用户名: 密码: 验证码:
查干湖低温期内源磷的释放及其对富营养化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富营养化已经成为全球性的生态危机,它不仅严重破坏水环境生态平衡,而且还严重威胁到人类的生存与发展。随着各国对富营养化的重视及相关治理,在外部污染源逐步受到控制和消除的情况下,浅水湖泊沉积物中的磷代替外源磷素污染物,成为引起富营养化的内源污染源。沉积物中磷的不仅在常温期或高温期释放,而且在低温期也会持续释放,这成为北方湖泊富营养化发生的重要诱因。然而,对于低温期北方湖泊的内源磷在沉积物-水界面间迁移转化规律以及影响各形态磷相互转变的地球化学作用,尤其是化学环境与微生物的作用,目前仍缺乏研究。本文以吉林省西部典型的北方浅水湖泊——查干湖为研究对象,以低温期水化学特征和氮、磷营养盐分布规律为基础,采用欧盟推荐的SMT分析方法,调查与分析了查干湖沉积物中不同形态磷的时空变化特征。在实验室内采用实验模拟的方式,深入分析了沉积物-水两相间磷的迁移转化机制以及生物、物理、化学等因素在该过程中所起到的作用。结合叶绿素a和藻类在查干湖水体中的分布规律,探讨了低温期沉积物中磷的释放对我国北方浅水湖泊富营养化的影响,并利用解析动力学模型对释放过程进行描述。同时基于查干湖水质指标,采用综合营养指数法(TLI)对查干湖低温期富营养化程度进行了评价。本文的研究成果可为控制北方同类型湖泊内源磷元素的释放以及低温期富营养化治理提供理论支持。
     调查并测定分析了查干湖低温期水化学特征以及不同形态的氮、磷在水体中的时空分布规律。低温时期查干湖pH介于9.35~9.40之间,属于偏碱性湖泊,其水质具有高浊度、高硬度以及高矿化度的特点。水中阴离子以HCO_3~-为主,阳离子以Na~+为主,主要阴、阳离子的含量浓度为:Na~+>Mg~(2+)>Ca~(2+)>K~+,HCO_3~-> Cl~->CO_3~(2-)>SO_4~(2-),其水化学类型为重碳酸盐钠组I型。低温期查干湖中各种离子浓度均高于常温期,并且在补给水、地质条件等因素影响下,呈现出东南高、西北低分布规律。低温期查干湖周边农业活动停止,在无外源氮、磷输入的情况下,查干湖水中各形态的氮、磷仍具有较高的浓度,说明沉积物已经成为查干湖污染的内源。氨氮(NH_4~+-N)是氮的主要存在形态,呈现出南部高北部低,湖中部高岸边低的分布特征;溶解性总磷(TDP)是磷的主要存在形态,呈现出南部低北部高的分布特征。虽然低温期查干湖的总氮(TN)和总磷(TP)平均浓度已超过富营养化发生的临界浓度,但是低温抑制藻类增殖、高浊度减弱光照强度以及能够被藻类直接利用的正磷酸盐浓度较低等因素共同影响,查干湖并没有出现藻类异常增殖的情况。从时间上来看, NH_4~+-N和亚硝态氮(NO2--N)高浓度区域面积在逐年缩小;TP和TDP浓度整体呈现降低的趋势。
     在总结和分析抓斗式和重力柱式沉积物采样器优缺点的基础上,结合采样过程中所遇到的实际问题,研发了一款具有自主知识产权的便携式沉积物采样器,并获得国家发明专利。在实际使用过程中,该采集器能够采集不同质地的沉积物样品,提高了采样效率。在减少研究人员工作量和工作强度的同时,还能最大程度的保持沉积物原始氧化还原状态,并能够避免沉积物样品在向存储容器转移时受到污染或破坏,提高了沉积样品采集的精度与科学性。
     明确了查干湖沉积物中各形态磷的空间分布情况。采用SMT分级方法对查干湖不同深度的沉积物中各形态磷进行了分析与研究,结果发现沉积物中磷以无机磷(IP)为主;而钙结合磷(Ca-P)是IP中的主要形态。沉积物中的Ca-P主要来自查干湖周边高钙土。高钙土中磷酸盐在环境条件改变情况下,逐渐转化成水溶性磷酸钙,随地表径流进入查干湖后沉淀,最终在沉积物中形成Ca-P,其含量与TP的含量呈现极显著相关。从水平方向来看,查干湖沉积物中各形态磷浓度具有西南高的分布特点;从垂向来看,呈现从上向下增加的趋势,即各形态磷的含量随深度增加而增加,这说明近年来外源磷污染的输入量在逐渐减少。
     分析了查干湖低温期藻类分布情况以及影响藻种组成的因素。低温期查干湖主要藻种为蓝藻门、绿藻门、硅藻门和裸藻门。由于蓝藻具有偏好中碱性水体、较高的细胞贮磷能力等特点,使蓝藻代替硅藻和绿藻成为低温期的优势藻种并且成为查干湖富营养化的潜在威胁。较低水温、光照条件、水生植物之间的竞争以及水生动物对其捕食等原因,抑制蓝藻等藻类过度繁殖,成为富营养化的限制条件,遏制了富营养化发生的风险。通过对藻类与氮素和磷素的相关关系进行分析,结果表明低温期查干湖藻类分布和浓度与氮素无关而与磷素有显著相关性,这说明查干湖是磷控制性湖泊。
     揭示了低温条件下查干湖内源磷迁移过程以及影响因素。在有无光照、有无溶解氧的情况下,低温期沉积物中的磷均仍能够持续释放,使上覆水中磷素的含量持续增加。由于Ca-P在沉积物中含量最多,因此解析出来的磷主要是Ca-P且释放出的数量最多。在厌氧有光照的条件下,沉积物中各形态磷的释放速率和释放量最大,是易引发富营养化的环境条件。在光照条件下,上覆水中的叶绿素a与磷素浓度具有明显的相关性。藻类的大量增殖会减少水体中磷的含量,进而加快沉积物磷的释放;沉积物磷的释放又为藻类增殖提供了物质基础,两者之间相互促进。不同形态的磷的释放量与释放速率受到pH、光照、藻类、溶解氧等因素的影响而不同。控制沉积物中磷的释放是抑制查干湖富营养化的关键。
     初步探讨了低温环境下沉积物磷的解析动力学以及查干湖富营养化程度。利用水静态模拟的方法,在一定解析时间和水土比条件下,研究沉积物中磷解析的
     过程。根据实验数据,得出解析动力学模型P_d=0.017P_0t~(0.375)W~(1.493),该模型可以用以描述低温期查干湖沉积物中磷的解析过程。采用综合营养指数法(TLI)对查干湖富营养的程度进行综合评价,结果表明查干湖的营养级别从2009年的贫营养(TLI=28.56)转变成2010年(TLI=38.25)和2011年(TLI=30.19)的中等营养,说明查干湖存在发生富营养化的风险。
Eutrophication has developed into global ecological crisis, it is harmful for theecological balance of aquatic and a serious threat to human survival and development.The external sources of pollution were controlled and eliminated gradually.Phosphorus in the shallow lake sediments become internal pollution sources foreutrophication, instead of external sources of pollution. Phosphorus in sedimentreleases not only at nomal temperature and high temperature period, but also at lowtemperature period. It has became an important factor for eutrophication in the lakesof north of China. However, the geochemical processes of internal phosphorusmigration and transformation at the sediment-water interface are still lack, especiallythe knowledge of role of chemical environment and the microorganisms on theprocess at low temperature period. A typical northern shallow lake–Chagan Lake inthe west of Jilin Province was chosen as the study object. Based on the hydrochemicalcharacteristics of Chagan Lake and the distribution characteristics of N and P at lowtemperatures period, the temporal and spatial variation in forms of P fractions in thesediment were investigated and analysed, with SMT analytical methods recommendedby the EU. The mechanisms of P migration and transformation and process at thesediment-water interface was analysed using the aquatic microcosms system, alsothe impact of the biological effects, physical and chemical effects. Effects of P releasein sediment in notrhtern shallow lakes to the eutrophication were studied, based on thechlorophyll-a and algae in the distribution of Chagan Lake at the low temperature.The process of P released from sediment can be described by a desorption-kineticsmodel. It built a trophic level index (TLI) to evaluate the level of Chagan Lakeeutrophication. The results of this study provided theoretical and technical support forthe sediment nutrient control and eutrophication control in northern lakes.
     The hydrochemical characteristics of Chagan Lake as well as the temporal andspatial distribution of different forms of N and P were investigated in low-temperature.The pH ranged from9.35to9.40and the Chagan Lake’s characteristics was highturbidity, high hardness and high salinity. HCO_3~-and Na~+were main anion and cation,ion content characteristic was Na~+>Mg~(2+)>Ca~(2+)>K~+,HCO_3~-> Cl~-> CO_3~(2-)>SO_4~(2-). Thehydrochemicaln of Chagan Lake is Bicarbonate-Na-I type. The concentration ofvarious ions at low temperature was higher than the nomal temperature. The distribution of ions concentration was northwest lower than southeast in lake becauseof the supply of water, geological conditions and other factors. In the case ofagricultural activities stopped surrounding Chagan Lake at low temperature, noexternal phosphorus input Chagan lake. The forms of N and P had a highconcentration in water, because of internal pollution in sediments of Chagan Lake.NH_4~+-N was the primary form of nitrogen and TDP was the primary form ofphosphorus. TN and TP has more than average levels of eutrophication in the criticalconcentration, but thanks to the low temperature, the high turbidity and the lowconcentration of PO43-, which were not conducive to the propagation of algae, andChagan Lake hasn’t appear the bloom of algae. The area of high concentrations ofNH_4~+-N and NO2-N were shrinking year by year. The concentration of TP and TDPalso showed a decreasing trend.
     On the basis of the advantages and disadvantages of the existingsediment-collecting distributors, and the practical problems encountered in thesampling process, a portable sediment sampler with independent intellectual propertywas invented. The collector can facilitate the collection of sediment samples ofdifferent textures, greatly improves the sampling efficiency. Significantly reduce theworkload and intensity of work of researchers at the same time, improve the accuracyof the sample collection and keep the sediment sampling original state. It is able toavoid sample polluted and broken when them are transfered to a storage container.
     The distribution of various forms of P in the sediment surface and bottom ofChagan Lake was investigated by SMT method. The result showed that the IP was themain form of P in sediment and the Ca-P was the main form of IP. The phosphate inthe surrounding high calcium soil of Chagan Lake gradually transformed into awater-soluble calcium phosphate as the environmental conditions changed, withsurface runoff into Chagan Lake and re-settlement. The re-settlement Ca-P insediment was highly significant correlation of TP. The high concentration area of P inthe sediment was in southwest. The various forms of P content increased withincreasing depth in sediment in vertical direction. It showed that the external input ofP pollution gradually reduced in recent years.
     The distribution of algae in Chagan Lake in low temperature and the factors thataffect algal species composition were studied. The Chagan Lake algae species wereCyanophyta, Chlorophyta, Bacillariophyta and Euglenophyta in low temperature.Blue-green algae prefer alkaline water and high cell storage ability of phosphorus, which are conducive to blue-green algae instead of diatoms and green algae becomethe dominant at low temperature period. It became a potential threat to eutrophicationin Chagan Lake. But the lower water temperature, lighting conditions, aquatic plantsand aquatic animals preying and other reasons inhibited excessive propagation ofalgae such as cyanobacteria and restrictions risk of eutrophication. By correlationanalysis of algae with N, P, low temperature of Chagan Lake algae distribution andconcentration, the result showed algea had no ralitionship with N, but significantcorrelation P. Chagan Lake is phosphorus controlling lake.
     The mechanisms and the influencing factors of P migration and transformation inChagan Lake sediment at low temperature were studied. The P in sediment was stillable to sustained releasing in the presence or absence of illumination and DO, and itmade the content of the overlying water TP sustained increase. Because of Ca-Pcontent in the sediments was most, desorbed phosphorus was most from Ca-P. It wasanaerobic and non-illumination conditions that easily lead to eutrophication, becauseof the release rate of various forms of P in the sediments greatly under thisenvironmental conditions. The chlorophyll-a and P had a significant correlation withillumination. The proliferation of algae reduce the P content in water, and thus speedup the release of P in sediment, meanwhile P release is material basis for algaeproliferation. The raito and the quantity of P release was effected by DO, pH,illumination. The control of sediment phosphorus release is key condition to inhibiteeutrophication in Chagan Lake.
     P desorption kinetics of Chagan Lake sediment and eutrophication were analysed.Using water static simulation method in the laboratory to study the desorption kineticswith the content of phosphorus, desorption time (t) and water/soil ratios (W) at lowtemperature. A simple desorption kinetics model could be created, as=0.01700.3751.493, which be used to describe the process of phosphorusdesorption in Chagan Lake sediment at low temperature. It built a trophic levelindex(TLI) model to assess the eutrophication, the results showed that: from2009(TLI=28.56)to2011(TLI=30.19), the nutritional level of Chagan Lake isoligotrophic into moderate eutrophication. The risks of eutrophication in Chagan Lakeexist.
引文
[1]李子成,邓义祥,郑丙辉.中国湖库营养状态现状调查分析[J].环境科学与技术.2012(S1):209-213.
    [2] Paerlh. W, Fultonr. S, Moisander P H, et al. Harmful freshwater algal blooms,with an emphasis oneyanobaeterlal[J]. Science World.2001,1:76-113.
    [3] Sundareshwar P V, Morrls J T, Koepfler. Phosphorus limitation of coastal ecosystem proeesses[J].Science.2003,299:536-565.
    [4] Conley D J, Paerl H W, Howarth R W, et al. Controlling eutrophication: Nitrogen andphosphorus[J]. Science.2009,323:1014-1015.
    [5] Smith V H. Low nitrogen to phosphorus ratios favor dominance of blue-green dominance inlakes[J]. Freshwat. Biol.1983,37:307-323.
    [6] Smith V H. The nitrogen and phosphorus dependence of algal blomass in lakes: An empirical andtheoretical analysis[J]. Limnology and Oceanography.1982,27:1101-1112.
    [7] Smith V H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lakephytoplankton[J]. Science.1983,221:669-671.
    [8] Dorichra N S. Availbaility of PhosPhours to algaer from eroded soil fractions[J]. Eeosystems andEnviromnent.1984,11:253-264.
    [9] Gibson C E. Nutrient Limitation[J]. Journal of water Pollution Control Federation.1971,43:2436-2440.
    [10]金相灿.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1994.
    [11] Sondergaard M, Wlndolf J, Jeppesen E. Phosphorus fraetions and profiles in the sediment ofshallow Danish lakes as related to phosphorus load, sediment composition and lake chemistry[J].Water Researeh.1996,30:992-1002.
    [12]李兴,杨乔媚,勾芒芒.内蒙古乌梁素海水质时空分布特征[J].生态环境学报.2011,20(Z2):1301-1306.
    [13]董蓓蓓,马淑花,曹宏斌,等.乌梁素海流域污染现状分析及防治对策[J].安徽农业科学.2011,39(17):10402-10405.
    [14]马文超,席北斗,于会彬,等.乌梁素海水质变化与分析[J].节水灌溉.2010,7:19-23.
    [15]孙惠民,何江,吕昌伟,等.乌梁素海氮污染及其空间分布格局[J].地理研究.2006,25(6):1003-1012.
    [16]乌云,朝伦巴根,李畅游,等.乌梁素海表层沉积物营养元素及重金属空间分布特征[J].干旱区资源与环境.2011,25(4):143-148.
    [17]乌云,朝伦巴根,李畅游,等.乌梁素海表层沉积物与上覆水间氮磷迁移规律分析[J].中国农村水利水电.2011(8):34-38.
    [18]梁文,张生.乌梁素海表层底泥污染特征分析[J].节水灌溉.2011,4:35-39.
    [19]吕昌伟,何江,孙惠民,等.乌梁素海沉积物中磷的形态分布特征[J].农业环境科学学报.2007,26(3):878-885.
    [20]吕昌伟,何江,高兴东,等.岱海表层沉积物中氮素的水平分布及环境意义[J].农业环境科学学报.2007,26(6):2305-2308.
    [21]何江,孙英,吕昌伟,等.岱海表层沉积物中内源磷的释放[J].生态学报.2010,30(2):389-398.
    [22]孙英,何江,吕昌伟,等.岱海表层沉积物中影响氨氮释放的模拟研究[J].农业环境科学学报.2009,28(7):1464-1468.
    [23]杜桂森,孟繁艳,李学东,等.密云水库水质现状及发展趋势[J].环境科学.1999,20(2):111-113.
    [24]刘晓端,葛晓立,徐清,等.密云水库内湖富营养化现状分析[J].湖泊科学.2002,12(4):331-336.
    [25]徐清,杨天行,刘晓端,等.密云水库总磷的富营养化分析与预测[J].吉林大学学报(地球科学版).2003,33(3):315-318.
    [26]徐清,陈广俊,彭泽洲,等.密云水库水体总磷的分布及其影响因素分析[J].吉林地质.2003,22(4):41-46.
    [27]刘浏,刘晓端,徐清,等.密云水库沉积物中磷的形态和分布特征[J].岩矿测试.2003,22(2):81-85.
    [28]刘晓端,徐清,刘浏,等.密云水库沉积物-水界面磷的地球化学作用[J].岩矿测试.2004,23(4):246-250.
    [29]徐清,刘晓端,刘浏,等.密云水库沉积物中磷释放的环境因子影响实验[J].岩矿测试.2005,24(1):19-22.
    [30]梁秀娟,肖长来,杨天行,等.密云水库中氮分布及迁移影响因素研究[J].中国科学(D辑:地球科学).2005,35(S1):272-280.
    [31]徐清,刘晓端,王辉锋,等.密云水库沉积物内源磷负荷的研究[J].中国科学(D辑:地球科学).2005,35(S1):281-287.
    [32]王静,梁秀娟,孟晓路,等.密云水库中总磷迁移转化机制的分析[J].世界地质.2006,25(1):76-80.
    [33]赵兴忠,王朋,葛孝新.长春市石头口门水库水质演变及对策[J].地质与勘探.2003,39(6):61-63.
    [34]徐京萍,张柏,蔺枉.光谱数据反演吉林石头口门水库悬浮物含量和透明度[J].湖泊科学.2007,19(3):267-274.
    [35]徐锐贤,王才,毕树本.长春南湖富营养化与生态治理[M].长春:吉林科学技术出版社,1999.
    [36]卢文喜,祝廷成.应用人工神经网络评价长春南湖水的营养状态[J].地理科学.1999,19(5):462-465.
    [37]孙胜龙,丁蕴铮.长春南湖底泥磷、氮和重金属元素环境地球化学行为研究[J].环境科学研究.1999,12(4):40-44.
    [38]赵丹石,宋福强,王保忠,等.长春市南湖水质状况分析[J].水资源保护.2006,22(3):75-77.
    [39]代雪静,田卫.查干湖水质污染分析及控制途径[J].干旱区资源与环境.2011,25(8):179-184.
    [40]董建伟,沈楠.查干湖水质与营养化的特征和趋势[C].吉林:2007.
    [41]沈楠,董建伟.吉林查干湖水体演化对维护湖泊健康的若干启示[C].中国江苏苏州:2007.
    [42]苏保健,董建伟.查干湖引松渠道补给水量对年内水质参数的影响[J].吉林水利.2009,4:7-10.
    [43]孙晓静,王志春,赵长巍,等.盐碱地农田排水对查干湖承泄区的水质影响评价[J].农业工程学报.2011,27(9):214-219.
    [44]王国平,张玉霞,高峰.吉林省西部地区重要湿地及其生态环境功能[J].水土保持学报.2001,15(S2):121-124.
    [45]朱显梅.吉林省西部水田开发造成的地表水污染问题浅析[J].中国科技信息.2011,20:40.
    [46]申晋利,张军龙.基于面向对象分类方法的查干湖地区生态环境变化遥感分析[J].地球科学与环境学报.2009,31(2):212-215.
    [47]包文军,董建伟.查干湖水体溶解氧浓度的变化趋势及影响因素分析[J].吉林水利.2011,348(5):1-4.
    [48]董建伟,赵爽.吉林查干湖总氮变化的特点及调控对策[J].吉林水利.2011,351(8):1-5.
    [49]段洪涛,于磊,张柏,等.查干湖富营养化状况高光谱遥感评价研究[J].环境科学学报.2006,26(7):1219-1226.
    [50] Ruban V, Brigault S, Demare D. An investigation of the origin and mobility of phosphorus infreshwater sediments from Bort-Les-Orgues Reservoir, France[J]. Journal of EnvironmentalMonitoring.1999,1:403-407.
    [51] A V F, Lavilla I, Bendicho C. Evaluation of distribution, mobility and binding behavior of heavymetals in surficial seidiments of Louro River (Galicia, Spain) using chemometric analysis: a casestudy[J]. Science of the Total Environment.2003,330:115-129.
    [52] Petterson K. Mechanisms for internal loading of phosphorus in lakes[J]. Hydrobiologia.1998,373/374:21-25.
    [53] Jensen H S, Andersen F O. Importance of temperature, nitrate, and pH for phospate release fromaerobic sediments of four shallow, eutrophic lakes[J]. Limnology and Oceanography.1992,37(3):577-589.
    [54] Emil R. Potentially Modile Phosphorus in Lake ERKEN Sediment[J]. Water Research.2000,36(3):2037-2048.
    [55]金相灿,王圣瑞,庞燕.太湖沉积物磷形态及pH值对磷释放的影响[J].中国环境科学.2004,6:68-72.
    [56] Nur R, Bates M H. Effects of pH on the aluminum, iron and calcium-phosphate factions oflake-sediments[J]. Water Research.1979,13:813-815.
    [57] Nürnberg G K. Prediction of phosphorus release rates from total and reductant2soluble phosphorusin anoxic lake sediments[J]. Canadian Journal of Fisheries and A quatic Sciences.1988,45:453-462.
    [58]朱广伟,秦伯强,高光.风浪扰动引起大型浅水湖泊内源磷暴发性释放的直接证据[J].科学通报.2005,50(1):66-71.
    [59] Miltenburg J C, Golterman H L. The energy of the adsorption of o-phosphate onto ferrichydroxide[J]. Hydrobiologia.1998,364:93-97.
    [60] Jin X C, Wang S R, Pang Y, et al. PhosPhorus fractions and the effect of pH on the phosphorusrelease of the sediments from different trophic areas in Taihu Lake[J]. China EnvironmentalPollution.2006,139(2):288-295.
    [61]张智,刘亚丽,段秀举.湖泊底泥释磷模型及其影响显著因素试验研究[J].农业环境科学学报.2007,1:45-50.
    [62] Andersen F O, Ring P. Comparison of phsophorus release from littoral and profundal sediments ina shallow, eutrophic lake[J]. Hydrobiologia.1999,408/409:175-182.
    [63] Sondergaard M, Kristensen P, Jeppesen E. Phosphorus release from resuspended sediment in theshallow and wind-exposed Lake Arreso Denmark[J]. Hydrobiologia.1992,228(1):91-99.
    [64]姚扬,金相灿,姜霞,等.光照对湖泊沉积物磷释放及磷形态变化的影响研究[J].环境科学研究.2004, S1:30-33.
    [65]徐锐贤,丁蕴铮,王显九.南湖富营养化及其治理途径[M].吉林长春:吉林出版社.
    [66]谢平.浅水湖泊内源磷负荷季节变化的生物驱动机制[J].中国科学(D辑:地球科学).2005,S2:11-23.
    [67] Watts C J. Seasonal phosphorus release from exposed, re-inundated littoral sediments of twoAustralian reservoirs[J]. Hydrobiologia.2000,431(1):175-182.
    [68] Burley K L, Prepas E E, Chambers P A. Phosphorus release from sediments in hardwatereutrophic lakes: the effects of redox-sensitive and insensitive chemical treatments[J]. FreshwaterBiology.2001,46(8):1061-1074.
    [69]薛杨,王而力,邱素芬,等.沉积物中磷的吸附和释放研究进展[J].辽宁工程技术大学学报(自然科学版).2009, S2:146-148.
    [70]葛继稳,蔡庆华,唐涛.淡水水体沉积物磷的环境生态效应研究进展及建议[J].地质科技情报.2009,3:113-119.
    [71]杨逢乐,吴文卫,陈建中,等.滇池沉积物中磷的释放行为研究[J].环境科学与技术.2009,11:48-52.
    [72]姜霞,王琦,金相灿,等.光照与通气方式对蓝、绿藻竞争生长和磷的水-沉积物界面过程的影响[J].环境科学学报.2008,28(1):31-36.
    [73]孙淑娟,黄岁.海河沉积物中磷释放的模拟研究[J].环境科学研究.2008,4:126-131.
    [74]袁和忠,沈吉,刘恩峰,等.模拟水体pH控制条件下太湖梅梁湾沉积物中磷的释放特征[J].湖泊科学.2009,5:663-668.
    [75]黄廷林,柴蓓蓓,邱二生,等.水体-沉积物多相界面磷循环转化微生物作用实验研究[J].应用基础与工程科学学报.2010,1:61-70.
    [76]汪家权,孙亚敏,钱家忠,等.巢湖底泥磷的释放模拟实验研究[J].环境科学学报.2002,6:738-742.
    [77]龚春生,姚琪,范成新,等.城市浅水型湖泊底泥释磷的通量估算——以南京玄武湖为例[J].湖泊科学.2006,2:179-183.
    [78]刘书宇,马放,张建祺.景观水体富营养化模拟过程中藻类演替及多样性指数研究[J].环境科学学报.2007,2:337-341.
    [79]王云中,杨成建,陈兴都,等.不同水动力条件对景观水体富营养化模拟过程中藻类演替的影响[J].环境监测管理与技术.2011,2:23-27.
    [80]吕晓磊,马放,王立,等.水源地水体富营养化过程微宇宙模拟试验研究[J].环境科学与技术.2010, S2:22-27.
    [81] Dokuhil M T, Teubner K. Cyanobacteria dominace in lake[J]. Hydrobiologia.2000,438:1-12.
    [82] W C. Cyanobacteria secondary metabolites the cyanotoxins[J]. J.Appl.Bacterial.1999,72:445-459.
    [83] Easthope M P, Howard A. Simulation cyanobacteiral growth in a low land reservoir[J].Sci.Tot.Environ.1999,241:17-25.
    [84] Lyngby J E, Mortensen S M. Assessment of nutrient availability and limitation usingmacroalgae[J]. Journal of Aquatic Ecosystem Stress and Recovery (Formerly Journal of AquaticEcosystem Health).1994,3(1):27.
    [85] Dorich R A, Nelson D W. Availability of phosphorus to algae from eroded soil fractions[J].Agriculture Ecosystems and Environment.1984,11:253-264.
    [86] Pennak R W. Field and experimental winter limnology of three Colorado mountain lakes[J].Ecology.1968,49(3):505-520.
    [87] Vicent W F. Production strategies in Antarctic Inland Waters: Phytoplankton eco-physiology in apermanently ice-covered lake[J]. Ecology.1981,62(5):1215-1224.
    [88] Staats N, Deckere E, Kornman B. Observations on suspended particulate matter(SPM) andmicroalgae in the Dollard Estuary, the Netherlands: Importance of late winter ice cover of theintertidal flats[J]. Estuarine, Coastal and Shelf Science.2001,53:297-306.
    [89]黄继国,彭祥捷,俞双,等.水体结冰期营养盐和叶绿素a的分布特征[J].吉林大学学报(理学版).2008,6:1231-1236.
    [90]黄继国,傅鑫廷,王雪松,等.湖水冰封期营养盐及浮游植物的分布特征[J].环境科学学报.2009,8:1678-1683.
    [91]王雪松.典型北方水源地藻类特征及其对自来水厂处理效率的影响研究[D].吉林大学,2009.
    [92] Giddings J M, Saxena J E. Hazard Assessment of Chemicals, Current Developments[M].2ed.New York, Academic Press Inc.,1983.
    [93] Frieda B T. Standardized aquatic microcosms[J]. Eviron. Sci. Technol.1989,9(23):1064-1067.
    [94]金洪钧,孙丽伟.模拟水生态系统及其在环境研究中的应用[J].应用生态学报.1990,4:356-363.
    [95]金洪钧,孙丽伟.实验室水生微宇宙的组建和基本生态学过程[J].南京大学学报(自然科学版).1992,1:98-106.
    [96] Karen E M. Environmental Fate of Synthetic Pyrethroids during Spray Drift and Field RunoffTreatments in Aquatic Microcosms[J]. Chemosphere.1999,39(10):1737-1769.
    [97] Gundula E, Martin K, Peter F. Comparing Field and Microcosm Experiments:a Case Study onMethano-and Methylo-trophic Bacteria in Paddy Soil[J]. Microbiology Ecology.2005,51(2):279.
    [98]吴颖慧,蔡磊明,王捷,等.莠去津对标准化水生微宇宙的影响[J].农药学学报.2008,3:343-348.
    [99]徐轶群,赵秀兰,熊慧欣.水生微宇宙中混合重金属Cd对Pb在鲫鱼体内积累的影响[J].家畜生态学报.2010,5:71-75.
    [100]董德明,李鱼,花修艺,等.自然水体中生物膜的主要化学组分与水体中相关化学物质的关系[J].高等学校化学学报.2002,8:1507-1509.
    [101]董德明,花修艺,李鱼,等.不同水体生物膜中各化学组分对铅的吸附作用研究[J].高等学校化学学报.2002,2:294-296.
    [102]尹大强,杨兴烨,孙昊,等.用微宇宙法研究稀土元素在富营养化水体中的归趋[J].环境化学.1998,3:250-254.
    [103]陈开宁,李文朝,吴庆龙,等.滇池蓝藻对沉水植物生长的影响[J].湖泊科学.2003,4:364-368.
    [104]梁恒,陈忠林,瞿芳术,等.微宇宙环境下藻类生长与理化因子回归研究[J].哈尔滨工业大学学报.2010,6:841-844.
    [105]梁恒,张剑桥,瞿芳术,等.微宇宙环境下调控初始条件的藻类预测模型[J].哈尔滨工业大学学报.2012,2:99-101.
    [106]窦鸿身,王苏民.中国湖泊志[M].北京:科学出版社,1988.
    [107]姚书春,薛滨,吕宪国,等.松嫩平原湖泊水化学特征研究[J].湿地科学.2010,8(2):169-175.
    [108]方芳.查干湖水质评价[D].吉林大学,2007.
    [109]部雪娇.吉林西部查干湖的生态地球化学评价[D].吉林大学,2009.
    [110]孙斌,邢立亭.济南市区附近地下水化学特征研究[J].中国农村水利水电.2010,11:33-37.
    [111]部雪娇,柴社立,张青伟,等.吉林西部查干湖湖泊沉积物中元素的空间变化及其环境意义[J].干旱区资源与环境.2009,5:179-184.
    [112]满秀玲,蔡体久.公别拉河流域三类湿地水化学特征研究[J].应用生态学报.2005,7:1335-1340.
    [113] Ruban V, Brigault S, Demare D. An investigation of the origin and mobility of phosphorus infreshwater sediments from Bort-Les-Orgues Reservoir, France[J]. Journal of EnvironmentalMonitoring.1999,1(4):403-407.
    [114]许春雪,袁建,王亚平,等.沉积物中磷的赋存形态及磷形态顺序提取分析方法[J].岩矿测试.2011,6:785-794.
    [115]刘冠男,董黎明,王小辉.湖泊沉积物中三种磷提取方法比较[J].岩矿测试.2011,3:276-280.
    [116] Bunemarm E K, Mernikr J S, Doolette A L. Forms of phosphorus in bacteria and fungi isolatedfrom two Australian soils[J]. Soil Biology&Biochemistry.2008,40:1908-1915.
    [117] E Rottl M C L F. Benthic algae in high altitude streams of the alps-a neglected component of theaquatic biota[J]. Hydrobioplogia.2006,562:195-216.
    [118] Morita R Y. Psychrophilic bacteria[J]. Bact. Rev.1975,39:144-167.
    [119]吉林省查干湖国家级自然保护区综合科学考察报告[R].吉林省水利厅等,2003.
    [120] Reynolds C S. The ecology of freshwater ecology[M]. Cambridge University Press,1984.
    [121] Mcqueen D J, Lean D R S. Influence of water temperature and nitrogen to phosphorus ratios onthe dominance of blue-green algae in lake St. George, Ontario[J]. Can. J. Fish. Aquat. Sci.1987,44:598-604.
    [122] Shapiro J. The role of carbon dioxide in the initiation and maintenance of blue-green dominancein lakes[J]. Freshwat. Biol.1997,37:307-323.
    [123] Yong-Hak K, Bumhan B, Youn-Kyoo C. Optimization of biological phosphorus removal fromcontaminated sediments with phosphate-solubilizing microorganisms[J]. Journal of Bioscienceand Bioengineering.2005,99(1):23-29.
    [124] Joakim A, Kasper R, Rolf D. Biogenic phosphorus in oligotrophic mountain lakesediments:difference in composition measured with NMR spectroscopy[J]. Water Research.2006,40(20):3705-3712.
    [125]金相灿,王圣瑞,姜霞.湖泊水/沉积物界面三相结构模式的初步研究[J].环境科学研究.2004,17(9):1-5.
    [126]孙晓杭,张昱,张斌亮,等.微生物作用对太湖沉积物磷释放影响的模拟实验研究[J].环境化学.2006,1:24-27.
    [127] Geider R J R J I. The role of Iron in Phytoplanktion Phtosynthesis, and the Potential forIron-Limitation of Primary Productivity in the sea[J]. Photosynthesis Research.1994,39(3):275-301.
    [128] Varsano T K D P U. Effects of Iron Deficiency on Thylakoid Membrane Structure andComposition in the Alga Dunaliella Salina[J]. Journal of Plant Nutrition.2003,26(10/11):2197-2210.
    [129] Di. T, D M. Sediment Flux Modeling[M]. New York: Wiley,2001.
    [130] Istvanovies V. Seasonal variation of phosphorus release from the sediment of shallow lakeBalaton[J]. Water Resource.1988,22:1472-1481.
    [131] Wang S R, Jin X C, Pang Y. The study of the effect of pH on phosphate sorption by differenttrophic lake sediments[J]. Journal of colloid and interface science.2005,285:448-457.
    [132] Jin X C, Wang S R, Pang Y. Phosphorus fractions and the effect of pH on the phosphorus releaseof the sediments from different trophic areas in Taihu Lake, China[J]. Environmental Pollution.2006,139:288-295.
    [133] Gomez E, Durillon C, Rofes G. Phosphate adsorp tion and release from sediments of brackishlagoons: pH, O2and loading influence[J]. Water Resource.1999,33(10):2437-2447.
    [134]冯胜,秦伯强,高光.太湖磷转化细菌与水体磷形态关系[J].湖泊科学.2008,4:428-436.
    [135] Halemejko G, Chróst R. The role of phosphatases in phosphorus mineralization duringdecomposition of lake phytoplankton blooms[J]. Arch Hydrobiol.1984,101:489-502.
    [136] Bostrom B, Anderson, Jens M, et al. Exchange of phosphorus across the sediment interface[J].Hydrobiologia.1988,170:229-244.
    [137] Balba, Monem A, Bray R A. New fields for the app lication of the Mitscherlich equation Aquantitativemeasure for the relative effectiveness of nutrients[J]. Soil Sci.1956,82:497-502.
    [138] Al-A B H, Barber S A. A soil test for phosphorus based upon fractionation of soil phosphorusCorrelation of soil phosphorus fractions with plant-available phosphorus[J]. Soil Sci Soc AmerProc.1964,28:218-221.
    [139] Kawats Ansumana,王光火.应用Elovich和Mitscherlich方程描述磷矿石在酸性土壤中的溶解过程(英文)[J].浙江大学学报(农业与生命科学版).1999,05:58-59.
    [140] Sharpley A. N.,李棠庆.土壤性质对磷解吸动力学的影响[J].土壤学进展.1985,5:24-28.
    [141] Boers P C M, Van Hese. Phosphorus release from the peaty sediments of the Loosdrecht Lakes(The Netherlands)[J]. Water Research.1988,22:355-363.
    [142] Tohru S, Hirofumi I, Etsuji D. Benthic nutrient remineralization and oxygen consumption in thecoastal area of Hiroshima Bay[J]. Water Research.1989,23(2):219-228.
    [143]范成新,张路,杨龙元,等.湖泊沉积物氮磷内源负荷模拟[J].海洋与湖沼.2002,4:370-378.
    [144]黄绍基,赵海洲,方满萍.质量衡算模型计算太湖底泥磷的交换量[J].环境科学.1992,1:83-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700