用户名: 密码: 验证码:
高压脉冲电场下蛋白与淀粉混合凝胶机理及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以肌原纤维蛋白和葛根作为研究对象,通过分析在高压脉冲电场作用下,电场强度、脉冲数、pH、盐、以及SH基和S-S分子间内部交换反应等因素对肌原纤维蛋白和葛根淀粉混合凝胶的强度、硬度、弹性、保水性等的影响,探索该混合凝胶的形成机理。同时以凝胶制品的钙生物利用率和抗氧化能力为主要指标,考察凝胶制品的功能特性。
     本文充分考虑影响凝胶形成的各种因素,从实验中获得真实可靠的数据,筛选出加工工艺参数,建立了肌原纤维蛋白与葛根淀粉在高压脉冲电场下混合凝胶的技术平台。主要包括以下5个方面:
     (1)用L8(27)正交实验研究了葛根淀粉浓度、pH、离子强度、金属离子对纯葛根淀粉硬度等质构特性的影响。研究了浓度配比、pH和离子强度对肌原纤维蛋白与葛根淀粉混合凝胶保水性和质构特性的影响。结果显示:不同因素对葛根淀粉凝胶硬度的影响程度顺序为:K+>离子强度>Ca2+>葛根淀粉浓度>pH>Mg2+;肌原纤维蛋白与葛根淀粉的混合凝胶的硬度等均比纯葛根淀粉和纯蛋白高,保水性比葛根淀粉略低。影响肌原纤维蛋白与葛根淀粉混合凝胶硬度的主要因素依次为:浓度配比>离子强度>pH。
     (2)以肌原纤维蛋白为研究对象,在电场强度15~55kV/cm、脉冲数2~8个、水浴温度50~90℃范围内,通过单因素试验考察各因素对肌原纤维蛋白硬度、弹性和保水性的影响。研究结果表明:肌原纤维蛋白经高压脉冲电场作用后,所形成凝胶的性质有显著变化。与未受高压脉冲电场处理的对照样相比,凝胶硬度、弹性和保水性在电场强度15~25kV/cm时降低,在电场强度35kV/cm时显著提高,45kV/cm时又降低。在电场强度35kV/cm条件下,凝胶硬度、弹性和保水性随着脉冲数的增加而增强,但后期增幅变化不显著。凝胶硬度和弹性在水浴温度为80℃时最佳,保水性在水浴温度为70℃时最佳。
     (3)以肌原纤维蛋白为研究对象,将不同浓度的葛粉添加其中,混合溶液经高压脉冲电场预处理后,再经水浴加热处理形成混合凝胶,测定其凝胶强度。通过单因素试验和正交分析试验,认为在场强30kV/cm,脉冲数6的条件下,经高压脉冲电场预处理后,肌原纤维蛋白(质量分数5%)和葛粉(质量分数5%)混合溶液在80℃水浴加热30min,可以形成较好的混合凝胶。各因素对混合凝胶强度影响程度由大至小依次为电场强度、脉冲数、葛根淀粉质量分数。结果表明,高压脉冲电场预处理能够促进肌原纤维蛋白和葛粉形成良好的混合凝胶。
     (4)为研究高压脉冲电场辅助处理对总黄酮提取效果的影响,以葛根为试材,找出了其最佳的处理技术参数。在乙醇浓度、电场强度、脉冲数和料液比4个单因素试验的基础上,采用L9(34)正交试验来优化工艺参数。试验结果表明,料液比是最主要的影响因素,其次分别是电场强度、脉冲数和乙醇浓度。在料液比为1∶40,电场强度为20kV/cm,脉冲数为8,乙醇浓度为75%的条件下葛根总黄酮的提取率最高,达到5.12%,比传统提取法提高了2.5倍以上。试验结果表明,高压脉冲电场辅助提取技术在葛根总黄酮提取工艺中具有较高的应用价值,可作为一种新型工艺技术进行推广。
     (5)以D-半乳糖致衰老的小鼠为模型,将三种不同的凝胶分别携带相同剂量的葛根总黄酮喂养小白鼠,研究不同凝胶对致衰老小鼠体内抗氧化能力的影响。试验中,将凝胶分为A、B、C三组。其中A组为高压脉冲电场处理下肌原纤维蛋白和葛根淀粉混合凝胶,B组为肌原纤维蛋白和葛根淀粉混合热凝胶,C组为肌原纤维蛋白凝胶。结果表明:与对照组相比,喂养含有葛根总黄酮提取物凝胶的D-半乳糖致衰老小鼠血清、肝脏、脑组织中的SOD、GSH-Px、CAT、T-AOC活力明显上升,MDA含量明显减小,且差异显著。证实葛根总黄酮能显著提高亚急性衰老小鼠体内抗氧化酶活性。综合考虑各组间的变化,抗氧化效果为:A组>B组>C组>对照组,即喂食高压脉冲电场处理后的肌原纤维蛋白和葛根淀粉混合凝胶对小白鼠的抗氧化效果最好。
     本研究结果一定程度上阐明了高压脉冲电场作用对蛋白凝胶以及蛋白-淀粉混合凝胶的影响机理,为继续深入研究提供了学术上重要的参考价值。
In this paper, myofibrillar protein and pueraria were choosed as the object ofstudy. Under the processing of high-voltage pulsed electric field, the influence onrheological property, microstructure, texture property and water-retaining property ofmixed gel of myofibrillar protein and pueraria starch was analyzed based on thedifferent experimental condition of electric field intensity, pulse count, pH, salt, andinternal exchange reaction between SH and S-S molecule is analyzed. Besides, theformation mechanism of the mixed gel was discussed. In addition, functionalcharacteristics of various gel products were investigated by taking the digestibility andoxidation resistance as the main indexes.
     In this paper, various factors which influence the gel formation were fullyconsidered. True and reliable data are obtained from experiments, and the processingtechnological parameters are screened. A technology platform for the gel mixingproduction from myofibrillar protein and pueraria starch using high-voltage pulsedelectric field processing was established. The research contents are as follows:
     (1) The effect of concentration, pH, ionic strength, and metal ions on gelhardness of pueraria starch were studied using the L8(27) orthogonal testes. Moreover,the effect of pueraria starch proportion, pH and ionic strength on the hardness andwater holding capacity (WHC) of protein-starch mixed gel were also studied. Theresults showed that the order of the factors which affect the hardness of puerariastarch is: K+>ionic strength>Ca2+>pueraria starch content>Mg2+. The hardness ofmixed gels of myofibrils and pueraria starch are higher than that of pure myofibrilsand pure pueraria starch case while the WHC is lower than that of the pueraria starchcase.The order of factors which effect the hardness of myofibrillar protein andpueraria starch mixed gels is: pueraria starch ratios> ionic strength>pH.
     (2) The influence of the treating conditions on the hardness, elasticity and water holding capacity of the myofibrillar protein gels were investigated by the single-factorexperiments, in which the ranges of the electric field strength, pulse numbers andheating temperature are15to55kV/cm,2to8and50to90℃, respectively. Theresearches results showed that the treatment of the high intensity pulsed electric fieldcan lead a significant change in the properties of the formed gel. Compared with theuntreated myofibrillar protein, the hardness, elasticity and water holding capacity ofthe HIPEF treated gels decrease when the electric field strength varied from15to25kV/cm, increase significantly when the electric field strength was35kV/cm, anddecrease again when the electric field strength is reached to45kV/cm. Under theelectric field strength of35kV/cm, the hardness, elasticity and water holding capacityof gel increase with the increase of pulse number, but the gradient is graduallydecreased. The gel has the optimal performances of hardness and elasticity, and thewater holding capacity at the heating temperature of80℃and70℃, respectively.
     (3) In order to produce the protein-starch gel, the mixed solution with variouspueraria starch content was firstly treated by HIPEF, and then processed by water bathtreatment. The gelling properties of the myofibril protein-pueraria starch mixed gelwere tested using single factor experiments and orthogonal analysis experiments, inwhich the different factors of pueraria starch content, electric intensity, and pulsenumber were studied. The results indicated that the mixed gels have favorable gellingproperties under the conditions of mix solutions with myofibril protein (5%) andpueraria starch (5%),30kv/cm HIPEF pretreatment, pulse number of6and water bathof80℃for30min. Effects degree of factors on the gelling properties of the mixedgels is electric intensity, pulse number and mass fraction of pueraria starch in theorder of decreasing evolutionary.
     (4) The effects of the HIPEF-assisted extraction of total flavonoids from puerariawere preliminary investigated, in which the technical parameters were optimized.Four factors including ethanol concentration (35%,45%,55%,65%,75%,85%, and95%), electric field intensity (10,20,30,40,50,60kV/cm), electric pulse number (0,2,4,6,8,10and12) and ratio of material-solvent (1:20,1:30,1:40,1:50,1:60and1:70) were investigated using the L9(34) orthogonal test. The results indicated that theratio of material-solvent is the main factor, followed by electric field intensity, pulsenumber and ethanol concentration. The optimal conditions were as follows:material-solvent ratio of1:40, electric field intensity of20kV/cm, pulse number of8 and ethanol concentration of75%. Under these conditions, the extraction yield of totalflavonoids can reach to5.12%which is higher then that of conventional extractionmethod for1.56%, and the microwave assisted extraction for1.92%. The resultssuggested that the HIPEF-assisted extraction process is feasible, and the extractionyield of total flavonoids from pueraria leaves was higher than that of the conventionalmethod.
     (5) The D-galactose induced aging mice were chose as the model and fed withdifferent gels that have the same content of pueraria lobata flavone to study theefficacy of the different gel on the antioxidant capacity in induced aging mice. The gelsamples contain three types of gel (Group A, B, C). The Group A is HIPEF processedmyofibrillar protein and pueraria starch mixed gel; Group B is heating processedmyofibrillar protein and pueraria starch mixed thermal gel; and Group C is myofibrillarprotein gel. The results show that by comparing with the control group, the activitiesof SOD, GSH-Px, CAT, and T-AOC in the serum, liver and brain tissues of the micefed by the gel contents flavone extract are significantly increased as well as thecontent of MDA is dramatically decreased. This result indicates that the flavonoidscontained in pueraria starch have the great effect of improving the activity ofantioxidase in subacute senile mice. Considering the changes among the groups, theantioxidant effect in a descending order is: Group A> Goup B> Group C> controlgroup, i.e. feeding the myofibrillar proteins and pueraria starch mixed gel whichproceeded by HIPEF can obtain the best antioxidant effect in mice.
     This study disscussed the mechanisms of the high-voltage pulse electric fieldtreatment on the formation and property of the protein gel and protein-starch mixedgel. The results of this study provide a basis for the further researches in this field.
     The results of this study indicated the mechanism of the high-voltage pulseelectric field that plays the role on protein gels and protein gels and protein-starchmixed gel to some extent, which provides an important reference value in theacademic for further research.
引文
[1]纳新.具有广阔市场前景的西式肉制——低温肉制品[J].中国食品,1999,4:31.
    [2]许志刚.磷酸盐在肉类加工中的作用[J].肉类工业,2001,(9):12.
    [3]王景安.淀粉对西式火腿品质的影响[J].肉类研究,1991,2:40-42.
    [4]杨速攀,彭增起.肌原纤维蛋白凝胶研究进展[J].河北农业大学学报,2003,(5):161-162.
    [5]杨龙江,南庆贤.肌肉蛋白质的热诱导凝胶特性及其影响因素[J].肉类工业,2001,(10):39-42.
    [6]韩敏义,徐幸莲,周光宏.肌球蛋白及其凝胶特性[J].江苏农业科学,2003,(3):67-70.
    [7]于巍,周坚.鱼类肌原纤维蛋白热凝及流变特性研究进展[J].食品科技,2007,11:14-16.
    [8]陈从贵,李珂昕,马力量,等.超高压对含有琼脂猪肉凝胶特性影响的试验[J].农业工程学报,2008,24(10):217-221.
    [9]孔保华,王宇,夏秀芳,等.加热温度对猪肉肌原纤维蛋白凝胶特性的影响[J].食品科学,2011,32(5):50-54.
    [10]陆海霞,张蕾,李学鹏,等.超高压对秘鲁鱿鱼肌原纤维蛋白凝胶特性的影响[J].中国水产科学,2010,17(5):1107-1114.
    [11]陈从贵,李珂昕,马力量,等.超高压对含有琼脂猪肉凝胶特性影响的试验[J].农业工程学报,2008,24(10):217-221.
    [12]刘义鹃,宛晓春.葛根资源的开发与利用[J].中国林副特产,1995,45(2):40-41.
    [13]郭建平,孙其荣.葛根药理作用研究进展[J].中草药1995,26(3):163-165.
    [14]顾志平,陈碧珠,冯瑞之,等.中药葛根及其同属植物资源的利用和评价[J].药学学报,1996,31(5):3.
    [15]朱秀媛,苏成业,李振华等.葛根有效成分的代谢研究[J].葛根素的代谢及其药代动力学分析.药学学报,1979,14(6):349-355.
    [16]何惟胜.葛根及其提取物治疗心脑血管疾病药理和临床研究进展[J].时珍国医国药,2001,12(5):470-471.
    [17]郭延生,魏彦明,梁剑平,崔颖.野葛根中提取分离葛根素的研究[J].甘肃农业大学学报,2004,39(2):1999-2002.
    [18]郭建平,孙其荣.葛根化学成分及临床应用研究概况[J].药学实践杂志,1996,14(3):146.
    [19]张葵,童亚飞,田应昌,等.葛根汁饮料对饮酒后血醇浓度和全血比粘度的影响[J].中草药,1995,26(7):364.
    [20]梁灵,魏益民,张国权,欧阳韶晖,罗勤贵,郭波莉.小麦淀粉凝胶质构特性研究[J].中国食品学报,2004,4(3):33-38.
    [21]丁文平,蒲萍萍,丁霄霖.大米淀粉理化指标对其凝胶特性的影响[J].无锡轻工大学学报,2002,21(5):477-481.
    [22]李琳,林静韵,李坚斌,陈玲,李冰,李晓玺.超声作用对马铃薯淀粉糊凝胶特性的影响[J].华南理工大学学报(自然科学版),2008,36(11):63-67
    [23]罗志刚,王颖,罗发兴.黄原胶对木薯淀粉糊性质的影响[J].华南理工大学学报(自然科学版),2010,38(12):95-99.
    [24]王锦莺.玉米凝胶淀粉胶凝机理及影响凝胶强度因素的研究[J].福州大学学报(自然科学版),1996,24(3):75-79.
    [25]杜存臣,颜惠庚.高压脉冲电场非热杀菌技术研究进展[J].常州工程职业技术学院学报,2006(47):14-19.
    [26]方胜,孙学兵,陆守道.利用高压脉冲电场加速冰解冻的实验研究[J].北京工商大学学报(自然科学版),2003(12):43-45.
    [27]黄小波,马美湖,曾新安.脉冲电场处理对鸡蛋蛋白液特性的影响[J].中国家禽,2011,33(7):16-22.
    [28]Smith, D.M. Protein interactions in gels: protein–protein interactions. In: ProteinFunctionality in Food Systems (edited by N.S. Hetiarachchy&G.R. Ziegler)[M].1994,209-224. New York: Marcel Dekker.
    [29]Heremans, K., van Camp, J.&Huyghebaert, A. High pressure effects on proteins.In: Food Proteins and Their Applications (edited by S. Damodaran&A. Paraf)
    [M].1997,473-502. New York: Marcel Dekker.
    [30]Kinsella, J.E., Rector, D.J.&Phillips, L.G. Physicochemical properties ofproteins: texturization via gelation, glass and film formation. In: ProteinStructure-Function Relationship in Foods (edited by R. Yada, R.L. Jackman&J.L.Smith)[M].1994,1-21. Cambridge: Blackie Academic.
    [31]Phillips, L.G., Whitehead, D.M.&Kinsella, J. Structure-Function Properties ofFood Proteins [M].1994,179-204. San Diego: Academic Press.
    [32]Wang, Ch, H.&Damodaran, S. Thermal gelation of globular proteins:weight-average molecular weight dependence of gel strength [J]. Journal ofAgriculture and Food Chemistry,1990,38,1157-1164.
    [33]Shimada, K.&Matsushita, S. Relationship between thermocoagulation andamino acid composition [J]. Journal of Agriculture and Food Chemistry,1980,28,413-417.
    [34]Keshavarz, E.&Nakai, S.. The relationship between hydrophobicity andinterfacial tension of proteins [J]. Biochimica et Biophysica Acta,1979,576,269-279.
    [35]Samejima, K., Oka, Y., Yamamoto, K., Asghar, A.&Yasui, T. Effects oftemperature, actin-myosinratio, pH, and salt and protein concentration onheatinduced gelling of cardiac myosin and reconstituted actomyosin [J].Agriculture and Biological Chemistry,1986,50,2101-2110.
    [36]Hongsprabhas, P.&Barbut, S. Protein and salt effect on Ca+2-induced coldgelation of whey protein isolate [J]. Journal of Food Science,1997,62,382-385.
    [37]Cheftel, J.L., Cuq, J.L.&Lorient, D. Prote′ines Alimentaries [M].1985,58-65.Paris: Techniques et Documentation Lavosier.
    [38]Hermansson, A.M. Aggregation and denaturation involved in gel formation. In:Functionality and Protein Structure (edited by A. Pour-El)[M]. ACS Symposium.Series92.1979,81-103. Washington, DC, American Chemical Society.
    [39]Kinsella, J.E., Rector, D.J.&Phillips, L.G.. Physicochemical properties ofproteins: texturization via gelation, glass and film formation. In: ProteinStructure-Function Relationship in Foods (edited by R. Yada, R.L. Jackman&J.L.Smith)[M].1994,1-21. Cambridge: Blackie Academic.
    [40]Zayas, J.F. Functionality of Proteins in Foods [M].1997,310-365. Berlin:Springer-Verlag.
    [41]Pomeranz, A. Functional Properties of Food Components[M].1991,155-165. SanDiego: Academic Press.
    [42]Border′as, A.J.&Montero, P. Fundamentos de la funcionalidad de las prote′nasen alimentos[J].. Revista de Agroqu′mica Y Tecnolog′a de Alimentos,1988,28,159-169.
    [43]Foegeding, E.A., Bowland, E.L.&Harding, C.C. Factors that determine thefracture properties of globular protein gels [J]. Food Hydrocolloids,1995,9,237-249.
    [44]李里特,刘志胜,辰巳英三.加工条件对豆腐凝胶物性品质的影响[J].食品科学,2000,21(5):26-29.
    [45]孔保华,耿欣,高兴华,李威娜.不同漂洗方法对鲢鱼糜凝胶特性的影响[J].食品工业,2000,1:42-43,41.
    [46]杨龙江,南庆贤.肌肉蛋白质的热诱导凝胶特性及其影响因素[J].肉类工业,2001,10:39-42.
    [47]罗永康,沈慧星,潘道东,王全宇.鲢鱼鱼糜蛋白质凝胶特性的研究[J].食品与发酵工业,2002,28(1):23-26.
    [48]彭增起,李继红.磷酸盐混合物对鸡胸肉盐溶蛋白凝胶特性的影响[J].食品科学,2006,27(7):58-61.
    [49]程鹏,木泰华,王娟.牛乳清蛋白与甘薯淀粉加热混合凝胶物化及微观结构特性的研究[J].食品工业科技,2007,28(7):94-100.
    [50]李俐鑫,迟玉杰,孙波.蛋清蛋白质凝胶质构特性的研究[J].食品工业科技,2007,28(8):57-60,63.
    [51]李俐鑫,迟玉杰,于滨.蛋清蛋白凝胶特性影响因素的研究[J].食品科学,2008,29(3):46-49.
    [52]迟玉杰.蛋清蛋白质的糖基化产物结构与凝胶强度关系的探究[J].食品科学,2009,30(21):485-488.
    [53]张茜,夏文水.壳聚糖对鲢鱼糜凝胶特性的影响[J].水产学报,2010,34(3):342-348.
    [54]石径,罗永康,黄辰,等.乳清蛋白与凝胶化条件对鱼糜凝胶特性的影响[J].渔业现代化,2011,38(3):35-38,44.
    [55]杨振,孔保华,夏秀芳,等.魔芋粉对鲤鱼肌原纤维蛋白凝胶特性的影响[J].食品科学,2012,33(11):116-120.
    [56]吴满刚.脂肪和淀粉对肌原纤维蛋白凝胶性能的影响机理[D].2010,江南大学.
    [57]罗自生,谢妍,刘颖峰.响应面法优化MTGase改善暹罗鳄肌原纤维蛋白凝胶品质的工艺条件[J].食品科学,2013.
    [58]张宏康,李里特,辰巳英三.超高压对大豆分离蛋白凝胶的影响[J].中国农业大学学报,2001,6(2):87-91.
    [59]王苑,朱学伸,周光宏,郭昌杰.高压处理对肌原纤维和大豆分离蛋白混合凝胶特性的影响[J].江西农业学报,2007,19(5):105-108.
    [60]郑捷,尚校兰,刘安军.超高压处理对海鲈鱼鱼肉凝胶形成作用的研究[J].食品科学,2013.
    [61]郝磊勇,李汴生,阮征,叶久东.高压与热结合处理对鱼糜凝胶质构特性的影响[J].食品与发酵工业,2005,31(7):35-38.
    [62]陆剑锋,邵明栓,林琳,等.卡拉胶和超高压对鱼糜凝胶性质的影响[J].农业机械学报,2011,42(12):164-170.
    [63]杨云,万焱,张寒娟.纤维素酶在葛根提取工艺中的应用[J].河南科学,2008,12(26):1503-1505.
    [64]杨欣欣,曹爱民等.葛根超微粉仿生提取条件的研究[J].辽宁化工,2008,3(37):147-149.
    [65]曾贵云.葛根的药理研究-葛根对犬血压血管反应性脑循环及外周循环的作用[J],中华医学杂志,1994,265.
    [66]杨金云.葛根抗心律失常研究[J].中国现代药理杂志,1998,8(2):53.
    [67]曾明.葛根的紫外光谱法鉴定[J].中草药,1997,28(6):362.
    [68]孙恩玲.野葛与粉葛化学成分的分析比较[J].山东医药工业,1997,16(1):43.
    [69]董丽萍.葛根对免疫机制的作用[J].中国药理学报,1998,19(4):339.
    [70]岳江文,胡小琴.葛根及葛根素对心血管系统的药用价值[J].中国中西医结合杂志,1996,16(6):38.
    [71]郑皓.葛根的研究与开发现状[J].氨基酸和生物资源,2006,28(2):24-26.
    [72]巴雅尔.葛根素对乳腺发育影响的研究[D].2008,内蒙古农业大学.
    [73]陈文杰.葛根药理作用及临床应用研究进展[J].中国现代医药杂志,2008,10(12):142-144.
    [74]陈文杰.葛根研究进展[J].中国中医药现代远程教育,2009,7(1):6-8.
    [75]郑皓,王晓静.葛根的药理作用研究概况[J].光明中医,2006,21(3):49-51.
    [76]付庆伟.葛根素口腔速崩片的研究[D].2008,西南交通大学.
    [77]卢秀彬,陈峰.高压脉冲电场在食品工业中的应用[J].肉类研究,2010,(4):79-81.
    [78]刘学军,殷涌光,范松梅,朱畅.高压脉冲电场与食品加工[J].中国林副特产,2006,(5):78-80.
    [79]Qin, U, Food pasteurization using high-intensity pulse-electric field[J]. FoodTechnology,1995.55(12):55.
    [80]Saleajh, Hamiltonwa, Effect of high electric filelds on microorganisms: I. killingof bacteria and yeast[J]. Biochim Bio-phys.1967(148):781-788.
    [81]Humberto, V, Olga M, Bai-Lin Q, et al., Non-thermal food preservation: Pulsedelectric fields[J]. Food. Science&Technology,1997.5(8):151-157.
    [82]Mingyu, J, Howard Z Q, and David B.M., Pulsed elelric field processing effectson flavor conpounds and microor ganisms of orange juice [J]. Food Chemistry,1999.65:445-451.
    [83]Barsotti L, Dumay E, Mu T H, et al. Effects of high voltage electric pulses onprotein-based food constituents and structures[J].Trends in Food Science andTechnology,2001,12(3):136~144.
    [84]Quass, DW, Palo A, Pulsed electric field processing in the food industry. A statusreport on PEF, Palo Alto, CA. Electric Power Research Institute.CR-109742,1997.
    [85]Heinz, V, Toepfl S, and Knor D, Impact of temperature on lethality and energyefficiency of apple juicepasteurization by pulsed electric fields treatment [J].Innovative Food Science and Emerging Technologies2003.4:167–175.
    [86]Ganeva, V, Galutzov B, and Teissie J, High yieldelectroextraction of proteinsfrom yeast by a flow process [J]. Analytical Biochemistry,2003.315(1):77.
    [87]Bendicho, S, Barbosa-Canovas G V, and Martin O, Milk processing by highintensity pulsed electric fields [J]. Trends in Food Science&Technology,2002.13(6~7):195.
    [88]Sato, M, Clements S, Formation of chemical species and their effects onmicroorganisms using a pulsed high-voltage discharge in water [J]. TEEETransactions on Industry Applications,1996.32(1,2):106.
    [89]崔晓美,杨瑞金,赵伟,等.高压脉冲电场对石榴汁杀菌的研究[J].农业工程学报,2007,23(3):252-256.
    [90]金声琅,殷涌光,王莹,赫桂丹.高压脉冲电场对番茄汁杀菌效果的研究[J],食品工业科技,2010,31(11):91-93.
    [91]励建荣,夏道宗.高压脉冲电场与脉冲强光灭菌技术的研究[J].食品研究与开发,2002(5):71-72.
    [92]丁宏伟.高压脉冲电场对牛乳的杀菌灭酶研究[D].2006,吉林大学.
    [93]罗艺,马美湖.液态蛋高压脉冲电场杀菌技术[J].中国家禽,2011,33(23):41-44.
    [94]孙静,孔繁东,祖国仁,等.高压脉冲电场对酵母菌和大肠杆菌存活率的影响[J].食品科学,2004,25(2):87-90.
    [95]王黎明,史梓男,关志成.脉冲电场非热杀菌效果分析[J].高电压技术,2005,31(2):64-66.
    [96]赵伟,杨瑞金,崔倩.高压脉冲电场对蛋清单增李斯特菌的杀灭效果[J].农业机械学报,2009,40(5):100~104,134.
    [97]赵伟,杨瑞金,崔晓美.高压脉冲电场应用于液蛋杀菌的研究[J].食品科学,2007,28(4):60-65.
    [98]赵武奇,殷涌光,关伟,姜长松.高压脉冲电场杀菌系统设计与试验[J].农业机械学报,2002,33(3):67-69.
    [99]赵瑾,杨瑞金,赵伟,等.高压脉冲电场对鲜榨梨汁的杀菌效果及其对产品品质的影响[J].农业工程学报,2008,24(6):239-244.
    [100]张鹰,曾新安,扶雄,于淑娟,朱思明.高场强脉冲电场液体非热灭菌效果研究[J].食品工业,2004(1):42-44.
    [101]钟葵,李玉杰,吴继红,廖小军,胡小松.高压脉冲电场对酿酒酵母杀菌效果影响和模型分析研究[J].食品工业科技,2007(5):66-71.
    [102]殷涌光,闫琳娜,李玉娟.用高压脉冲电场对桃汁非热杀菌的研究[J].农业机械学报,2006,37(8):89-93.
    [103]Ho, S Y, Mittal G S, and Cross J D, Effects of high field electric pulses on theactivity of selected enzymes [J]. Journal of Food Engineering,1997.31:69-84.
    [104]李迎秋,陈正行.高压脉冲电场对大豆胰蛋白酶抑制剂的钝化效果[J].安徽农业科学,2006,34(15):3800-3801.
    [105]殷涌光,赫桂丹,石晶.高电压脉冲电场催陈白酒的试验研究[J].酿酒科技,2005(12):47-50.
    [106]曾新安.豉香型米酒自然陈酿及高强电场催陈效果机理研究[D].2001,华南理工大学.
    [107]刘学军,殷涌光,范松梅,朱畅,罗广超.高压脉冲电场催陈葡萄酒香气成分变化的GC-MS分析[J].食品科学,2006(27):654-658.
    [108]刘学军.对干红葡萄酒改性与增香的研究[D].2007,吉林大学.
    [109]Yin, Y G, Han Y Z, and Han Y, Pulsed electric field extraction of polysaccharidefrom Rana temporaria chensinensis David [J]. International Journal ofPharmaceutics,2006.312:33-36.
    [110]D, Knorr, Impact of non-thermal processing on plant metabolites[J]. Journal ofFood Engineering,2003.56:131.
    [111]Alexander, A U, Volker H, and Dietrich K, Effects of pulsed electric fields oncell membranes in real food systems [J]. Innovative Food Science&EmergingTechnologies,2000:135-149.
    [112]金声琅,殷涌光.高压脉冲电场辅助提取番茄皮渣的番茄红素[J].农业工程学报,2010,26(9):368-373.
    [113]陈玉江,殷涌光,李扬,林松毅,刘静波.高压脉冲电场作用于蛋黄卵磷脂提取过程的研究[J].食品科学,2006(27):781-785.
    [114]殷涌光,金哲雄,王春利,安文哲.茶叶中茶多糖茶多酚茶咖啡碱的高压脉冲电场快速提取[J].食品与机械,2007(3):12-16.
    [115]殷涌光,韩勇,刘静波.应用高压脉冲电场加工天然绿色蔬菜饮料的方法研究[J].食品工业科技,2006(4):150-152.
    [116]王维琴,盖玲,王剑平.高压脉冲电场预处理对甘薯干燥的影响[J].农业机械学报,2005(8):154-156.
    [117]李迎秋,陈正行.高压脉冲电场对大豆分离蛋白功能性质的影响[J].农业工程学报,2006,22(8):194-198.
    [118]Yin, Y G, Han Y, and Liu J B, A novel protecting method for visual green colorin spinach puree treated by high intensity pulsed electric fields[J]. Journal ofFood Engineering,2007.79:1256-1260.
    [119]陈梅仙.高压脉冲电场对乳铁蛋白结构和生物活性功能的影响[D].2007,江南大学.
    [120]赫桂丹.PEF下牛骨钙离子化及胶原多肽提取优化综合开发研究[D].2009,吉林大学.
    [121]金声琅,殷涌光,王莹.脉冲电场协同加热对乳清蛋白凝胶质构特性的影响[J].农业机械学报,2013,44(1):142-146.
    [122]张铁华.蛋清活性蛋白高压脉冲电场提取及功能特性研究[D].2008,吉林大学
    [123]范松梅.高压脉冲电场作用下干红葡萄酒香气成分变化的研究[D].2008,吉林农业大学.
    [124]李兰英.利用高电压脉冲电场技术对鱼骨加工利用的研究[D].2007,吉林大学
    [125]韩玉珠.高压脉冲电场常温快速提取中国林蛙多糖工艺机理研究[D].2007,吉林大学.
    [126]王春利.利用PEF技术快速提取食用家畜DNA的实验研究[D].2007,吉林大学.
    [127]陶柳.高压脉冲电场萃取干松针中类黄酮物质的研究[D].2008,吉林大学.
    [128]李迎秋.脉冲电场对大豆蛋白理化性质和脂肪氧化酶的影响[D].2009,江南大学.
    [129]殷涌光,赫桂丹.用高电压脉冲电场促进牛骨可溶性钙快速溶出[J].吉林大学学报工学版,2009,39(1):249-253.
    [130]赵伟.高压脉冲电场在液态蛋杀菌中的应用及其对微生物和蛋白质的作用机制[D].2009,江南大学.
    [131]吴新颖,李钰金,郭玉华,等.高压脉冲电场技术在食品加工中的应用[J].中国调味品,2010,35(9):26-29..
    [132]殷涌光,卢敏,丁宏伟.高压电脉冲提取米糠多糖的影响因素研究[J].中国粮油学报,2006(5):25-28.
    [133]殷涌光,樊向东,刘凤霞,等.用高压脉冲电场技术快速提取苹果渣果胶[J].吉林大学学报:工学版,2009,39(5):1224-1228.
    [134]曾新安,高大维.高压电场脉冲在食品生化工业中的应用[J].食品科学,1996,17(7):3-6.
    [135]赵伟,杨瑞金,张文斌,华霄,唐亚丽.高压脉冲电场作用下蛋清蛋白功能性质和结构的变化[J].食品科学,2011,32(9):91-96.
    [136]张铁华,殷涌光.高压脉冲电场对食品中生物大分子的影响[J].食品科技,2007,7:16-20.
    [137]张本山,李芬芬,陈福泉.脉冲电场对西米淀粉物化性质的影响[J].华南理工大学学报(自然科学版),2011,39(9):17-21.
    [138]Qin, B, Usha R, and Pathakamury, Food PasteurizaLion Using High-IntensityPulsed Electric fields[J]. Food Technology,1995.55(12):55-60.
    [139]Jeyamkondan, S, Jayas D S, and Holley R.A., Pulsed ElectricField Processing ofFoods:A Review[J]. Journal of FoodProtection,1999.62(9):1088~1096.
    [140]Marselles-Fontanet, A R,&Martin-Belloso, O. Optimization and validation ofPEF processing conditions to inactivate oxidative enzymes of grape juice [J].Journal of Food Engineering,2007,83,452–462.
    [141]Sui Q A, Roginski H, Williams R P W, et al. Effect of pulsed electric field andthermal treatment on the physicochemical and functional properties of wheyprotein isolate [J]. International Dairy Journal,2011,21(4):206~213.
    [142]BarsoLLi, L, Merle P, and Chellel J C, Food processing by pulsed electric fields.2. biological aspects[J]. Rew Food Rew. Inl,1999.15(2):181-213.
    [143]Marquez, V O, MittaI G S, and Griffiths M.W., Destruction and inhibition ofbacterial spores by high voltage pulsed electric field [J]. Jounal of Food science,1997.62(2):399-401.
    [144]Yeom, H W, Zhang Q H, and Dunne C P, Inactivation of papain by pulsedelectric fields in a continuous system [J]. Food Chemistry,1999.67:53-59.
    [145]Zhong Han, Xin An Zeng, Shu Juan Yu, Ben Shan Zhang, Xiao Dong Chen.Effects of pulsed electric fields (PEF) treatment on physicochemical properties ofpotato starch [J]. Innovative Food Science and Emerging Technologies,2009,10:481-485
    [146]Ade-Omowaye, B I O, Angersbach, A, Taiwo, K A,&Knorr, D. Use of pulsedelectric field pre-treatment to improve dehydration characteristics of plant basedfoods [J]. Trends in Food Science and Technology,2001,12,285-295.
    [147]于巍.草鱼盐溶蛋白的提取及凝胶保水性和流变性质的研究[D].2009,武汉工业学院.
    [148]王玲娣.大豆蛋白改善鲢鱼肌原纤维蛋白功能特性的研究[D].2012,天津商业大学.
    [149]董秋颖.鸡肉肌原纤维蛋白与食品胶混合凝胶特性及其形成作用力研究
    [D].2010,南京财经大学.
    [150]杨玉玲,姜攀,贾继荣,马云.鸡肉肌原纤维蛋白与卡拉胶混合凝胶质构特性的研究[J].食品与发酵工业,2008,34(6):16-19.
    [151]杨玉玲,董秋颖,王素雅,董哲,马云,朱冰.明胶-肌原纤维蛋白混合凝胶形成的作用力[J].食品科学,2011,32(1):1-4.
    [152]Wonnop Visessanguan, Masahiro Ogawa, Shuryo Nakai. PhysicochemicalChanges and Mechanism of Heat-Induced Gelation of Arrowtooth FlounderMyosin [J]. Journal of Agricultural and Food Chemistry,2000,48:1016-1023
    [153]Xiong Y L. Structure-function relationships of muscle proteins. In Food Proteinsand TheirApplications [M], Damodaran, S, Paref, A, Eds; Dekker: New York,1997:341-392
    [154]Dayton W R, FoegEding E A, Allen C E. Interaction of myosin fibrinogen toform protein gels [J]. Journal of Food Science,1986,51(1):280-285
    [155]Egelandsdal B, Martinsen B, Autio K. Rheological parameters as predictor ofprotein Functionality-A model studyusing myofibrils of different fiber-typecomposition [J]. Meat Science,1995,39:97-111
    [156]Chan J K, Gill T A, Paulson A T. Thermal aggregation of myosin subfragmentsfrom cod and herring [J]. Journal of Food Science,1993,58:1057-1069
    [157]Lowey S, Slayter H S, Weeds A G, and Baker H. Substructure of the myosinmolecule.1.Subfragments of myosin by enzymatic degradation [J]. Journal ofMolecular Biology,1969,42:1-29.
    [158]Gazith J, Himmelfarb S, and Harrington W F. Studies on the subunit structure ofmyosin[J]. Journal of Biological Chemistry,1970,245:15-22.
    [159]Buttkus H. The sulflrydryl content of rabbit and trout myosins in relation toprotein stability [J]. Biochemistry and cell biology,1971,49:97-107.
    [160]Itoh, Y, Yoshinaka, R, and Ikeda, S. Effects of cysteine and cystine on the gelfornlation of fish meats on heating [J]. Bulletin of the Japanese Society ofScientific Fisheries,1979,45:341-345.
    [161]Niwa E, Matsubara Y, and Hamada I. Participation of disulfide bonding in theappearance of setting [J]. Bulletin of the Japanese Society of Scientific Fisheries,1982,48:727
    [162]Sano T, Ohno T, Otsuka-Fuchino H, Matsumoto J J, and Tsuchiya, T. Carpnatural actomyosin; thermal denaturation mechanism[J]. Journal of Food Science,1994,59:1002-1008.
    [163]Liu Y M, Lin T S, and Lanier T C. Thermal denaturation and aggregation ofactomyosin from Atlantic croaker [J]. Journal of Food Science,1982,47:1916-1919.
    [164]Elena Molina, D.A. Ledward. Effects of combined high-pressure and heattreatment on the textural properties of soya gels [J]. Food Chemistry,2003,(80):367-370
    [165]Chin K B, Go M Y, Xiong Youling. Konjac flour improved textural and waterretention properties of transglutaminase-mediated, heat-induced porcinemyofibrillar protein gel: Effect of salt level and transglutaminase incubation [J].Meat Science,2009,81(3):565-572.
    [166]王岩,王存堂,蒋继丰,等.离子强度和温度对乳清蛋白凝胶的影响[J].食品科学,2010,31(1):123-126.
    [167]Ribotta P D, Colombo A, Rosell C M, Enzymatic modifications of pea proteinand its application in protein-cassava and corn starch gels[J]. Food Hydrocolloids,2012,27(1):185-190.
    [168]王苑.不同处理方式对肌原纤维蛋白和大豆分离蛋白混合凝胶特性的影响[D].2008,南京农业大学.
    [169]奕金水.肉和淀粉[J].肉类工业,2005,259(5):45-48.
    [170]赵森林.在香肠中添加淀粉的研究概况[J].肉类研究,1992,2:37-39.
    [171]杜先锋,许时婴,王璋.淀粉凝胶力学性能的研究[J].农业工程学报,2001,17(2):16-17.
    [172]Lange R, Frank J, Saldana J L, et al. Fourth derivative UV-spectroscopy ofproteins under high pressure I Factors affecting the fourth derivative spectrum ofaromatic amino acids[J] European Biophysics Journal,1996,24:277-283.
    [173]Mombelli E, Afshar M, Fusi p Mariani, et al. The role of phenylalanine131inmaintaining the conformational stability of ribonuclease P2from Sulfolobussolfataricus under extreme conditions of temperature and pressure [J].Biochemistry,1997,36:8733-8742.
    [174]Wong, D.W.S. Mechanism and Theory in Food Chemistry [M].1989,48-62.New York: Avi/Van Nostrand Reinhold.
    [175]Kinsella, J.E., Rector, D.J.&Phillips, L.G. Physicochemical properties ofproteins: texturization via gelation, glass and film formation [M]. In: ProteinStructure-Function Relationship in Foods (edited by R. Yada, R.L. Jackman&J.L.Smith).1994,1-21. Cambridge: Blackie Academic.
    [176]Matsumura, Y., Chanyonguorakul, Y., Kamazawa, Y., Ohtsuka, T.&Mori, T..Enhanced susceptibility to transglutaminase reaction of a-lactoglobulin in themolten globule state[J]. Biochimica et Biophysica Acta,1996,1249,69-76.
    [177]Ferry, J D. Protein gels [J]. Advances in Protein Science,1948,4,1-76
    [178]Nakai, S. Structure-function relationship of food proteins with an emphasis onthe importance of protein hydrophobicity[J]. Journal of Agriculture and FoodChemistry,1983,31,676-683.
    [179]Foegeding, E.A., Dayton, W.R.&Allen, C.E.. Interactions of myosin-albuminand myosin-fibrinogen to form protein gels[J]. Journal of Food Science,1986,51,109-112.
    [180]Damodaran, S. Interrelationship of molecular and functional properties of foodproteins[M]. In: Food Proteins (edited by J.E. Kinsella&G.S. Soucie).1989,21-51. Champaign: The American Oil Chemist_Society.
    [181]Dumoulin, M., Ozawa, S.&Hayashi, R. Textural properties of pressure-inducedgels of food proteins obtained under different temperatures including subzero[J].Journal of Food Science,1998,63,92-95.
    [182]Balny, C.&Masson, P. Effects of high pressure on proteins [M]. Food ReviewInternational,1993,9,611-628.
    [183]Gilleland, G.M., Lanier, T.C.&Hamann, D.D. Covalent bonding inpressure-induced fish protein gels [M]. Journal of Food Science,1997,62,713-716,733.
    [184]Ikeuchi, Y., Tanji, H., Kim, K.&Susuki, A. Dynamic rheological measurementon heat-induced pressured actomyosin gels[M]. Journal of Agriculture and FoodChemistry,1992,40,1751-1755.
    [185]Angsupanich, K., Edde, M.&Ledward, D.A. Effects of high pressure on themyofibrillar proteins of cod and turkey muscle [M]. Journal of Agriculture andFood Chemistry,1999,47,92-99.
    [186]Pe′rez-Mateos, M. Estudio de hidrocoloides en la gelificacio′n de bacaladilla(Micromesistious Poutassou, risso) inducida te′rmicamente y poralta presio′n[M]. Tesis Doctoral. Spain: Universidad de Alcala′de Henares,1998.
    [187]Walkenstron, P.&Hermansson, A.M. Mixed gels of gelatine and whey proteinsformed by combining temperature and high pressure [J]. Food Hydrocolloids,1997,11,457-470.
    [188]Kolakowski, P, Dumay, E&Cheftel, J C. Effects of high pressure and lowtemperature on b-lactoglobulin unfolding and aggregation [J]. FoodHydrocolloids,2001,15,215-232.
    [189]Okamoto, M., Kawamura, Y.&Hayashi, R. Application of high pressure to foodprocessing: textural comparison of pressure-and heat-induced gels of foodproteins [M]. Agricultureand Biological Chemistry,1990,54,183-189.
    [190]Heremans, K., van Camp, J.&Huyghebaert, A. High pressure effects onproteins [M]. In: Food Proteins and Their Applications (edited by S. Damodaran&A. Paraf).1997,473-502. New York: Marcel Dekker.
    [191]Dumay, E.M., Kalichevsky, M.T.&Cheftel, J.C. Characteristics ofpressure-induced gels of b-lactoglobulin at various times after pressure release [J].Lebensmittell-Wissenschaft und-Technologie,1998,31,10-19.
    [192]Mulvihill, D.M.&Kinsella, J.E. Gelation of b-lactoglobulin: effects of sodiumchloride and calcium chloride on the rheological and structural properties of gels[J]. Journal of Food Science,1988,53,231-236.
    [193]McClements, D.J.&Keogh, M.K. Physical properties of cold-setting gelsformed from heat-denatured whey protein isolated [J]. Journal of the Science ofFood and Agriculture,1993,69,7-14.
    [194]Hongsprabhas, P.&Barbut, S. Protein and salt effect on Ca+2-induced coldgelation of whey protein isolate [J]. Journal of Food Science,1997,62,382-385.
    [195]Barbut, S.&Foegeding, E.A. Ca+2-Induced gelation of pre-heated whey proteinisolates [J]. Journal of Food Science,1993,58,867-871.
    [196]Nakayama, T., Niwa. E.&Hamada, I. New type of myosin gel induced by salts[J]. Agriculture and Biological Chemistry,1983,47,227-233.
    [197]Xiong, Y.L.&Kinsella, J.E. Mechanism of urea induced whey protein gelation[J]. Journal of Agriculture and Food Chemistry,1990,38,1887-1891.
    [198]Huggins, C., Tapley, D.F.&Jensen, E.V. Sulphydryl-disulphide relationship inthe induction of gels in proteins by urea [J]. Nature,1951,167,592–593.
    [199]Katsuta, K., Hatakayama, M.&Hiraki, J. Isothermal gelation of proteins.1.Urea induced gelation of whey proteins and their gelling mechanism [J]. FoodHydrocolloids,1997,11,367-372.
    [200]Niwa, E., Sato, K.&Hamada, I. New gelling properties of Alaska pollackfrozen mince induced by urea [J]. Bulletin of Japan Society Science Fisheries,1982,48,629-631.
    [201]Xiong, Y.L.&Kinsella, J.E. The effect of pH, thiol reagent and time onproperties of urea-induced whey protein gels [J]. Food Hydrocolloids,1990,4,245-248.
    [202]Hermansson, A.M., Harbitz, O.&Langton, M. Formation of two types ofbovine myosin gels [M]. Journal of the Science of Food and Agriculture,1986,37,69-84.
    [203]Otte, J., Ju, Z.Y., Fargemand, S., Lonhat, M.E.&Qybt, K.B. Protease-inducedaggregation and gelation of whey proteins [J]. Journal of Food Science,1996,61,911-915,932.
    [204]Oakenfull, D., Pearce, J.&Burley, R.W. Protein gelation [M]. In: Food Proteinsand Their Applications (edited by S. Damodaran&A. Paraf).1997,111-142.New York: Marcel Dekker.
    [205]Fretheim, K., Egelandsdal, B., Harbitz, O.&Samejima, K. Slow lowering of pHinduces gel formation of myosin [M]. Food Chemistry,1985,18,169-175.
    [206]Venugopal, V., Doke, S.N.&Nair, P.M. Gelation of shark myofibrillar proteinsby weak organic acids [J]. Food Chemistry,1994,50,185-190.
    [207]Chawla, S.D., Venugopal, V.&Nair, P.M. Gelation of proteins from washedmuscle of threadfin bream (Nemipterus japonicus) under mild acid conditions [J].Journal of Food Science,1996,61,362-366,371.
    [208]Ngapo, T.M., Wilkinson, B.&Chong, R..1,5-Glucono-d-lactone-inducedgelation of myofibrillar protein at chilled temperatures [J]. Meat Science,1996,42,3-13.
    [209]Ngapo, T.M., Wilkinson, B., Chong, R.&Haisman, D. Gelation of BovineMyofibrillar Proteins by1,5-Gluconolactone [M]. In: Proceedings of the38thInternational Congress on Meat Science and Technology.1992,1095-1098.France: Clermont-Ferrand.
    [210]Sakamoto, H., Kumazawa, Y.&Motoki, M. Strength of protein gels preparedwith microbial transglutaminase as related to reaction conditions [J]. Journal ofFood Science,1994,59,866-871.
    [211]Nonaka, M., Toiguchi,S., Sakamoto, H., Kawajiri, H., Soeda, T.&Motoki, M.Changes caused by microbial transglutaminase on physical properties of thermalinduced soy protein gels [J]. Food Hydrocolloids,1994,8,1-8.
    [212]Fargemand, M., Otte, O.&Quist, K.B. Enzymatic cross-linking of wheyproteins by a Ca2+-independent microbial transglutaminase from Sterptomycesludicus [J]. Food Hydrocolloids,1997,11,19-25.
    [213]Kang, I.J., Matsumura, Y., Ikura, K., Motoki, M., Sakamoto, H.&Mori, T.Gelation and gel properties of soybean glycinin in a transglutaminasecatalysedsystem [J]. Journal of Agriculture and Food Chemistry,1994,42,159-165.
    [214]Matsumura, Y., Lee, D.-S.&Mori, T. Molecular weight distributions ofa-lactoglobulin polymers formed by mammalian and microbial transglutaminase[J]. Food Hydrocolloids,2000,14,49-59.
    [215]刘火安,贾云,戴传云,王宾豪,王伯初.葛根总黄酮分离纯化的研究[J].生物技术通讯,2005,16(5):522-524.
    [216]刘火安.葛根等中药材高效液相色谱指纹图谱的研究[D].2007,重庆大学.
    [217]马海乐,王超,刘伟民.葛根总黄酮微波辅助萃取技术[J].江苏大学学报,2005,2(26):98-100.
    [218]范礼理.葛根黄酮对犬冠脉心脏血液动力学和心肌代谢的作用[J].中华医学杂志,1995,11:724.
    [219]郭建平,孙其荣,周全,等.葛根总黄酮不同提取工艺的探讨[J].中草药,1995,26(10):522-523.
    [220]赵浩如,凤香.葛根总黄酮的提取方法研究[J].中成药,2000,11(22):755-757.
    [221]陆英,吴朝比,蒋华军,等.红薯叶黄酮分离纯化工艺及抗氧化性研究[J].食品科学,2009,30(14):114-118.
    [222]徐清萍,何培新,朱广存.大孔树脂分离怀菊花黄酮的研究[J].食品工业科技,2011,32(04):103-106.
    [223]李亚娜,林永成,佘志刚.响应面分析法优化羊栖菜多糖的提取工艺[J].华南理工大学学报(自然科学版),2004,32(11):29-31.
    [224]刘洋,赵谋明,杨宁.响应面分析法优化仙人掌多糖提取工艺的研究[J].食品与机械,2006,22(6):42-45.
    [225]李艳红,刘坚,江波,张涛.鹰嘴豆蛋白酶解物对D-半乳糖衰老小鼠抗氧化能力的影响.营养学报,30(2):161-164.
    [226]曹瑞珍,魏永春,张国文,佘集凯.地锦草总黄酮对D-半乳糖衰老模型小鼠抗氧化作用的研究[J].卫生研究,2007,36(3):387.
    [227]王超,包玉双,曲凤玉,白晶,白大芳,魏晓东.甘草对老年大鼠CAT、GSH-PX、LPO影响的试验研究.黑龙江医药科学,2000,23(2):6-7.
    [228]杨江涛,杨娟,杨江冰,舒适.刺梨多糖对衰老小鼠体内抗氧化能力的影响.营养学报,30(4):407-409.
    [229]胡春,丁宵霖.黄酮类化合物在不同氧化体系中的抗氧化作用研究[J],食品与发酵工业.1996(3):46-53.
    [230]徐晓虹等.葛根素抗D-半乳糖致衰老小鼠的脂质过氧化作用[J],中国中药杂志,2003,28(1):66-69.
    [231]Li-Chan E. Heat-induced changes in the proteins of whey protein concentrate [J].Journal of Food Science.1983,48(1):47-56.
    [232]Unal G, El SN, Kilic S. In vitro determination of calcium bioavailability of milk,dairy products and infant formulas [J]. International Journal of Food Sciences andNutrition,2005,56(1):13-22.
    [233]王娟.牛乳清蛋白加压凝胶消化性及其钙生物利用率的研究[D].2008,中国农业科学院.
    [234]赵丽娟,王翠艳,陈崇军.葛根总黄酮的两种不同提取方法比较[J].鞍山钢铁学院学报,2002,25(2):105-107.
    [235]倪爱威.马齿苋总黄酮提取及其抗氧化功能评价[D].2010,扬州大学.
    [236]黄迪惠,胡崇琳,CREDY H M,等.莲子壳提取物中黄酮类物质的抗氧化活性及结构初探[J].食品科学,2009,30(23):209-213.
    [237]倪爱威,崔桂友,陆广念,等.马齿苋提取物对D-半乳糖致衰老的小鼠体内抗氧化效应[J].营养学报,2010,32(3):297-298.
    [238]任旭,陈贵林.唐古特白刺果实提取物抗氧化活性评价[J].食品科学,2011,32(3):95-97.
    [239]方敏,王耀峰,宫智勇.15种水果和33种蔬菜的抗氧化活性研究[J].食品科学,2008,29(10):97-100.
    [240]徐胜龙,杨建雄.柿子醇提取物的体外抗氧化研究[J].食品科学,2008,29(4):131-134.
    [241]Sheng-lang Jin, Yong-guang Yin. In vivo antioxidant activity of total flavonoidsfrom indocalamus leaves in aging mice caused by D-galactose [J]. Food andChemical Toxicology,2012,50(10):3814-3818.
    [242]Song X, Bao M Li D, Li Y M. Advanced glycation in D-galactose inducedmouse aging model [J]. Mechinisms of aging and development,1999,108(3):239-251.
    [243]Kasapolu M, zben T. Alterations of antioxidant enzymes and oxidative stressmarkers in aging [J]. Experimental Gerontology,2001,36:209-220.
    [244]Calabrese G, Scapagnini A, Ravagna C, et al. Increased expression of heat shockproteins in rat brain during aging: relationship with mitochondrial function andglutathione redox state [J]. Mechanisms of ageing and development,2004,125:325-333.
    [245]Giovanelli G, Buratti S. Comparison of polyphenolic composition andantioxidant activity of wild Italian blueberries and some cultivated varieties [J].Food Chemistry,2009,112(4):903-908.
    [246]Kirakosyan A, Seymour E M, Noon K R, et al. Interactions of antioxidantsisolated from tart cherry (Prunus cerasus) fruits [J]. Food Chemistry,2010,122(1):78-83.
    [247]Ardestani A, Yazdanparast R. Antioxidant and free radical scavenging potentialof Achillea santolina extracts [J]. Food Chemistry,2007,104:21-29.
    [248]赵雪莹.二至丸对D-半乳糖致衰老大鼠抗氧化能力及其机理的实验研究[D].2007,黑龙江中医药大学.
    [249]方勤,金声琅.徽州贡菊总黄酮对D半乳糖致衰老小鼠的抗氧化作用[J].食品工业科技,2012,33(15):357-359.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700