison M, Grant B, et al. Microbial analysis and chemicalcomposition of maize (Zea mays, L.) growing on a recirculating vertical flowconstructed wetland treating sewage on-site [J]. Biosystems Engineering,2013,114:351-356
    [113]崔理华,卢少勇.污水处理的人工湿地构建技术[M].北京:化学工业出版社,2009:42-43.
    [114] Kovacic DA, David MB, Gentry LE, Starks KM, Cooke RA. Effectiveness ofConstructed Wetlands in Reducing Nitrogen and Phosphorus Export fromAgricultural Tile Drainage [J]. J Environ Qual2000,29:1262-1274.
    [115] Kohler EA, Poole VL, Reicher ZJ, et al. Nutrient, metal and pesticide removalduring storm and nonstorm events by a constructed wetland on an urban golfcourse [J]. Ecol Eng,200423:285-298
    [116] Lee C, Fletcher TD, Sun G Nitrogen removal in constructed wetland systems [J].Eng Life Sci,2009,9:11-22.
    [117] Drizo A, Comeau Y, Forget C, Chapuis RP Phosphorus saturation potential: aparameter for estimating the longevity of constructed wetland systems [J].Environ Sci Technol2002,36:4642-4648.
    [118] Coleman, J., Hench, K., Garbutt, K., Sexstone, A., Bissonnette, G., Skousen, J.Treatment of domestic wastewater by three plant species in constructed wetlands.[J] Water Air Soil Pollut.2001,128,283-295.
    [119] Lin, Y.-F., Jing, S.-R., Lee, D.-Y., Wang, T.-W.,. Nutrient removal fromaquaculture wastewater using a constructed wetlands system. Aquaculture [J].2002,209,169-184.
    [120]李军幸,张克强,张洪生,厌氧/人工湿地组合系统处理农村生活污水的效能[J].中国给水排水,2011,27(23):18-21.
    [121] Weavera M A, Zablotowicza R M, Krutza L. J. Microbial and vegetative changesassociated with development of a constructed wetland. Ecological Indicators,[J],2012,13:37-45
    [122] Brix, H., Arias, C.A. The use of vertical flow constructed wetland for on-sitetreatment of domestic wastewater: New Danish guidelines [J]. Ecol. Eng.2005,25(1):491–500
    [123] Paing, J., Voisin, J. Vertical flow constructed wetlands for municipal wastewaterand septage treatment in French rural area [J]. Water Sci. Technol.2005,51(9):145–155.
    [124]李清雪,杜秀省,王冬云.厌氧折流板-垂直潜流人工湿地处理农村生活污水的研究[J],河北师范大学学报自然科学版,2012,36,3:281-285.
    [125]李改翠, ABR一垂直潜流人工湿地处理农村生活污水的研究[D],河北工程大学,2011.
    [126]付融冰,杨海真,顾国维,等.潜流人工湿地对农村生活污水氮去除的研究[J].水处理技术,2006,32(1):18-20.
    [127] Salomo, C., Münch, C., R ske, I,. Evaluation of the metabolic diversity ofmicrobial communities in four different filter layers of a constructed wetland withvertical flow by biologTManalysis [J]. Water Res.2009,43(18),4569-4578.
    [128] Ye, J, Wang, L, Li D, et al. Vertical oxygen distribution trend and oxygen sourceanalysis for vertical-flow constructed wetlands treating domestic wastewater [J].Ecol. Eng.2012,41,8-12.
    [129]赵大传,杜家伟. ABR-人工湿地组合工艺处理生活污水[J].安徽大学学报(自然科学版),2011,35(1):97-101.
    [130]谷先坤,王国祥,刘波,等.复合垂直流人工湿地净化污水厂尾水的研究[J].中国给水排水,2011,27(3):8-11.
    [131]于水利,修春海,杨月杰.人工湿地基质对微污染原水中有机物的去除效果[J].中国给水排水,2011,27(3):56-58.
    [132]彭永臻,马斌.低C/N比条件下高效生物脱氮策略分析[J].环境科学学报,2009,29(02):225-230.
    [133]高大文,彭永臻,王淑莹.控制pH实现短程硝化反硝化生物脱氮技术[J].哈尔滨工业大学学报,2005,37(12):1664-1666.
    [134]张树德,曹国凭,张杰,等.废水生物脱氮新技术及问题[J].河北理工学院学报,2006,27(1):145-150.
    [135]胡宝兰,郑平,冯孝善.新型生物脱氮技术的工艺研究[J].应用与环境生物学报,1999,5(Suppl):68-73.
    [136]袁林江,王志盈,彭党聪,等.生物流化床内亚硝酸积累试验[J].中国环境科学,2000,20(3):207-210.
    [137]袁林江,彭党脱,王志盈.短程硝化-反硝化生物脱氮[J].中国给水排水,2000,16(2):29-31.
    [138] Kuenen J. G., Robretson L. A., Combined nitrification-denitrification processes[J]. FEMS Microbiology Reviews,1994,15(2-3):109-117.
    [139] Mulder A., van de Graafb A.A., Robertsonb L.A., Anaerobic ammoniumoxidation discovered in a denitrifying fluidized bed reactor [J]. FEMSMicrobiology Ecology,1995,16(3):177-183.
    [140] Nachaiyasit S, Stuckey D.C. The effect of shock loads on the performance of ananaerobic baffled reactor (ABR).1. Step changes in feed concentration at constantretention time [J]. Water Research,1997,31(11):2737-2746.
    [141] Nachaiyasit S, Stuckey D C. The effect of shock loads on the performance of ananaerobic baffled reactor (ABR).2. Step and transient hydraulic shocks atconstant feed strength [J]. Water Research,1997,31(11):2747-2754.
    [142] Barber W.P., Stuckey D.C. Nitrogen removal in a modified anaerobic baffledreactor (ABR):1, denitrification [J]. Water Research,2000,34(9):2413-2422.
    [143] Bodik I, Kratochvil K, Gasparikova E, et al. Nitrogen removal in an anaerobicbaffled filter reactor with aerobic post-treatment [J]. Bioresource Technology,2003,86(1):79-84.
    [144]任南琪,马放.污染控制微生物学[M].哈尔滨工业大学出版社,2002,334-336.
    [145] Nachaiyasit S.The effect of low temperature on the performance of an anaerobicbaffled reactor(ABR)[J].Jour of Chem Technol Biotechnol,1997,69(2):276-284.
    [146] Lee D.S., Jeon C.O., Park J.M. Biological nitrogen removal with enhancedphosphate uptake in a sequencing batch reactorusing single sludge system [J].Water Research,2001,35(16):3968-3976.
    [147] Vlekke G.J.F.M., Comeau Y, Oldham W.K. Biological phosphate removal fromwastewater with oxygen or nitrate in sequencing batch reactors [J]. EnvironmentalTechnology,1988,9(8):791-796.
    [148]郭海娟,马放,沈耀良. C/N比对反硝化除磷效果的影响[J].环境科学学报,2005,25(3):367-371.
    [149] Nachaiyasit S, Stuckey D.C. Effect of low temperatures on the performance ofan anaerobic baffled reactor (ABR)[J]. Journal of Chemical Technology andBiotechnology,1997,69(2):276-284.
    [150] Wang, J. L., Zhan, X.M., Feng Y. C.. Performance and characteristics of ananaerobic baffled reactor [J]. Bioresource Technol,2004,93(2):205-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700