用户名: 密码: 验证码:
基于尿素还原剂的选择性非催化还原高效脱硝技术的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的高速发展,能源的消耗也越来越大,由此而带来的环境问题也日益严重,大气中氮氧化物的迅速增加抵消了二氧化硫减排的效果,酸雨的问题依然严重,而我国氮氧化物主要来自燃煤电站,本文对燃煤电站常用的一种烟气脱硝技术SNCR进行了深入的研究。SNCR及更进一步的SNCR/SCR联合脱硝技术,其投资、工程改造量、运行成本相对单独的SCR系统要低,脱硝率适中,可以满足我国目前的NOx排放要求。
     首先,本文通过实验对常用的绿色还原剂—尿素,对尿素的热解、水解及制取氨气过程进行了实验研究。实验发现:对于尿素晶体的热解,当温度高于250℃后尿素已完全分解,残留物中主要是三聚氰酸等大分子聚合物,当温度高于500℃后残留物分解完毕,尿素热解的最终产物主要是NH3和HNCO。在存在着O2的氛围下,当温度升高到850℃后,由于氧化还原反应的进行,NH3与HNCO的浓度开始急剧下降,同时伴随少量的NO与N2O的生成。HNCO在均相下非常稳定,但是在金属氧化物的催化作用下在较低的温度就能迅速与水汽进行反应生成NH3。在所考察的多种金属氧化物中,纳米γ-Al2O3由于较高的催化活性和抗磨损性,更适宜作为尿素热解制取氨气的催化剂。
     然后,在试验台上对Thermal DeNOx和NOxOUT过程进行了研究并与CHEMKIN模拟结果进行对比,此外对NOxOUT过程还考察了不同添加剂的影响。实验表明:相同条件下氨水的最佳脱硝温度稍低于尿素,而氨水的最佳脱硝率略高于尿素,氨水的温度窗口要大于尿素。SNCR过程中将会生成N20,对于尿素还原剂,约有15%的NO转化成N20,高于氨水的3%。脱硝曲线随着水汽含量的增加往高温侧偏移,相反地氧量的增加则使得脱硝曲线往低温侧偏移。氧化性溶剂的添加使得NOxOUT过程在较低的温度下就能进行,但是最佳脱硝率均不同程度的下降,与氧化性溶剂相比,只需添加少量的钠盐就能起到非常好的促进效果。钠盐在高温下同样稍微降低了脱硝率,与氧化性溶剂不同的是钠盐添加能促进HNCO的水解,减少HNCO浓度而增加NH3浓度,此外钠盐本身不参与SNCR反应,其在溶液中通过循环反应生成OH活性根来促进低温下SNCR反应的进行。
     接着在雾化试验台上开发适合SNCR工业应用的墙式喷枪和多孔长喷枪。通过对两通道实心圆柱形气力雾化喷嘴及Y型气力雾化喷嘴的雾化情况进行了研究,包括喷嘴出口结构尺寸、混合室尺寸、液流量、气耗率等对喷嘴雾化性能的影响。对于气力雾化喷嘴,气耗率是影响雾化粒径大小的主要因素。
     最后在一台410t/h燃煤电站锅炉上对SNCR/SCR联合脱硝技术的工业应用情况展开了详细的研究。实验发现,对于单独的SNCR系统,在NSR为1.5的情况下能获得40%以上的脱硝率,同时NH3逃逸浓度在10μl/L以内。喷射层温度、喷射流量、喷射液滴的粒径均影响着脱硝率,尿素液滴分布在合适的温度区间是提高脱硝率最好的方法。通过增设补氨喷射层及高速气流扰动可实现SCR反应器入口NH3分布均匀,在NSR为1.86的情况下SNCR/SCR联合脱硝系统能获得85%以上的脱硝率。NH3逃逸一方面会导致飞灰中含氨量增加,另一方面会和烟气中的SO3、HCl反应生成铵盐,会对下游设备产生影响。此外应避免尿素溶液在高温下对炉内换热器的冲刷,减少对换热元件的腐蚀。
The energy consumption of china is increasing with rapid economic development which brought in serious environment problems. The reduction of sulfur dioxide emission will be offset by the rapid increase of nitrogen oxides (NOx) in the atmosphere. Acid rain still remains a serious problem. Considering most of the NOx emission comes from the coal-fired power boiler, SNCR (Selective Non-catalytic Reduction) as one of the common used flue gas denitrification technology was studied in this paper. SNCR and hybrid SNCR/SCR (Selective Catalytic Reduction) could get middle denitrification with low investment, easy retrofit, low operation cost compared with SCR system. SNCR or Hybrid SNCR/SCR could meet the NOx emission standard.
     First, this paper studied the decomposition and hydrolysis of urea which was commonly used as green reductant. When the temperature was higher than250℃. the main composition of residue were cyanuric acid and other macromolecular polymers, no urea was found in the residue. The decomposition would finish when the temperature was over500℃. The final products form urea decomposition was NH3and HNCO. Due to the oxidation, the yield of NH3and HNCO would decline sharply when the temperature rose to850℃with O2existence. A small amount of NO and N2O was also generated. HNCO was quite stable in the homogeneous condition but easily hydrolyzed over metal oxide to yield NH3even at low temperature. γ-Al2O3was most suitable as catalytic material due to its high catalytic activity, as well as good abrasion resistance and stability.
     Then, the study of Thermal DeNOx and NOxOUT process was done through experiments combined with CHEMKIN simulation. The impact of different additive on the NOxOUT process was also examined. The results showed that the Thermal DeNOx would get higher denitrification, lower favorable temperature, wider emperature window than NOxOUT on the same condition. N2O would be generated during SNCR process. About15%of NO was converted to N2O during NOxOUT process which was only3%during Thermal DeNOx process. The increase in water vapor content would make the denitrification curve offset to the high temperature side, while the oxygen had the opposite effect. The SNCR process could be carried out at lower temperature due to the addition of oxygenated liquid additives, but the best denitrification decreased. Compared with oxygenated liquid additives, a small amount of sodium salts would get very good effect. The addition of sodium salts could catalyze the HNCO hydrolysis to yield NH3. In addition the sodium salts didn't participate in the SNCR reaction but generated OH radicals to promote the SNCR reaction at low temperature.
     Then the SNCR wall spray and porous nozzle were tested on the atomization test-bed. The two channel solid cone atomization spray and Y type atomization spray were researched including the effect of mixing chamber size, flow rate, air consumption on the atomization performance. The air consumption rate had great effect on the size of droplet size.
     Finally, particular experimental research on hybrid SNCR/SCR applied in a410t/h power plant boiler was carried out. It was found that more than40%of NOx was eliminated and the NH3slip was below10μl/L for the SNCR system while the NSR was1.5. The denitrification was effected by the temperature of the injection layer, spray flow and particle size of spray droplets. The best way to improve the denitrification was to make the urea droplet to distribute at the right temperature. The addition of complement of urea solution injection layer and high speed air turbulence could make the NH3even distribution before the SCR catalysts. The hybrid SNCR/SCR could get85%denitrification while the NSR was1.86. NH3slip increased the ammonia content in the fly ash and would react with SO3/HCl to form ammonium salts. The ammonium salt would have bad impact on the downstream equipment. In addition the urea solution should be avoided to scour the heat exchangers which might led to the corrosion.
引文
1. 报告编委会.中国矿产资源报告概要[J].国土资源情报,2011.11.
    2. 中国统计年鉴—2011[M].2011,北京:中国统计出版社.
    3. 中华人民共和国环境保护部.中国环境状况公报[R].2011.
    4. 中华人民共和国环境保护部.中国机动车污染防治年报[R].2010.
    5. 陈进生.火电厂烟气脱硝技术-选择性催化还原法[M].2008,北京:中国电力出版社.
    6. 中华人民共和国环境保护部.GB13223-2011.火电厂大气污染物排放标准.[S].
    7. 胡琦.SCR与SNCR昆合脱硝技术在燃煤电厂的应用[D].北京.华北电力大学,2010.
    8. Muzio L J, Arand J K, Teixeira D P. Gas phase decomposition of nitric oxide in combustion products[J]. Symposium (International) on Combustion,1976.16(1):199-208.
    9. Fenimore C P. Destruction of NO by NH3 in lean burnt gases[J]. Combustion and Flame,1980. 37:245-250.
    10. Salimian S, Hanson R K. Kinetic study of NO removal from combustion gases by NHi-containing compound[J]. Combustion Science and Technology,1980.23(2):225-230.
    11. Banna S M. Branch M C. Mixing and reaction of NH3 with NO in combustion products[J]. Combustion and Flame,1981.42:173-181.
    12. Silver J A, Kolb C E. Kinetic measurements for the reaction of NH2+ NO over the temperature range 294-1215K[J]. Journal of Physical Chemistry,1982.86(17):3240-3246.
    13. Lucas D, Brown N J. Characterisation of the Selective Reduction of NO by NH3[J]. Combustion and Flame,1982.47:219-234.
    14. Hurst B E. The noncatalytic denitrification process for glass melting furnace[J]. Society of Glass Technology,1983.24:97-101.
    15. Lodder P, Lefers J B. Effect of natural gas, C2H6 and CO on the homogenous gas phase reduction of NOx by NH3[J]. The chemical Engineering Journal,1985.30(3):161-167.
    16. Chen S L, Cole J A, Heap M P, et al. Advanced NOx reduction processes using -NH and -CN compounds in conjunction with staged air addition[J]. Symposium (International) on Combustion,1989.22(1):1135-1145.
    17. Wenli D, Dam-Johansen K, Ostergaard K. The influence of additives on selective non-catalytic reduction of nitric oxide with NH3[C]. in Achemasia.1989. Beijing.
    18. Jodal M, Nielsen C, Hulgaard T. Pilot-scale experiments with NH3 and urea as reductants in selective non-catalytic reduction of nitric oxide[C]. in The Combustion Institute.1990.
    19. Robin M A I, Price H J, Squires R T. Tailoring NH3 based SNCR for installation on power plants boilers[C]. in Springfield.1991. VA. p.99-118.
    20. Caton J A, Narney J K, Cariappa C. The selective non-catalytic reduction of NO using NH3 up to 15% oxygen[J]. The Canadian Journal of Chemical Engineering,1995.73(3):345-350.
    21. Kasuya F, Glarborg P, Johnsson J E. The thermal DeNOx process:Influence of partial pressures and temperature[J]. Chemical Engineering Science,1995.50(9):1455-1466.
    22. Lyon R K. Thermal DeNOx:how it works[J]. Hydrocarbon Processing,1979.58(10):109-112.
    23. Lyon R K, Hardy J E. Discovery and development of thermal DeNOx process[J]. Industrial and Engineering Chemistry Research Fundamentals,1986.25(1):19-24.
    24. Lyon R K. Thermal DeNOx:controlling NOx emission by noncatalytic process[J]. Environmental Science and Technology,1987.21 (3):231-236.
    25. Miller J A, Branch M C, Kee R J. A chemical kinetic model for the selective reduction of nitric oxide by ammonia[J]. Combustion and Flame,1981.43:81-98.
    26. Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion[J]. Process in Energy and Combustion Science,1989.15(4):287-238.
    27. Glarborg P, Johansen K D, Miller J A, et al. Modeling the thermal DeNOx process in flow reactors. Suface effects and nitrous oxide formation[J]. International Journal of Chemical Kinetics,1994.26(4):421-436.
    28. Javed M T, Irfan N, Gibbs B M. Control of combustion-generatednitrogenoxides by selectivenon-catalyticreduction[J]. Journal of Environmental Management,2007. 83(3):251-289.
    29. Daniel, Mussatti. EPA air pollution control cost manual[R].2002, North Carolina:United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park,.
    30. 王智化,周昊,周俊虎,等.不同温度下炉内喷射氨水脱除NOx的模拟与试验研究[J].燃料化学学报,2004.32(1):48-53.
    31. 王智化,周俊虎,周昊,等.炉内高温喷射氨水脱除NOx机理及其影响因素的研究[J].浙江大学学报(工学版),2004.38(4):495-500.
    32. 高亮,王智化,凌忠钱,等.炉内高温喷射尿素溶液脱硝机理及其影响因素[J].锅炉技术.2005.36(2):72-75.
    33. 卢志民,周俊虎,岑可法,等.不同O2浓度下MH3选择非催化还原NO的实验和模型研究[J].中国电机工程学报,2008.28(29):78-82.
    34. 吕洪坤,杨卫娟,周俊虎,等.选择性非催化还原反应的实验研究与机理分析[J].电站系统工程,2011.27(2):4-7.
    35. 李可夫,吴少华,李振中,等.以尿素为还原剂的SNCR过程的中试试验研究[J].中国电机工程学报,2006.26(25):97-101.
    36. 李可夫,吴少华,高冠帅,等.选择性非催化脱硝不同还原剂的比较试验研究[J].热能动力工程,2008.23(4):417-420.
    37. Sowa W A, Dill J W, Pohl J H, et al. Thermal DeNOx:process defination and enhancement[C]. in Spring Meeting of the Western States Section of the Combustion Institute.1992. Oregon, p. 1-26.
    38. 赵立平,曹庆喜,吴少华.NH3选择性非催化还原NO的化学动力学计算及分析[J].电站系统工程,2008.24(1):27-32.
    39. 卢志民.SNCR反应机理及混合特性研究[D].杭州.浙江大学,2006.
    40. 韩奎华,路春美,王永征,等.选择性非催化还原脱硝特性试验研究[J].中国电机工程学报,2008.28(14):80-85.
    41. 韩奎华,路春美,牛胜利,等.气体先进再燃脱硝实验研究[J].中国电机工程学报,2009.29(20):47-51.
    42. 沈伯雄,孙幸福.水蒸汽对先进再燃区脱硝效率的影响研究[J].电站系统工程,2006.22(1):41-43.
    43. 沈伯雄,韩永富,刘亭.氨选择性非催化还原烟气脱硝研究进展[J].化工进展,2008.27(9):1323-1327.
    44. Mittlebach G, Voge H. Application of SNCR Process to Cyclone Firing[C]. in Special Meeting on NOx Emission Reduction of the VGB(German Power Industry Association).1986. Krefeld, Germany, p.1-17.
    45. 王智化.燃煤多种污染物一体化协同脱除机理及反应射流直接数值模拟DNS的研究[D].杭州.浙江大学,2005.
    46. 周俊虎,卢志民,王智化,等.氮还原剂NOx还原反应及热分解的实验研究[J].电站系统工程,2006.22(1):4-7.
    47. 李可夫,陶玲,吴少华,等.选择性非催化脱硝还原中NH3漏失因素的试验研究[J].中国电机工程学报,2008.28(5):51-56.
    48. 韩奎华.先进再燃脱硝优化试验与机理研究[D].济南.山东大学,2007.
    49. 吕洪坤,杨卫娟,周志军,等.选择性非催化还原法在电站锅炉上的应用[J].中国电机工程学报,2008.28(23):14-19.
    50. 吕洪坤,杨卫娟,周俊虎,等.CO含量对烟气选择性非催化还原反应的影响[J].化工学报,2009.60(7):1773-1780.
    51. 吕洪坤,杨卫娟,周俊虎,等.电站锅炉选择性非催化还原脱硝实验研究—还原区温度、尿素溶液喷射体积流量的影响[J].浙江大学学报(工学版),2009.43(9):1655-1660.
    52. Bernd von der Heide. NOx Reduction for the Future with the SNCR Technology for Medium and Large Combustion Plants[C]. in POWER ENGINEERING AND ENVIRONMENT.2010. VSB-Technicka univerzita Ostrava(Czech Republic).
    53. Lyon R K. The NH3-NO-O2 reaction[J]. International Journal of Chemical Kinetics,1976. 8(2):315-318.
    54. 吕洪坤.选择性非催化还原与先进再燃技术的实验及机理研究[D].杭州.浙江大学,2009.
    55. Lyon R K, Longwell J P. Selective non-catalytic reduction of NOx by NH3[C]. in The Proceedings of NOx Control Technology Seminar.1976. San Francisco, CA. p.237-256.
    56. Muzio L J, Arand J K, Maloney K L. Reaction of NH3 with NO in coal derived combustion products[J]. Symposium (International) on Combustion,1978.17(1):89-96.
    57. Teixeira D P, Muzio L J. Widenning the urea temperature window[C]. in Joint EPA/EPRI Symposium on Stationary Combustion NOx Control.1991. Springfield, VA. p.23-41.
    58. Teixeira D P, Muzio L J. Effect of trace combustion species on SNCR performance[C]. in AFRC/JFRC International Conference on Environmental Control of Combustion Process. 1991. Honolulu, Hawaii, p.20.
    59. Teixeira D P, Muzio L J. N2O emission from SNCR processes[C]. in First International Conference on Combustion Technologies for Clean Environment.1991. Vica Mourta (Alcrave),Portugal. p.9-14.
    60. Gentemann A M G, Caton J A. Flow reactor experiments on the selective non-catalytic removal (SNCR) of nitric oxide using a urea-water solution[C]. in The 21st German Flame Day Conference.2003. University of Cottbus, Germany.
    61. Dean A M, Hardy J E, Lyon R K. Kinetics and mechanism of NH3 oxidation[J]. Symposium (International) on Combustion,1982.19(1):97-105.
    62. Westbrook C K, Dryer F L. Chemical kinetic modelling of hydrocarbon combustion[J]. Progress in Energy and Combustion Science,1984.10(1):1-57.
    63.Wenli D, Kim D J, Ostergaard K. Widening the temperature range of the thermal DeNOx process, an experimental investigation[J]. Symposium (International) on Combustion.1991. 23(1):297-303.
    64. Caton J A, Siebers D L. Effects of hydrogen addition on the removal of nitric oxide by cyanuric acid[J]. Symposium (International) on Combustion,1991.23(1):225-230.
    65. Javed M T, Nimmo W, Gibbs B M. Experimental and modeling study of the effect of CO and H2 on the urea DeNOx process in a 150 kW laboratory reactor[J]. Chemosphere,2008. 70(6):1059-1067.
    66. Lucas D, Brown N. The influence of thiophene on the selective reduction on NO by NH3[J]. Combustion and Flame,1983.49(1-3):283-288.
    67. Silver J A. The effect of sulphur on thermal DeNOx process[J]. Combustion and Flame,1983. 53(1-3):17-21.
    68. Smith O I, Wang S N, Spyros T. The sulphur catalyzed recombination of atomic oxygen in a CO/O2/Ar flame[J]. Combustion Science and Technology,1983.30(1-6):241-271.
    69. Dagaut P, Nicolle A. Experimental and kinetic modeling study of the effect of SO2 on the reduction of NO by ammonia[J]. Proceedings of the Combustion Institute,2005. 30(1):1211-1218.
    70. Dagaut P, Lecomte F. Experiments and kinetic modeling study of the reduction of NO by hydrocarbons and interactions with SO in a JSR[J]. Fuel,2003.82(9):1033-1040.
    71. Dagaut P. Lecomte F, Chevailler S, et al. Experiments and kinetic modeling study of NO-Reburning by gases from biomass pyrolysis in a JSR[J]. Energy&Fuels,2003. 17(3):608-613.
    72. Lyon R K. Method for the reduction of the concentration of NO in combustion effluents using NH,:US,3900554[P],1975
    73. Muris S, Hemberger R, Wolfrum P J. An experimental and modelling study of selective non-catalytic reduction of NO by ammonia in presence of hydrocarbon[C]. in 25th Symposium (International) on Combustion.1994. Combustion institute,Pitsburgh.
    74.张彦文,蔡宁生.加入甲烷促进选择性非催化还原反应的实验研究[J].中国电机工程学报,2007.27(35):7-11.
    75.张彦文,蔡宁生.加入甲烷促进选择性非催化还原反应的机理验证和分析[J].中国电机工程学报,2008.28(2):49-54.
    76.张彦文,蔡宁生,李振山.加入CH4促进SNCR过程的计算与机理分析[J].热力发电,2005.34(12):9-12,19.
    77. Azuhata S, Akimoto H. Effect of H2O2 on homogeneous gas phase NO reduction reaction with NH3[J]. AIChE Journal,1982.28(1):7-11.
    78. Cooper D A. The Influence of NH3 and hydrogen peroxide on NOx emission in the flue gas channel of a 16 MW coal-fired fluidised bed combustor[J]. Journal of the Institute of Energy 1988.61(447):78-84.
    79. Haywood J M., Cooper D C D. The Economic Feasibility of Using Hydrogen Peroxide for the Enhanced Oxidation and Removal of Nitrogen Oxides from Coal-Fired Power Plant Flue Gases[J]. Journal of the Air & Waste Management Association 1998.48(3):238-246.
    80. 沈伯雄,刘亭,韩永富.选择性非催化还原脱除氮氧化物的影响因素分析[J].中国电机工程学报,2008.28(23):53-58.
    81. Javed M T, Nimmo W, Mahmood A, et al. Effect of oxygenated liquid additives on the urea based SNCR process[J]. Journal of Environmental Management,2009.90(11):3429-3435.
    82. Lee J B, Kim S D. Kinetics of NOx reduction by urea solution in a pilot scale reactor[J]. Journal of Chemical Engineering of Japan,1996.29(4):620-626.
    83. Bae S W, Roh S A, Kim S D. NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process[J]. Chemosphere,2006.65(1):170-175.
    84. Rota R, Zanoelob E F. Influence of oxygenatedadditives on the NOxOUT process efficiency[J]. Fuel,2002.82(7):765-770.
    85. 高攀,路春美,韩奎华,等.添加剂协同选择性非催化还原NO的过程研究[J].燃烧科学与技术,2008.14(4):333-337.
    86. Zamansky V M, Lissianski V, Maly P, et al. Reactions of sodium species in the promoted SNCR process[J]. Combustion and Flame,1999.117(4):821-831.
    87. Lee S, Park K, Park J W, et al. Characteristics of reducing NO using urea and alkaline additives[J]. Combustion and Flame,2005.141(3):200-203.
    88. Han K H, Lu C M. Kinetic Model and Simulation of Promoted Selective Non-catalytic Reduction by Sodium Carbonate[J]. Chinese Journal of Chemical Engineering,2007. 15(4):512-519.
    89. 张薇,杨卫娟,周俊虎,等.钠盐对选择性非催化还原反应促进作用的实验研究[J].中国电机工程学报,2008.28(35):33-38.
    90. Arand J K, Muzio L J, Sotter J G, et al. Urea reduction of NOx in combustion effluents:US, 4208386[P],1980
    91. Robert P. NO Reduction Using Sublimation of Cyanuric Acid:US,4731231[P],1986
    92. Caton J A, Siebers D L. Comparison of nitric oxide removal by cyanuric acid and by ammonia[J]. Combustion Science and Technology,1989.65(4-6):277-293.
    93. Caton J A, Siebers D L. Effect of hydrogen addition on the removal of nitric oxide by cyanuric acid[J]. Symposium (International) on Combustion,1990.23(1):225-230.
    94. Siebers D L, Caton J A. Removal of nitric oxide from exhaust gas with cyanuric acid[J]. Combustion and Flame,1990.79(1):31-46.
    95. Jodal M, Neilsen C, Hulgaard T, et al. Pilot-scaleexperiments with ammonia and urea as reductants in selectivenon-catalyticreduction of nitricoxide[J]. Symposium (International) on Combustion,1991.23(1):237-243.
    96. Jodal M, Nielsen C, Hulgaard T. Pilot-scale experiments with NH3 and urea as reductants in selective non-catalytic reduction of nitric oxide[J]. Symposium (International) on Combustion, 1991.23(1):237-243.
    97. Higgins S T, Douglas R E. Injection of NH3 and NH3-based compounds for the control of nitrous oxides at Homer City[C]. in Sixth International Pitsburgh Coal Conference.1990. The Combustions Institute,Pitsburgh, PA. p.827-836.
    98. Caton J A, Xia Z. The Selective Non-Catalytic Removal (SNCR) of Nitric Oxides From Engine Exhaust Streams:Comparison of Three Processes[J]. Journal of Engineering for Gas Turbines and Power,2004.126(2):234-240.
    99. 钟秦.选择性非催化还原法脱除NOx的实验研究[J].南京理工大学学报,2000.24(1):68-71.
    100. 周俊虎,杨卫娟,周志军,等.选择非催化还原过程中的N2O生成与排放[J].中国电机工程学报,2005.25(13):91-95.
    101. Epperly W R, Broderick R G. Control of nitrogen oxides emission from stationary sources[C]. in 50th Annual Meeting of the American Power Conference.1988. IL, USA. p.911-915.
    102. Comparato J R, Buchs R A, Arnold D S. NOx reduction at Argus plant using NOxOUT process[C]. in Joint EPA/EPRI Symposium on Stationary Combustion NOx Control.1991. Springfield,VA. p.37-54.
    103. Rota R. Chemical Kinetic Analysis of the Thermal DeNOx Process at High Reactant Concentration[J]. Chemical Engineering & Technology,2001.24(5):539-541.
    104.(?)stberg M, Kim Dam-Johansen, Johnsson J E. Influence of mixing on the SNCR process[J]. Chemical Engineering Science,1997.52(15):2511-2525.
    105. R(?)jel H, Jensen A, Glarborg P. Mixing effects in the selective noncatalytic reduction of NO[J]. Industrial & Engineering Chemistry Research 2000.39(9):3221-3232.
    106. Zwietering Th N. The degree of mixing in continuous flow systems[J]. Chemical Engineering Science,1959.11(1):1-15.
    107. Oliva M, Alzueta M U, Millera A, et al. Theoretical study of the influence of mixing in the SNCR process. Comparison with pilot scale data[J]. Chemical Engineering Science,2000. 55(22):5321-5332.
    108. Lee G W, Shon B H, Yoo J G. The influence of mixing between NH3 and NO for a De-NOx reaction in the SNCR process[J]. Journal of Industrial and Engineering Chemistry,2008.
    109. 刘辉,朱舒扬,曹庆喜,等.混合过程对选择性非催化还原反应的影响[J].中国电机工程学报,2009.29(26):43-47.
    110. Lockwood FC. CFD experience on industrial combustors[C]. in Special Issue of IJCAT on Computational Reactive Fluid Dynamics:Modelling, Software Tools and Applications.2000.
    111. Rasmussen M S S, Christensen O H, Ostberg M, et al. Post processing of detailed chemical kinetic mechanisms onto CFD simulations[J]. Computers and Chemical Engineering,2004. 28:2351-2361.
    112. Heggemann M, Wintergerste T. Combination of CFD and chemical reactions for process engineering[J]. Chemical Engineering and Technology,2004.27(9):982-987.
    113. Cremer M A, Heap M, Zoccola M, et al. CFD modelling of SNCR performance in Conective's Indian River unit 3 and 4[C]. in DOE Conference on SCR and SNCR for NOx Control.1999. p.201-221.
    114. Cremer M A, Montgomery C J, Wang D H, et al. Development and implementation of reduced chemistry for computational fluid dynamics modelling of selective non-catalytic reduction[J]. Proceedings of the Combustion Institute,2000.28(2):2427-2434.
    115. Turanyi T. Application of sensitivity analysis to combustion chemistry[J]. Reliability Engineering and System Safety,1997.57(1):41-48.
    116. Chen J Y. Development of reduced mechanisms for numerical simulations of turbulent combustion[C]. in Workshop on Numerical Aspects of Reduction in Chemical Kinetics, CERMICS-ENPC.1997. Cite Descartes, Champus sur Marne, France.
    117. Lv Y, Wang Z H, Zhou J H, et al. Full-Scale Numerical Investigation of a Selective Noncatalytic Reduction (SNCR) System in a 100 MW Utility Boiler with Complex Chemistry and Decoupling Approach[J]. Energy&Fuels,2010.24(10):5432-5440.
    118. Izumi J, Murakami N. Process for controlling nitrogen oxides in exhaust gases:US, 4350669[P],1982
    119. 王智化,周俊虎,魏林生,等.用臭氧氧化技术同时脱除锅炉烟气中NOx及SO2的试验研究[J].中国电机工程学报,2007.27(11):1-5.
    120. 王智化,周俊虎,温正城,等.利用臭氧同时脱硫脱硝过程中NO的氧化机理研究[J].浙江大学学报(工学版),2007.41(5):765-769.
    121. Yano T, Ito K. Behaviour of methanol and formaldehyde in burned gas from methanol combustion:a chemical study[J]. Bulletin of the Japanese Society of Mechanical Engineers, 1983.26(111):94-101.
    122. Yano T, Ito K. Behaviour of methanol and formaldehyde in burned gas from methanol combustion:effects of nitric oxide on oxidation reaction[J]. Bulletin of the Japanese Society of Mechanical Engineers,1983.26(213):406-413.
    123. Lyon R K. Method for preventing ammonium bisulphate formation during the non-catalytic reduction of nitric oxide:US,4743436[P],1988
    124. Irfan N, Gibbs B M. Kinetic modelling of two stage NOx removal using SNCR and methanol injection[C]. in Second IChemE European Conference.1996. Leeds, UK.
    125. Krigmont H V, Chien P L, Pollock W H, et al. Full scale demonstration of Wahlco staged NOx reduction system.[C]. in 1993 Joint Symposium on Stationary Combustion NOx Control.1993. Miami Beach, FL.
    126. Urbas J, Boyle J M. Design, optimisation and economic analysis of SNCR/SCR hybrid on a utility boiler in the ozone transport region[C]. in 1998 American/Japanese Flame Research Committees International Symposium.1998.
    127. Comparato J R, Boyle J M. Commercial SNCR/SCR hybrid applications on large utility boilers[C]. in Clear Water Conference.1999.
    128. Yang W J, Chen Z C, Zhou Z J, et al. Cost-Efficient Nitrogen Oxides Control by a Hybrid Selective Noncatalytic Reduction and Selective Catalytic Reduction System on a Utility Boiler[J]. ENVIRONMENTAL ENGINEERING SCIENCE,2011.28(5):341-348.
    129. 李晓芸,蔡小峰.混合SNCR-SCR烟气脱硝工艺及其应用[J].华电技术,2008.30(3):22-25.
    130. Miller J A, Bowman C T. Kinetic modeling of the reduction of nitric oxide in combustion products by isocyanic acid[J]. International Journal of Chemical Kinetics,1991. 23(4):289-313.
    131. Miller J A, Glarborg P. Modeling the Formation of N2O and NO2 in the Thermal De-NOx Process[J]. Springer Series in Chemical Physics,1996.61:318-333.
    132. Rota R, Zanoelo E F, Antos D, et al. Analysis of the thermal DeNOx process at high partial pressure of reactants[J]. Chemical Engineering Science,2000.55(6):1041-1051.
    133. Rota R, Antos D, Zanoelo E F, et al. Experimental and modeling analysis of the NOxOUT process[J]. Chemical Engineering Science,2002.57(1):27-38.
    134. Coda Z E, Kilpinen P T. Gas-phase conversion of NH3 to N2 in gasification part Ⅱ:Testing the Kinetic Model[J]. IFRF Combustion Journal,2001.
    135. Coda Z E, Kilpinen P, Hupa M, et al. Kinetic Modeling Study on the Potential of Staged Combustion in Gas Turbines for the Reduction of Nitrogen Oxide Emissions from Biomass IGCC Plants[J]. Energy&Fuels,2000.14(4):751-761.
    136. Skreiberg (?), Kilpinen P, Glarborg P. Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor[J]. Combustion and Flame,2004.136(4):501-518.
    137. Dagaut P, Luche J, Cathonnet M. Experimental and kinetic modeling of the reduction of NO by propene at latm[J]. Combustion and Flame,2000.121 (4):651-661.
    138. Smith G P, Golden D M, Frenklach M. et al. GRI-MECH 3.0[EB/OL].[2008-12-06].http://www.me.berkeley.edu/gri_mech/
    139. 周林华SNCR气力式雾化喷嘴雾化特性的实验研究[D].杭州.浙江大学,2007.
    140. 吕昊CHEMKIN软件在均质压燃及燃料改质数值模拟中的应用[D].陕西.长安大学, 2010.
    141. 王福军.计算流体动力学分析-CFD软件原理与应用[M].2004,北京:清华大学出版社.
    142. 韩占忠,王敬,兰小平FLUENT:流体工程仿真计算实例与应用[M].2004,北京:北京理工大学出版社.
    143. 温正,石良辰,任毅如FLUENT流体计算应用教程[M].2009,北京:清华大学出版社.
    144. Roberts J M, Veres P R, Cochran A K, et al. Isocyanic acid in the atmosphere and its possible link to smoke-related health effects[J]. PNAS,2011.108(22):8966-8971.
    145. Paul J Y, Louisa K E, James M R, et al. Isocyanic acid in a global chemistry transport model: Tropospheric distribution, budget, and identification of regions with potential health impacts [J]. Journal of Geophysical Research,2012.117.
    146. 王桂友.臧斌,顾昭.质谱仪技术发展与应用[J].现代科学仪器,2009.6:124-128.
    147. Schabera P M, Colsonb J, Higginsb S, et al. Thermal decomposition (pyrolysis) of urea in an openreactionvessel[J]. Thermochimica Acta,2004.424(1-2):131-142.
    148. Stradella L, Argentero M. A study of the thermal decomposition of urea, of related compounds and thiourea using DSC and TG-EGA[J]. Thermochimica Acta,1993.219:315-323.
    149. Schaber P M, Colson J, Higgins S, et al. Study of the urea thermal decomposition (pyrolysis) reaction and importance to cyanuric acid production[J]. American Laboratory,1999.31:13-21.
    150. H. L Fang, DaCosta H F M. Urea thermolysis and NOx reduction with and without SCR catalysts[J]. Applied Catalysis B:Environmental,2003.46(1):17-34.
    151. Eichelbauma M, Farrauto R J, Castaldi M J. The impact of urea on the performance of metal exchanged zeolites for the selective catalytic reduction of NOx Part Ⅰ. Pyrolysis and hydrolysis of urea over zeolite catalysts[J].Applied Catalysis B:Environmental,2010. 97(1-2):90-97.
    152. Eichelbauma M, Farrauto R J, Castaldi M J. The impact of urea on the performance of metal-exchanged zeolites for the selective catalytic reduction of NOx-PartⅡ.Catalytic, FTIR, and NMR studies[J]. Applied Catalysis B:Environmental,2010.97(1-2):98-107.
    153. Lundstrom A, Andersson B, Olsson L. Urea thermolysis studied under flow reactor conditions using DSC and FT-IR[J]. Chemical Engineering Journal,2009.150(2-3):544-550.
    154. Kleemann M, Elsener M, Koebel M, et al. Hydrolysis of isocyanic acid on SCR catalysts[J]. Industrial & Engineering Chemistry Research,2000.39(11):4120-4126.
    155. Koebel M, Strutz E O. Thermal and hydrolytic decomposition of urea for automotive selective catalytic reduction systems:thermochemical and practical aspects[J]. Industrial & Engineering Chemistry Research,2003.42(10):2093-2100.
    156. Brouwer J, Heap M P, Pershing D W等.A model for prediction ofselective non-catalytic reduction of nitrogen oxides by ammonia,urea,and cyanuric with mixing limitations in the presence of co[C]. in Twenty Sixth International Symposium on Combusion.1996. Naples, Italy.
    157. Piazzesi G, Devadas M, Krocher O, et al. Isocyanic acid hydrolysis over Fe-ZSM5 in urea-SCR[J]. Catalysis Communications,2006.7(8):600-603.
    158. Piazzesi G, Elsener M, Krocher O, et al. Influence of NO2 on the hydrolysis of isocyanic acid over TiO2 [J]. Applied Catalysis B:Environmental,2006.65(3-4):169-174.
    159. Piazzesi G, Krocher O, Elsener M, et al. Adsorption and hydrolysis of isocyanic acid on TiO2 [J]. Applied Catalysis B:Environmental,2006.65(3-4):169-174.
    160. Czekaj I, Piazzesi G, Krocher O, et al. DFT modeling of the hydrolysis of isocyanic acid over the TiO2 anatase (101) surface:Adsorption of HNCO species [J]. Surface Science,2006. 600(24):5158-5167.
    161. Czekaj I, Krocher O, Piazzesi G. DFT calculations, DRIFT spectroscopy and kinetic studies on the hydrolysis of isocyanic acid on the TiO2-anatase (101) surface [J]. Journal of Molecular Catalysis A:Chemical,2008.280(1-2):68-80.
    162. 汪建光.燃煤电站SCR脱硝技术中尿素热解和水解制氨技术对比[J].能源与环境,2008(4):59-60.
    163. 于洪,刘慷.选择性催化还原烟气脱硝技术在玉环电厂4×1000MW机组上的应用[J].电力环境保护,2009.25(3):1-3.
    164. Krocher O, Elsener M. Materials for thermohydrolysis of urea in a fluidized bed[J]. Chemical Engineering Journal,2009.152(1-2):167-172.
    165. 吴新正,邓湘,李建保,等.α-石英方石英转变的研究[J].材料工程,2009.S2:67-69.
    166. 陈同彩,周善民,杨刚,等.石英块料直接煅烧法生产方石英[J].非金属矿,2005.28(5):37-38.
    167. 潘宝明.蓝晶石精矿烧结样品中SiO2成分相的存在形式[J].耐火材料,1998.32(5):269-272.
    168. 张伟伟,陈晓春,刘朝文,等.甲酸钠热分解行为的实验研究[J].北京化工大学学报,2007.34(6):566-569.
    169. 杨新芳,赵博,王淑娟,等.中温同时干法钙基脱硫与氨法脱硝的实验研究[J].清华大学学报(自然科学版),2011.51(2):272-276,281.
    170. Sang Mun Jeong, Sang Done Kim. NOx Removal by Selective Noncatalytic Reduction with Urea Solution in a Fluidized Bed Reactor[J]. Korean J. Chem. Eng,1999.16(5):614-617.
    171. Zijlma G J, Jensen A, Johnsson J E. The influence of H2O and CO2 on the reactivity of limestone for theoxidation of NH3[J]. Fuel,2000.79(12):1449-1454.
    172. 李天津,糕玉群,陈昌和,等.700-850℃内H20对Cao上NH3氧化的影响[J].工程热物理学报,2009.30(7):1233-1236.
    173. Li T J, Zhuo Y Q, Chen C H, et al. Effect of CaO on NH3+ NO+O2 reaction system in the absence and presence of high concentration CO2[J]. ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING,2010.5(2):287-293.
    174. Mahmoudi S, Baeyens J, Seville J P K. NOx formation andselectivenon-catalyticreduction(SNCR)in a fluidizedbedcombustorofbiomass[J]. Biomass and Bioenergy,2010.34(9):1393-1409.
    175. Smith R A, Muzio L J, Shiomoto G H. Integrated dry NOx/SO2 emission control system:Low NOx combustion SNCR test report[R].1994.
    176. 李习臣.大型水煤浆喷嘴的开发与雾化机理研究[D].杭州.浙江大学,2004.
    177. Himes R, Quartucy G, et al Cremer M. Demonstration of SNCR trim on a 185 MW Tangentia Design Coal-Fired Utility Boiler[C]. in 2002 Conference on SCR/SNCR for NOx control. 2002. Pittsburgh,PA.
    178. Schick R J, Knasiak K F. Characterization of Two Fluid Nozzles for NOx Control Applications[C]. in Conference on Selective Catalytic Reduction and Non-catalytic Reduction for NOx control.2003.
    179. Valentine J, Davis K, et al Letcavits J J. CFD Simulations for the Analysis of NOx Reduction Strategies in Coal-fired Boilers[C]. in Power Generation Conference.2003. Las Vegas,NC,USA.
    180. 侯凌云,侯晓春.喷嘴技术手册[M].2007,北京:中国石化出版社.
    181. 任建兴.水煤浆喷嘴技术的研究[D].杭州.浙江大学,1992.
    182. 李习臣.大型水煤浆喷嘴的开发与雾化机理研究[D].杭州.浙江大学,2004.
    183. 秦裕琨.燃油燃气锅炉实用技术[M].2006,北京:中国电力出版社.
    184. 李冬青.气力式喷嘴雾化过程的实验研究与数值模拟[D].杭州.浙江大学,2007.
    185. Rayleigh L. On the instability of jets[J]. London Mathematical Society,1879.10(4):361-371.
    186. Yang H Q. Asymmetric instability of a liquid jet[J]. Physics of Fluids,1992.4(4):681-689.
    187. Morozumi Y, Jun F K. Growth and structure of surface disturbances of a round liquid jet in a coaxial airfl ow[J]. Fluid Dynamics Research,2004.34(4):217-231.
    188. Sallam K A, Dai Z, Faeth G M. Liquid breakup at the surface of turbulent roundliquidjets in still gases[J]. International Journal of Multiphase Flow,2002.28(3):427-449.
    189. Zhu Y, Wan Y X, Huang Y, et al. Study on the breakup lengths of free round liquid jets[J]. Journal of Aerospace Power,2007.22(8):1258-1263.
    190. 万云霞,黄勇,朱英.液体圆柱射流破碎过程的实验[J].航空动力学报,2008.23(2):208-214.
    191. Varga C M, Asheras J C L, Hopfinger E J. Initial break up of a small-diameter liquid jet by a high speed atomizers[J]. Journal of Fluid Mechnism,2003.497:405-434.
    192. Sirignano W A, Mehring C. Review of theory of distortion and disintegration of liquid streams[J]. Progress in Energy and Combustion Science,2000.26(4-6):609-655.
    193. Pilch M, Erdman C A. Use of breakup time data and velocityhistorydata to predict the maximumsize of stablefragments for acceleration-induced breakup of a liquid drop[J]. International Journal of Multiphase Flow,1987.13(6):741-757.
    194. Brain K G, Linda L M. NOx Removal with Combined Selective Catalytic Redution and Selective Noncatalytic Reducion:Pilot-Scale Test Results[J]. Air&Waste Management Association,1994.44(10):1186-1194.
    195. 潘维,池作和,斯东波,等.200MW四角切圆燃烧锅炉改造工况数值模拟[J].中国电机工程学报,2005.25(8):110-115.
    196. 秦岭.410t/h锅炉煤粉再燃低NOx控制的数值模拟研究[D].杭州.浙江大学,2006.
    197. 周俊虎,何沛,王智化,等.四角切圆煤粉锅炉SOFA改造降低NOx排放的数值模拟研究[J].热力发电,2008.37(1):13-17.
    198. 梁晓宏,樊建人,岑可法.W型火焰煤粉锅炉炉内三维流动和燃烧过程的数值模拟[J].中国电机工程学报,1997.17(7):243-247.
    199. 李永华,陈鸿伟,刘吉臻,等.煤粉燃烧排放特性数值模拟[J].中国电机工程学报,2003.23(3):166-169.
    200. 陶文铨.计算传热学的近代进展[M].2006,北京:科学出版社.
    201.向军,熊友辉,郑楚光,等.PDF-Arrhenius方法模拟煤粉燃烧氮氧化物生成[J].中国电机工程学报,2002.22(3):156-160.
    202. 中华人民共和国环境保护部.GB10184-88.电站锅炉性能试验规程.[S].
    203.钟红梅,侯德顺.尿素合成系统设备的腐蚀与防护[J].河北化工,2009.32(2):26-27,46.
    204. 张生彪.尿素合成塔腐蚀及应对措施探究[J].现代商贸工业,2011(19):268.
    205. 胡振广,张晨,延宗呹.SNCR脱硝技术中水冷壁腐蚀问题的研究及对策[J].中国新技术新产品,2010(2):127-128.
    206. Rubel A M, Rathbone R F, Stencel J M. Thermal Characteristics of Ammonia Release from Combustion Ash[C]. in 2001 International Ash Utilization Symposium, Center for Applied Energy Research.2001. University of Kentucky,USA.
    207. Bitter J, Gasiorowski S, Hrach F. Removing Ammonia from Fly Ash[C]. in 2001 International Ash Utilization Symposium, Center for Applied Energy Research.2001. University of Kentucky,UAS.
    208. Golden D. Impacts of Ammonia Contamination of Fly Ash on Disposal and Use[C]. in Technical Assessment Report.EPRI 2001.2001. Hillview Avenue, Palo Alto, California.
    209. Giampa V M. Ammonia Removal from Coal Fly Ash by Carbon Burn-Out[EB/OL].[2008].http://www.pmiash.com/cbo/ammoniaremoval.html
    210. Larrimore L. Effects of ammonia from postcombustion NOx control on ash handing and use[J]. Fuel Chemistry Division Preprints,2002.47(2):832-833.
    211. 李艳清.选择性非催化还原脱硝技术在燃煤电厂的改造应用[D].北京.华北电力大学,2008.
    212. 胡秀丽,张连生,李庆.锅炉脱硝对脱硫GGH腐蚀分析[J].神华科技,2011.9(1):90-93,96.
    213. 赵海军,胡秀丽.燃煤电厂SNCR/SCR联合脱硝工艺介绍及故障分析[J].电力科学与工程,2012.28(4):64-68.
    214. 周广瑞.高浓度氯离子对脱硫系统的影响[J].化学工业,2011(12):129.
    215. Hwang I H, Minoya H, et al Matsuto T. Removal of ammonium chloride generated by ammonia slip from the SNCR process in municipal solid waste incinerators[J]. Chemosphere, 2009.74(10):1379-1384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700