用户名: 密码: 验证码:
基于差别度检验的电子舌应用方法学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子舌作为智能感官仪器,是随着感官品评技术的不断发展而发展起来的,并正在为人类发展发挥着重要作用。电子舌检测的突出特点是综合分析产品的性质,不需要对样品进行任何处理,是一种无损、快速的现代化检测仪器,而且与感官品评相比又具有客观、科学等特点,迎合了现代社会快速发展的需求。所以电子舌虽然只经历了不到三十年的发展,但是已表现出了巨大应用潜力,不仅实现了基本味物质的区分和辨识,而且渗透到了食品研究的各个领域。但是纵观电子舌应用的方方面面,基本是基于主成分分析统计方法进行区分和辨识,在表达样品差别程度方面研究甚少。电子舌的开发和利用的目的就是使感官品评工作科学化、客观化和量化以代替人的感官品评为终极目标。所以仅仅是对物质的区分是远远不够的,应该将样品间的差别达到一个量化的程度,这是今后电子舌取得广泛应用必须解决的问题。虽然也有研究者曾提出了用距离d来表征两类样品间相对差别,但是在很多方面还有待于深入研究。
     本研究是基于智能感官领域相关研究存在的问题,着重从以下几个层面进行:(1)电子舌检测阈值和差别度理论研究,从仿生意义角度对经典心理物理学定律在电子舌物理传感器刺激响应方面的适用性进行研究,探讨基于差别度检验的电子舌检测理论依据;(2)规范出电子舌差别度检验的方法学框架,通过一定的手段将电子舌检测样品间的差别量化,建立样品间的差别度,科学的表征样品间的差别,并对电子舌检测不同样品的结果进行比较;(3)通过实例应用来对电子舌样品差别度表示方法的科学性进行验证;(4)对以电子舌和电子鼻为代表的智能感官仪器性能进行评价。本研究即从实际应用出发,解决电子舌应用中存在的实际问题。本课题主要研究结果如下:
     1.定义了电子舌区分阈值的概念并规定了检测方法。差别阈为电子舌能够区分的样品的最小差别程度,即电子舌的灵敏度。将电子舌每个传感器每个频率段认为是一个单元,采用成对比较法,分别计算每个单元PCA区分的DI值,DI>0时是刚能区分开的临界值,而且是在高于该值时都能稳定的区分,所以认为当前的值是每个单元的差别阈值,再将各个单元综合起来,根据统计的每个单元的DI>0的数目与总的数目18的比值,为区分概率,即电子舌的区分能力Da%,当Da%达到50%或以上,所对应的浓度记为电子舌传感器阵列对该物质区分的差别阂值。根据上述方法分析和检测了10种味物质的差别阈值,并对电子舌与人的灵敏度进行了对比,通过比较可知,除了蔗糖、咖啡因和甘氨酸电子舌区分不如人灵敏外,对硫酸奎宁区分与人相近,其他的味物质如柠檬酸、酒石酸、AK糖、氯化钠、氯化钾、谷氨酸钠电子舌区分灵敏度要远高于人类。
     2.定义了表征电子舌检测样品间差别度的概念、表示方法和差别度检验方法。
     在几何空间上,对两个样品差别程程度大小的度量,即差别度(Differential degree, Dd),是通过计算两样品间的距离Da值来反映的,通过简单溶液分析,Dd值与物理刺激量呈现正相关,Dd值越大说明样品间的差别程度越大。Dd的引入将样品间不能度量的差别以具体数值的形式表现出来。建立了两种电子舌差别检验方法:一是成对比较检验法,确定一个对照样品R(性质稳定,且与所比较的样品属同一类)和一系列待检测样品(1,2,3,4……i),待检样品分别与对照样进行比较;二是顺序检测法,分别比较样品间的相对差别度,或将一系列样品分别与对照样进行比较。
     3.通过对八种味物质溶液分析可知,电子舌检测样品的差别度Dd值与物理刺激强度间存在类似费希纳定律的现象。电子舌检测的样品Dd值与I(溶液浓度)间呈现对数关系,刺激强度按几何级数递增,而电子舌检测的样品间差别度按算术级数递增。电子舌检测样品间Dd值与I的关系与心理物理学研究中的费希纳定律类似,为今后电子舌的研究与应用奠定了一定的理论基础。
     4.电子舌检测与感官品评技术结合实现了不同品牌绿茶饮料的区分,中国黄酒品牌区分、种类区分和不同年份区分,两种分析技术结果相互印证。
     确定了茶味、酸度、甜度、苦涩感作为茶饮料感官品评的感官特性指标,确定醇香、酱香、酸、甜、苦、涩、辛辣感作为黄酒感官品评的感官特性指标。根据电子舌检测样品间的差别度Dd值大小可以判定样品间差别程度的大小。
     对电子舌检测数数据采用DFA方法可以实现对不同品牌绿茶饮料进行辨识,辨识正确率100%;采用SIMCA方法可以实现绍兴黄酒与非绍兴黄酒的辨识,辨识正确率93.3%。
     5.建立了产品货架期分析和质量控制与管理的电子舌差别检验和感官三点检验方法。
     采用顺序检测法,分析了黄酒敞口放置时的质量变化情况。随着敞口放置时间的延长,Dd值有增大的趋势,即样品的差别度与时间具有正相关变化趋势。通过电子舌检测结合感官品评,12h可作为黄酒在室温下敝口放置的质量控制临界值,在12h或时间更长时,黄酒的感官质量明显变差,而且已经能够被人类所察觉。通过建立的Dd值与时间关系的数据模型可以对未知样品的质量和货架期进行分析预测,达到产品质量控制的日的。
     采用成对比较法,分析橙汁饮料在不同条件处理时,根据Dd值判定其质量变化情况。窒温24℃处理对橙汁饮料的质量影响不大;而在高温37℃处理对其质量影响显著,Dd值随着处理时间的延长具有不断增大的趋势,将5h作为橙汁饮料在高温下质量控制临界点,当Dd值大于2.67时,产品就会发生较大的质量变化。
     6.提出并构建了以检测效率、重复性、区分稳定性、灵敏性检测限这五个指标为标准的智能感官仪器(电子舌、电子鼻)性能评价方法,规范了操作方法和数据处理方法。依据构建的性能评价方法,对伏安电子舌的性能进行了研究;同时对本课题组开发的智鼻和某电子鼻的性能进行了研究和比较。
Electronic tongue (E-Tongue), one kind of intelligent sensory instruments, was produced with the development of sensory evaluation techniques, and in time, its applications have been increasing. This device is characterized by analysis of the overall characteristic, non-destructive process for the samples and designed for rapid detection. It has proven to be a good alternative for sensory evaluation techniques with objective and scientific, meets with the rapid development of the modern society. Less than30years since its development, it has been proven to be an ideal alternative for traditional chromatographic and in the analysis of food. Its great application potential has been expressed gradually; it has not only succeeded in distinguishing and identifying basic taste substances, but also in penetrating into various fields of food research. All of these studies have been mainly based on the principle component analysis (PCA) to distinguish and recognize substances qualitatively. Minimal research efforts in the quantitative expression of the sample difference have been undertaken. The purpose of the development and use of the E-Tongue is to make sensory evaluation scientific, objective, and quantitative, with the end view of using it in artificial sensory evaluation. Material distinction is not enough; the difference between samples must be quantified and resolved for a wider application of the E-Tongue in the future. Although researchers have proposed using a distance to characterize the relative difference between the two types of samples, and this research remains to be a concern worthy of further investigation.
     This research was inspired by a related study in sensory field. In the intelligent sensory field, issues arise from the following aspects:first, the research of the threshold of the substances detected by E-Tongue, and the applicability of the classical law of psychophysics in E-Tongue and the exploration of the theoretical foundation based on difference test; second, the confirmation of the methodology used in the difference test for E-Tongue applications to qualify differences of the samples, establish the differential degree(Dd), characterize differences between samples scientifically, and compare the results of different samples; third, it is also the intent of the research to validate the science behind sample difference; forth, evaluate the performance of the intelligent instruments, such as E-Tongue and Electronic nose. This paper mainly embarked from the practical application angle, and resolved actual existing questions on the E-Tongue as a handy, rapid, and objective method. The results are showed as follows:
     1. Established and confirmed the concept and test method of the threshold detected by E-Tongue. The difference threshold was defined as the smallest difference between samples distinguished by E-Tongue, and that was sensitivity. Took each frequency of each sensor as an unit, using the paired comparison method, calculated DI value of each unit distinguished by PCA (Principal Component Analysis, PCA). The ratio of the units with DI>0and the total number18which is confirmed as the distinction ability (Da%) of E-Tongue. When Da%has reached to50%or above, recorded the corresponding concentration minus the control as the difference threshold of E-Tongue sensors array.10different kinds of taste substances were detected by E-Tongue and got the threshold of each substance. It was compared with the human, the results as followed:sugar, caffeine and glycine detected by E-Tongue were less sensitive than human; quinine sulfate was similar with human; others such as citric acid, tartaric acid, acesulfame, sodium chloride, potassium chloride and sodium glutamate were more sensitive than human.
     2. The concept of differential degree (Dd) is defined; it is tested by the distance between two classes. The higher the Dd value was, the greater difference existed, and vice versa. There are two differential degree test methods. The first one is the paired comparison test. There is a control sample R, which is stable properties belonging to the same category with the samples to be tested, and a series of the sample to be tested (1,2,3,4...... i), compared the test sample and the control sample respectively. The second one is sequential detection. Compared the relative Dd value between two samples respectively, or compared the samples and the control sample respectively.
     3. Eight different kinds of basic taste substances were observed and a series of solutions were detected by E-Tongue with sequence order. The results showed that the Dd value was logarithmically increased with concentration, and the stimulus intensity increased at a geometric rate, whereas the differential degree increased at an arithmetic rate. This phenomenon was similar to Fechner's law in the field of psychophysics. The logarithmic relationship between the Dd value and concentration laid a theoretical foundation for E-Tongue detection.
     4. Different brands of green tea beverage, and Chinese rice wine with different brands, different types and different ages were detected by E-Tongue and sensory evaluation. The results of the two ways were consistent.
     The sensory attributes of green tea beverage such as tea flavor, sour, sweet, bitter were confirmed. Also the sensory attributes of Chinese rice wine such as ethanol, sour, sweet, bitter, astringent, pungent were confirmed. It can be evaluated the differential degree between two samples using Dd value.
     The different brands of green tea can be identified by using DFA method with the correct rate of100%. The Shaoxing rice wine and non-Shaoxing rice wine can be identified by using SIMCA method with the correct rate of93.3%.
     5. It was described a technique of shelf life analysis and quality control method based on E-Tongue test and sensory triangle test.
     Chinese rice wine was detected by E-Tongue with sequence order, the Dd value of samples changed positively with exposure time. According to the result, it was considered that the Chinese rive wine was exposured for twelve hours as the quality control point, otherwise the quality was degrade. At the same time, it can be predicted the shelf life and quality based on the model of time and the Dd value. The orange juice beverage was detected by paired comparison test. The quality changed little at room temperature (24℃), but high temperature (37℃) can accelerate changes of the products, and the Dd value of samples changed positively with processing time. A quality control point was set for instance,5h, when Dd value was greater than2.67, the quality for orange juice beverage stored at37℃degraded.
     6. The paper proposed the evaluation method of intelligent sensory instrument, such as electronic tongue and electronic nose, with the performance parameters as efficiency, repeatability, distinction stability, sensitivity and the detection limit. According to the evaluation method, the voltammetry E-Tongue was studied; at the same time, Smartnose and some brand electronic nose were studied. Smartnose and some brand electronic nose have there own advantages and disadvantages, need to be futhere improved.
引文
包启安.新石器时代出土文物与我国酒的起源[J].中国酿造,1994,2:36-38.
    鲍忠定,许荣年.黄酒香气成分的分析[J].酿酒科技,1999,95(5):66-67.
    陈晓明,李淑芳,马明辉.电子鼻在天然苹果香精检测标准建立中的应用研究[J].检测与分析,2007,10(4):34-40.
    陈旭俊.工业清洗剂及清洗技术[M].北京:化学工业出版社,2002:25-414.
    丁士晟.多元分析方法及其应用[M].长春:吉林人民出版社,1981.
    董捷,张红城,李春阳.电子鼻对不同地域的蜂胶气味测定的初步研究[J].食品科学,2008,29:468-470.
    范佳利,韩剑众,田师一,等.基于电子舌的乳制品品质特性及新鲜度评价[J].食品与发酵工业,2009,35(6):177-181.
    高永梅,刘远方,李艳霞等.主要香型白酒的电子鼻指纹图谱[J].酿酒科技,2008,5:107-109.
    龚如英,王飞,刘雅莉,等.韦伯-费希纳定律评价模型在景观环境质量评价中的应用[J].西北林学院学报,2006,21(1):131-135.
    郭希山,潘敏,李光,等.基于凝胶与纳米碳管复合体化学传感器的研究及人工味觉应用[J].传感器技术学报,2003,16(4):447-451.
    郭希山,童基均,杨祥龙,等.高聚物礅黑复合体化学传感器的研究及其在电子舌中的应用[J].传感器技术学报,2006,19(3):569-572.
    郭翔,徐岩,赵光鳌.黄酒挥发性风味物质的研究[J].酿酒科技,2004,5:65-67.
    韩剑众,黄丽娟,顾振宇,等.基于电子舌的肉品品质及新鲜度评价研究[J].中国食品学报,2008,8(3):125-132.
    韩剑众,黄丽娟,顾振宇,等.基于电子舌的鱼肉品质及新鲜度评价[J].农业工程学报,2008,24(12):141-144.
    贺玮,胡小松,赵镭,等.电子舌技术在普洱散茶等级评价中的应用[J].食品工业科技,2009,30(11):125-131.
    胡健,池国红,何喜红.黄酒发酵过程中主要香气成分的变化[J].酿酒科技,2007,12:60-61.
    胡晓晖.电子鼻实验平台的设计与构建研究[D].杭州:浙江工商大学,2010.
    黄国柱.汉中黄酒起源初探[J].中国酿造,1999,6: 32-35.
    惠国华,陈裕泉.基于电子鼻系统的不同风味绍兴黄酒区分方法研究[J].传感技术学报,2011,12:1799-1803.
    贾俊平,何晓群,金勇进.统计学(第二版)[M].北京:中国人民大学出版社,2004.
    江铭虎,王琳,江铭炎.智能听觉计算机操作系统的设计与实现[J].山东师大学报(自然科学版),1994,3:63-67.
    姜莎,陈芹芹,胡雪芳,等.电子舌在红茶饮料区分辨识中的应用[J].农业工程学报,2009,25(11):345-349.
    焦庆祝,何荣桓,王建华.工业设各化学清洗技术[M].北京:石油工业出版社,1995:90-159.
    李德茂,陈利梅,马淑凤.电子鼻在酱油识别中的应用研究[J].中国酿造,2010,4: 107-109.
    李华,丁春辉,尹春丽,等.电子舌对昌黎原产地干红葡萄酒的区分辨识[J].食品与发酵工业,2008,34(3):130-132.
    李阳,陈芹芹,胡雪芳.电子舌技术在啤酒口感评价中的应用[J].食品研究与开发,200829(11):122-127.
    梁逸曾,俞汝勤.化学计量学[M].北京:高等教育出版社,2003.
    梁治齐,张宝旭.清洗技术[M].北京:中国轻工业出版社,1998: 25-414.
    刘约权.现代仪器分析(第二版)[M].北京:高等教育出版社,2006.
    鹿小利.基于电子舌的黄酒品质检测[D].杭州:浙江大学,2007.
    罗剑毅,王俊,徐亚丹.基于电子鼻雪青梨贮藏期检测的实验研究[J].科技通报,2007, 23(3):378-382.
    倪赞.中国黄酒保健功能的研究[D].杭州:浙江大学,2006.
    庞林江,王俊,路兴花.电子鼻判别小麦陈华年限的检测方法[J].传感技术学报,2007,8(20):1717-1722.
    沈清,汤霖.模式识别导论[M].长沙:国防科技大学出版社,1998,3-10.
    生庆海,张爱霞,马蕊.乳与乳制品感官品评[M].北京:中国轻工业出版社,2009.
    史永刚,冯新沪,李子存.化学计量学[M].北京:中国石化出版社,2002.
    藤媳昭,相泽益男,井上徹.电化学测定方法[M].北京:北京大学出版社,1995:10-55.
    田高友,褚小立,袁洪福,陆婉珍.近红外光谱仪器主要技术指标与评价方法概述[J].现代科学仪器,2005(4):17-21.
    田师一.多频脉冲电子舌系统构建及应用[D].杭州:浙江工商大学,2007.
    田晓静.基于电子舌的啤酒品质检测[D].杭州:浙江大学,2007.
    汪立平,徐岩,王栋,等.苹果酒香气成分研究进展[J].食品与发酵工业,2002,7:61-67.
    王阿牛,成淑芝.黄酒的风味与营养价值[J].食品与机械,1994,2:16-17.
    王俊,姚聪.基于电子舌技术的葡萄酒分类识别研究[J].传感技术学报,2009,22(8):1088-1093.
    王立媛,曹建明.黄酒中挥发性风味物质检测方法的进展[J].中国卫生检验杂志,2006,3:380-381.
    王利平.固相微萃取气质联用分析黄酒中的氮基甲酸乙酯[J].江苏食品与发酵,2003,115(4):3-6.
    王平.人工嗅觉与人工味觉[M].北京:科技出版社,2000.
    王茹,田师一,邓少平.智舌在白酒区分辨识中的应用研究[J].食品研究与开发酿酒科技,2008,11:54-56.
    王志,季晓东,武干钧.酒中挥发性物质的分析及风味评价[J].酸酒科技,2001,4:47-49.
    伍慧方,薛璐,胡志和,等.借助电子鼻对中式传统奶酪货架期进行预测[J].食品与发酵工业,2010,36(2):150-154.
    徐亚丹,王俊,赵国军.基于电子鼻对掺假的“伊利”牛奶的检验[J].中国食品学报,2006,5(6):111-117.
    许国根,许萍萍.化学化工中的数学方法及MATLAB实现[M].北京:化学工业出版社,2010:51-85.
    许禄,邵学广.化学计量学方法[M].科学出版社,2004.
    薛文博,易爱华,张增强,等.基于韦伯-费希纳定律的一种新型环境质量评价法[J].中国环境监测,2006,22(6):57-59.
    殷勇.嗅觉模拟技术[M].北京:化学工业出版社,2005:12-13.
    于慧春,王俊.电子鼻技术在茶叶品质检测中的应用[J].传感技术学报,2008,21(5):748-753.
    袁志发,周静芋.多元统计分析[M].北京:科学出版社,2002.
    张宝,刘静玲,陈秋颖,等.基于韦伯-费希纳定律的海河流域水库水环境预警评价[J].环境科学学报,2010,30(2):268-274.
    张德丰.MATLAB数字信号处理与应用[M].北京:清华大学出版社,2000:87-119.
    张东星,罗之纲,田师一,等.智舌在茶类饮料生产中的应用[J].食品研究与开发,2010,31(3):184-186.
    张红梅,何玉静.电子鼻技术的历史、研究现状及发展前景[J].科技信息,2008,27: 23-25.
    张军,李小昱.基于虚拟仪器的淡水鱼鲜度电子鼻测量系统[J].农业工程学报,2009, 25(3):110-114.
    张水华,孙君社,薛毅.食品感官鉴评[M].广州:华南理工大学出版社,1999.
    张素平,田师一,邓少平.智舌对基本味物质辨识能力的实验研究[J].中国食品学报,2009,9(12):111-116.
    张素平.智舌传感器阵列漂移校正技术研究[D].杭州:浙江工商大学食品与生物工程学院,2009:21-22.
    张覃轶,胡伟,叶卫平.一种基于电子鼻的食醋识别新方法[J].传感器与微系统.2008,27(6):18-22.
    张尧庭,方开泰.多元统计分析引论[M].北京:科学出版社,1982.
    赵广英,林晓娜,中科敏,等.智舌对四类霉菌的区分[J].研究传感技术学报,2009,22(4):451-455.
    中华人民共和国国家标准.茶饮料(GB/T21733-2008).北京:中国标准出版社,2008.
    中华人民共和国国家标准.地理标志产品绍兴酒(绍兴黄酒)(GB/T17946-2008).北京:中国标准出版社,2008.
    中华人民共和国国家标准.黄酒(GB/T13662-2008).北京:中国标准出版社,2008.
    中华人民共和国国家标准.感官分析方法学采用三点选配法(3-AFC)测定嗅觉、味觉和风味觉察阀值的一般导则(GB/T22366-2008).北京:中国标准出版社,2008.
    中华人民共和国国家计量技术规范.通用计量术语及定义(JJF1001-2011).北京:中国计量出版社,2011.
    周亦斌.基于电子鼻的西红柿与黄酒的检测与评价研究[D].杭州:浙江大学,2005.
    朱潘炜,刘东红,黄伟,等.指纹图谱技术在食品品质检测中的应用[J].粮油加工,2008,6:125-128.
    AOKI P H B, CAETANO W, VOLPATI D, et al. Sensor array made with nanostructured films to detect a phenothiazine compound[J]. Nanoscience and Nanotechnology,2008,8:4341-4348.
    APETREI C, RODRIGUEZ-MENDEZ M L, PARRA V, et al. Array of voltammetric sensors for the discrimination of bitter solutions[J]. Sensors and Actuators B,2004,103(1-2):145-152.
    APETREI C, RODRIGUEZ-MENDEZ M L, SAJA J A D. Modified carbon paste electrodes for discrimination of vegetable oils[J]. Sensors and Actuators B,2005,111-112:403-409.
    ARRIETA, RODRIGUEZ-MENDEZ M L, SAJA J A D. Langmuir-Blodgett film and carbon paste electrodes based on phthalocyanines as sensing units for taste[J]. Sensors and Actuators B, 2003,95(1-3):357-365.
    BARBRI N El, AMARI A, VINAIXA M, et al. Building of a metal oxide gas sensor-based electronic nose to assess the freshness of sardines under cold storage[J]. Sensors and Actuators B,2007,128(1):235-244.
    BASKERVILLE, R. Risk Analysis as a source of professional knowledge [J]. Computers & Security,1991,10 (8):749-764.
    BENEDETTI F, FERRO I. Implantation of artificial whiskers on the ears of newborn mice induces visual re-mapping in the superior colliculus[J]. Neuroscience Letters,1994,168(1-2): 45-48.
    BREZMES J, LLOBET E, VILANOVA X, et al. Correlation between electronic nose signals and fruit quality indicators on shelf-life measurements with pinklady apples[J]. Sensor and actuators B,2001,80:41-50.
    BURATTI S, BALLABlO D, BENEDETTI S. et al. Prediction of Italian red wine sensorial descriptors from electronic nose, electronic tongue and spectrophotometric measurements by means of Genetic Algorithm regression models[J]. Food Chemistry,2007,100:211-218.
    BYSTROM B O, NILSSON A, OLSSON E. Development of artificial hands for use in chain saw vibration measurement[J]. Journal of Sound and Vibration,1982,82(1):111-117.
    CHAPPELL P H, CRANNY A, COTTON D P J, et al. Sensory motor systems of artificial and natural hands[J]. International Journal of Surgery,2007,5(6):436-440.
    CIOSEK P, BRZOZKAZ, WROBLEWSKIA W, et al. Electronic tongue for flow-through analysis of beverages[J]. Sensors and Actuactors B,2006,118:454-460.
    CIOSEK P, SOBANSKI T, AUGUSTYNIAK E, et al. ISE-based sensor array system for classification of foodstuffs[J]. Measurement Science and Technology,2006,17:6-11.
    CIOSEK P, WROBLEWSKIA W. Miniaturized electronic tongue with an integrated reference microelectrode for the recognition of milk samples[J]. Talanta,2008,76(3):548-556.
    CONCINA I, FALASCONI M, GOBBI E, et al. Early detection of microbial contamination in processes tomatoes by electronic nose[J]. Food Control,2009,20(10):873-880.
    COSIO M S, BALLABIO D. BENEDETTI S, et al. Evaluation of different storage conditions of extra virgin olive oil with an innovative recognition to built by means of electronic nose and electronic tongue[J]. Food Chemistry,2007,101:485-491.
    DIAS L A, PERES A M, VELOSO A C A, et al. An electronic tongue taste evaluation: Identification of goat milk adulteration with bovine milk[J]. Sensors and Actuators B,2009, 136:209-217.
    DUTTA R, HINES E L, GARDNER J W, et al. Tea quality prediction using a tin ocide-based electronic nose:an artificial intelligence approach.[J]. Sensors and Actuators B,2003,94: 228-237.
    DUTTA R, KASHWAN K R, BHUYAN M, et al. Electronic nose based tea quality standardization[J]. Neural Networks,2003,16:847-853.
    FLORIANO P N, CHRISTODOULIDES N, ROMANOVICZ D, et al. Membrane-based on-line optical analysis system for rapid detection of bacteria and spores[J]. Biosensors and Bioelectronics,2005.20(10):2079-2088.
    FUCHS S, STROBEL P, SIADAT M, LUMBRERAS M. Evaluation of unpleasant odor with a portable electronic nose[J]. Materials Science and Engineering,2008,28(5-6):949-953.
    GAN H L, CHE MANA Y B, TAN C P, et al. Characterisation of vegetable oils by surface acoustic wave sensing electronicnose [J]. Food Chemistry,2005,89(4):507-518.
    GARDNER J W, BARTLETT P N. A brief history of electronic nose[J]. Sensors and Actuators B, 1994,18:210-211.
    GIULIANA D, FERNANDO C, FABRIZIO A. Biological compost stability influences odor molecules production measured by electronic nose during food-waste high-rate composting[J]. Science of the Total Environment,2008,402:278-284.
    GOMEZ A H, GUIXIAN H, JUN W, et al. Evaluation of tomato maturity by electronic nose[J]. Computers and Electronics in Agriculture,2006,54:44-52.
    GOMEZ A H, JUN W, GUIXIAN HU, et al. Discrimination of storage shelf-life for mandarin by electronic nose technique[J]. LWT,2007,40:681-689.
    GRETSCH C, HAERING M, LIARDON R, et al. Applicability of metal oxide sensors for long term measurement of aroma concentration and quality above coffee powders,19Th ASIC Conference,Trieste,2001.
    GUTES A, CESPEDES F, VALLE M D, et al. A flow injection voltammetric electronic tongue applied to paper mill industrial waters[J]. Sensors and Actuators B,2006,115(1):390-395.
    HAYASHI K, TOKO K, YAMANAKA M, et al. Electric characteristics of lipid-modified monolayer membranes for taste sensors[J]. Sensors and Actuators B,1995,23(1):55-61.
    HAYASHI K, YAMANAKA M, TOKO K, et al. Multichannel taste sensor using lipid membranes[J]. Sensors and Actuators B,1990,2(3):205-213.
    HOLMIN S, SPANGEUS P, KRANTZ-RULCKER C, et al. Compression of electronic tongue data based on voltammetry-a comparative study[J]. Sensors and Actuators B,2001,76: 455-464.
    HOTELLING H. Analysis of a complex of statistical variables into principal components[J]. Journal of Educational Psychology,1933,24:417-441,498-520.
    HRUSKAR M, MAJOR N, KRPAN M. Application of a potentiometric sensor array as a technique in sensory analysis[J]. Talanta,2010,81(1-2):398-403.
    http://en.wikipedia.org/wiki/Methodology
    HYAMA S, YAHIRO M, TOKO K. Measurements of soy sauce using taste sensor[J]. Sensors and Actuators B,2000,66:205-206.
    IMAMURA T, TOKO K, YANAGISAWA S, et al. Monitoring of fermentation process of miso (soybean paste) using multichannel taste sensor[J]. Sensor and Actuators B,1996,37:179-185.
    IPATOV A, IVANOV M, MAKARYCHEV-MIKHAILOV S, et al. Determination of cyanide using flow-injection multisensor system[J]. Talanta,2002,58:1071-1076.
    IRNY S I, ROSE A A. Designing a strategic information systems planning methodology for malaysian institutes of higher learning (isp-ipta),2005(6)1.
    IVARSSON P, HOLMIN S, HOJER N-E, et al. Discrimination of tea by means of a voltammetric electronic tongue and different applied waveforms[J]. Sensors and Actuators B,2001,76: 449-454.
    1VARSSON P, JOHANSSON M, HOJER N E, et al. Supervision of rinses in a washing machine by a voltammetric electronic tongue[J]. Sensors and Actuators B,2005,108:851-857.
    IVARSSON P, KIKKAWA Y, WINQUIST F, et al. Comparison of a voltammetric electronic tongue and a lipid membrane taste sensor[J]. Analytica Chimica Acta,2001,449:59-68.
    JAIN A K, MAO J C, DUIN R P W. Statistical pattern recognition:a review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(1):34-37.
    JONSSON A. WINQUIST F, SCHNURER J, et al. Electronic nose for microbial quality classification of grains[J]. International Journal of Food Microbiology,1997,35:187-193.
    KATSICAS, SOKRATIS K. Computer and information security handbook[M], Morgan Kaufmann Pubblications Elsevier Inc,2009.
    LAWLESS H T, HEYMANN H. Sensory evaluation of food:principles and practices[M]. New York:Chapman & Hall,1998.
    LEGIN A, KIRSANOV D, RUDNITSKAYA A, et al. Multicomponent analysis of fermentation growth media using the electronic tongue(ET)[J]. Talanta,2004,64:766-772.
    LEGIN A, RUDNITSKAYA A, LVOVA L, et al. Evaluation of Italian wine by the electronic tongue:recognition, quantitative analysis and correlation with human sensory perception[J]. Analytica Chimica Acta,2003,484:33-44.
    LEGIN A, RUDNITSKAYA A, SELEZNEV B, et al.. Electronic tongue for quality assessment of ethanol, vodka and eau-de-vie[J]. Analytica Chimica Acta,2005,534:129-135.
    LEGIN A, SMIRNOVA A, RUDNITSKAYA A, et al. Chemical sensor array for multicomponent analysis of biological liquids[J]. Analytica Chimica Acta,1999,385:131-135.
    LEGIN A, VLASOV Y G, RUDNITSKAYA A M, et al. Cross-sesitivity of chalcogenide glass sensors in solutions of heavy metal ions[J]. Sensors and Actuators B,1996,34:456-461.
    LEONTE I I, SEHRA G, COLE M, et al. Taste sensors utilizing high-frequency SH-SAW devices[J]. Sensors and Actuators B,2006,118(1-2):349-355.
    LIMBO S, TORRI L, SINELLI N et al. Evaluation and predictive modeling of shelf life of minced beef stored in high-oxygen modified atmosphere packaging at different temperatures[J].Meat Science,2010,84:129-136.
    LIYAMA S, AZUMA Y, NAGAISHI M, et al. Change in electric characteristics of membranes in response to taste stimuli with increasing amount of lipids in membrane matrix of PVC and plasticizer[J]. Biophysical Chemistry,1996,61:23-27.
    LIYAMA S, EZAKI S, TOKO K, et al. Study of astringency and pungency with multichannel taste sensor made of lipid membranes[J]. Sensors and Actuators B,1995,24:24-79.
    LIYAMA S, KUGA H, TOKO K, et al. Peculiar change in membrane potential of taste sensor caused by umami substances[J]. Sensors and Actuators B,2003,91:191-194.
    LIYAMA S, M YAHIRO, TOKO K, et al. Measurements of soy sauce using taste sensor[J]. Sensors and Actuators B,2000,66:205-206.
    LUISA T, NICOLETTA S, SARE L. Shelf life evaluation of fresh-cut pineapple by using an electronic nose[J]. Sensors and Actuators B,2010,146(2):453-459.
    LVOVA L, KIM S.S, LEGIN A, et al. All-solid-state electronic tongue and its application for beverage analysis[J]. Analytica Chimica Acta,2002,468:303-314.
    LVOVA L, LEGIN A, VLASOV Y, et al. Multicomponent analysis of Korean green tea by means of disposable all-solid-state potentiometric electronic tongue microsystem[J]. Sensors and Actuators B,2003,95:391-399.
    MAURER K, SCHRODER K, SCHAFER E. Programmable auditory stimulus generator and electro-acoustic transducers-Measurements of sound pressure in an artificial ear and human ear canal[J]. Electroencephalography and Clinical Neurophysiology,1984,58(1):77-82.
    MEILGAARD M.C, CIVILLE G.V, CARR B.T, Sensory Evaluation Techniques (3rded), Boca Raton:CRC Press LLC,1999
    MOTTRAM T, RUDNITSKAYA A, LEGIN A, et al. Evaluation of a novel chemical sensor system to detect clinical mastitis in bovine milk[J]. Biosensors and Bioelectronics,2007, 22(11):2689-2639.
    MOURZINA Y G, SCHUBERT J, ZANDER W, et al. Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis of metal ions in complex solutions[J]. ElectrochimicaActa,2001,47:251-258.
    MOY L, VASIC G, BERDAGUE J L, et al. Transier signal modeling for fast odour classification[J]. Proceedings of Bioflavour 95, Dijon,1995,55-58.
    NATALE C D, DAVIDE F, BRUNINK J A J, et al. Multicomponent analysis of heavy metal cations and inorganic anions in liquids by a non-selsective chalcogenide glass sensor array[J]. Sensors and Actuators B,1996,34:539-542.
    NATALE C D, MACAGNANO A, DAVIDE F, et al. Multicomponent analysis on polluted waters by means of an electronic tongue[J]. Sensors and Actuators B,1997,44:423-428.
    NEELY K, TAYLOR C, PROSSER O, et al. Assessment of cooked alpaca and llama meats from the statistical analysis of date collected using an'electronic nose'[J]. Meat Science,2001,58: 53-58.
    NICULESCU M, NISTOR C, FREBORT I, et al. Redox hydrogel-based anperometric bienzyme electrodes for fish freshness monitoring[J]. Anal. Chem.2000,72:1591-1597.
    OLSSON J, BORJESSON T, LUNDSTEDT T, et al. Detection and quantification of ochratocin A and deoxynivalenol in barley grains by GC-MS and electronic nose[J]. International Journal of Food Microbiology.2002,72:203-214.
    OLSSON J, LVARSSON P, WINQUIST F. Determination of detergents in washing machine wastewater with a voltammetric electronic tongue[J]. Talanta,2008,76(1):91-95.
    PAIXAO T R L C, BERTOTTI M. Fabrication of disposable voltammetric electronic tongues by using Prussian Blue films electrodeposited onto CD-R gold surfaces andrecognitio of milk adulteration[J]. Sensors and Actuators B,2009,137:266-273.
    PALKAMA A, KALLIOMAKI K, MASAR S-E. Electronic TV-pupillometric device and its adaptation for studying drug penetration into the intact rabbit eye[J]. Experimental Eye Research,1977,24(1):102.
    PARRA V, HERNANDO T, RODRIGUEZ-MENDEZ M L, et al. Electrochemical sensor array made from tophthalocyanine modified carbon paste electrodes for discrimination of red wines[J]. Electrochimica Acta,2004,49(28):5177-5185.
    RAGAZZO-SANCHEZ J. A, CHALIER P, CHEVALIER D, et al. Identification of different alcoholic beverages by electronic nose coupled to GC[J]. Sensors and Actuators B,2008, 134(1):43-48.
    RAJAMAKI T, HANNA L A, TILNA R, et al. Application of an electronic nose for quality assessment of modified atmosphere packaged poultry meat[J]. Food Control,2006,17:5-13.
    REBECCA N. BLEIBAUM, STONE H. Comparison of sensory and consumer results with electronic nose and tongue sensors for apple juices[J].Food Quality and Preference,2002, 13(6):409-422.
    RIUL A, MALMEGRIM R R, FONSECA F J, et al. An artificial taste sensor based on conducting polymers[J]. Biosensors and Bioelectronics,2003,18(11):1365-1369.
    RIUL A, SANTOS D S, WOHNRATH K, et al. Artificial taste sensor:Efficient combination of sensors made from Langmuir-Blodgett films of conducting polymers and a ruthenium complex and self-assembled films of an azobenzene-containing polymer[J]. Langmuir,2002, 18:239-245.
    RIUL A, SOTO A M G, MELLO S V, et al. An electronic tongue using polypyrrole and polyaniline[J]. Synthetic Metals,2003,132(2):109-116.
    RIUL A, SOUSA H C D, MALMEGRIM R R, et al. Wine classification by taste sensors made from ultra-thin films and using neural networks[J]. Sensors and Actuators B,2004,98(1): 77-82.
    RUDNITSKAYA A, DELGADILLO I, ROCHA S M, et al. Quality evaluation of cork from Quercus suber L. by the electronic tongue[J]. Analytica Chimica Acta,2006,563:315-318.
    RUDNITSKAYA A, EHLERT A, LEGIN A, et al. Multisensor system on the basis of an array of non-specific chemical sensors and artificial neural networks for determination of inorganic pollutants in a model[J]. Talanta,2001,55:425-431.
    RUDNITSKAYA A, KIRSANOV D, LEGIN A, et al. Analysis of apples varieties-comparison of electronic tongue with different analytical techniques[J]. Sensors and Actuators B,2006,116: 23-28.
    SAKAI H, IILYAMA S, TOKO K. Evaluation of water quality and pollution using multichannel sensors[J]. Sensor and Actuators B,2000,66:251-255.
    SCHALLER E, BOSSET J O, ESCHER F.'Electroinc Noses' and their application to food[J]. Lebensmittel-Wissenschaft und-Technologie,1998,31(4):305-316.
    SEHRA G, COLE M, GARDNER J W. Miniature taste sensing system based on dual SH-SAW sensor device:an electronic tongue[J]. Sensors and Actuators B,2004,103(1-2):233-239.
    SIMONA B, SUSANNA B, ANNA S, et al. Electronic nose as a non-destructivetool to characterise peach cultivars and to monitor their ripening stage during shelf-life[J]. Posthrvest Biology and Technology,2008,47:181-188.
    SODERSTROM C, BOREN H, WINQUIST F, et al. Use of an electronic tongue to analyze mold growth in liquid media[J]. International Journal of Food Microbiology,2003,83(3):253-261.
    SODERSTROM C, RUDNITSKAYA A, LEGIN A, et al. Differentiation of four Aspergillus species and one Zygosaccharomyces with two electronic tongues based on different measurement techniques[J]. Journal of Biotechnology,2005,119:300-308.
    SODERSTROM C, WINQUIST F, KRANTZ-RULCKER C. Recognition of six microbial species with an electronic tongue[J]. Sensors and Actuators B,2003,89(3):248-255.
    TAN T, SCHMITT V, ISZ S. Electronic tongue:A new dimension in sensory analysis[J].Food Technology,2001,55(10):44-48.
    TIAN S Y. DENG S P, CHEN Z X. Multifrequency large amplitude voltammetry:A novel electrochemical method for electronic tongue[J]. Sensors and Actuators B,2007,123(2): 1049-1056.
    TIAN S Y, DENG S P, DING C H, et al. Discrimination of red wine age using voltammetric electronic tongue based on multifrequency large-amplitude voltammetry and pattern recognition method[J]. Sens. Materials,2007,19:287-298.
    TOKO K, MATSUNO T, YAMAFUJI K, et al. Multichannel taste sensor using electric potential changes in lipid membranes[J]. Biosensors and Bioelectronics,1994,9(4-5):359-364.
    TOKO K, MURATA T, MATSUNO T, et al. Taste map of beer by a multichannel taste sensor[J]. Sensors Material,1992,4:145-151.
    TOKO K. Electronic tongue[J]. Biosensors and Bioelectronics,1998,13(6):701-709.
    TOKO K. Taste sensor[J]. Sensors and Actuators B,2000,64:205-215.
    TURNER C, RUDNITSKAYA A, LEGIN A. Monitoring batch fermentations with an electronic tongue[J]. Journal of Biotechnology,2003,103:87-91.
    VERNAT-ROSSI V, GARCIA C, TALON R, et al. Rapid discrimination of meat products and bacterial strains using semiconductor gas sensors[J]. Sensors and Actuators B,1996,37: 43-48.
    WEI Z, WANG J, YE L. Classification and prediction of rice wines with different marked ages by using a voltammetric electronic tongue, Biosens Bioelectron 2011,26 (12):4767-4773.
    WILKENS W F, HARTMAN J D. An electronic analog for the olfactory processes[J]. Journal of Food Science,1964,29(3):372-378.
    WINQUIST F, BJORKLUND R, KRANTZ-RULCKER C, et al. An electronic tongue in the dairy industry[J]. Sensors and Actuators B,2005,111-112:299-304.
    WINQUIST F, HOLMIN S, KRANTZ-RULCKER C, et al. A hybrid electronic tongue[J]. Analytical Chimica Acta,2000,406(2):147-157.
    WINQUIST F, KRANTZ-RULCKER C, LUNDSTROM I. A Miniaturized Voltammetric Electronic Tongue[J]. Analytical Chemistry,2008,41(5):917-924.
    WINQUIST F, LUNDSTROM I, WIDE P. The combination of an electronic tongue and an electronic nose[J]. Sensors and Actuators B,1999,58(1-3):512-517.
    WINQUIST F, RYDBERG E,HOLMIN S, et al. Flow injection analysis applied to a voltammetric electronic tongue[J]. Analytical Chimica Acta,2002,471(2):159-172.
    WINQUIST F, WIDE P, LUNDSTROM I, et al. An electronic tongue based on voltammetry[J]. Analytical Chimica Acta,1997,357:21-31.
    WOERTZ K, TISSEN C, KLEINEBUDDE P, et al. A comparative study on two electronic tongues for pharmaceutical formulation development[J]. Journal of Pharmaceutical and Biomedical Analysis,2011(55):272-281.
    YAMADA H, MIZOTA Y, TOKO K, et al. Highly sensitive discrimination of taste of milk with homogenization treatment using a taste sensor[J]. Materials Science and Engineering C,1997, 5:41-45.
    ZRENNER E. Will retinal implants restore vision?[J]. Science,2002,295:1022-1025.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700