用户名: 密码: 验证码:
钛酸盐纳米管薄膜的合成、一维自组装特性及应用性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为新型功能材料的钛酸盐纳米管,具有良好的电化学、光化学性能,因此,在催化、储氢、化学传感器、离子交换、分子吸附等领域应用广泛。现阶段,人们对钛酸盐纳米管的研究还多停留在粉体方面,相比之下,集纳米管和薄膜优点于一身的钛酸盐纳米管薄膜材料比粉体材料在应用领域上的前景更为广阔。目前,采用水热法合成钛酸盐纳米管的研究已经取得了多方面的进展,但仍有许多问题尚未明确,对其形成机理、化学组成、性能及应用等还有待进一步研究。
     本课题采用水热法在钛基底上合成出管径小、稳定性强、与基底结合力良好的多层钛酸盐纳米管薄膜。为了确定合成纳米管薄膜的最佳反应条件,我们对反应条件进行了详细地考察,并提出了钛酸盐纳米管的形成机理。此外,我们选取不同的钛源,控制溶液碱度和冷却温度等反应条件,尝试将一维纳米结构的制备与自组装结合起来,成功地合成出鸟巢状钛酸盐纳米带自组装聚集体、绒球状钛酸盐纳米带自组装聚集体以及海胆状钛酸盐纳米管自组装聚集体,并通过引入碳酸钠模板,合成出碳酸钠-钛酸盐香蒲状纳米管自组装聚集体复合材料。通过考察钛酸盐自组装聚集体的结构以及一维自组装特性,我们提出了“生长-自组装”的两步生长机理。与此同时,我们对钛酸盐纳米管多层膜、纳米管自组装聚集体的应用性能进行深入研究,并利用金属掺杂等方法对其性能进行改善,为开发利用新型的钛基底表面钛酸盐纳米管薄膜材料奠定基础。我们分别以镍和银为掺杂元素对其进行掺杂改性。首先,采用离子交换法合成镍掺杂钛酸盐纳米管薄膜,结果表明:镍的掺杂导致了钛酸盐纳米管中出现了杂质能级,降低了其禁带宽度,提高光生电子-空穴对的分离效率,在可见光的吸收范围得到拓展,提高了对可见光的利用率。我们又通过光催化还原反应将Ag/AgNO3纳米粒子负载到钛酸盐纳米管薄膜上,合成了Ag/AgNO3修饰钛酸盐纳米管薄膜。Ag/AgNO3等离子共振效应增强了钛酸盐纳米管薄膜对可见光的吸收,提高了光催化活性。此外,Ag/AgNO3修饰钛酸盐纳米管薄膜还展现出奇特的光致变色特性和优良的抗菌性能。
As a new functional material, the titanate nanotube is widely applied in ionexchange, catalysis, adsorption, chemical sensors, hydrogen storage and other fieldsdue to its good electrochemical, photochemical properties. In recent years, thepreparation of titanate nanotubes and the development of its application have becomeanother hot spot after carbon nanotube material. At this stage, most of researches ofthe synthesis of the titanate nanotube are still focused on powder type. By comparison,the titanate nanotubes film which sets the merits of nanotubes and thin films in a bodyis often more desirable for applications. Hitherto the research of preparing titanatenanotubes by the hydrothermal technique has made much progress. While theformation mechanism, crystalline compositions, performance and application are still incontroversy.
     The aim of our study is to find a kind of simple and easy method to prepare multilayertitanate nanotubes film which has a small diameter, high stability and the good bindingforce with Ti substrate. We artificially regulated the morphology and the structure oftitanate nanotubes by controlling the reaction conditions. We tried to prepare thewell-regulated one-dimensional nanostructures aggregates by combining the synthesisof the one-dimensional nanostructures and self-assembly synthesis of aggregates. Inthe graduation thesis, we discussed the formation mechanism of the titanate nanotubemultilayer film and self-assembled aggregates in detail. We studied the thermalstability, the photocatalytic properties and the hydrogen storage property of thetitanate nanotube multilayer, and improved its performance though the metal dopingmethods. It would lay the foundation for the development and the utilization of thenew titanate nanotubes film material on Ti substrate. The main research contents are as follows:
     1. Multilayered titanate nanotubes thin films grew on titanium metal surface via ahydrothermal surface treatment process. The outer diameter of the nanotube was6-8nm, the inner diameter was4-6nm. Its length was a few micrometers. The tube wallwas multiple, and its layers were not symmetrical. The thickness of the film withcontinuous multilayer structure was about8μm. By a lot of study on reaction conditions,we determined the optimum preparation conditions of titanate nanotube films: Thereaction temperature was140℃, the reaction time was12h, NaOH concentration was10M. Finally, we got a stable multilayer titanate nanotube film on Ti substrate by thewashing processing procedure of slowly reducing pH value. A general formationmechanism for the oriented titanate nanotube thin film was proposed. The overallformation of titanate nanotubes can be summarized as a sequence of four steps: Thefirst, titanium dissolution and alkali titanate hydrogel formation; The second, alkalititanate hydrogel dissolution and layered Na_2Ti_3O7formation; The third, layeredNa_2Ti_3O7growth; The forth, nanotube formation via layered Na_2Ti_3O7splitting andthe multilayer scrolling process.
     2. Bird's nest-like titanate nanoribbon self-assembly aggregates, fluff Sphere-liketitanate nanoribbon self-assembly aggregates and urchin-like titanate nanotubeself-assembly aggregates were prepared without template technique from Ti flake (orP25) under hydrothermal conditions by adjusting NaOH concentration and coolingtemperature. Cattail-like Na_2CO3-titanate nanotubes self-assembly complexaggregates were prepared with template technique using sodium carbonate. A possibletwo-stage growth mechanism involving the initial formation of primary1Dnanostructure that subsequently self-assembly was proposed. This method willprovide a promising approach that the function materials are assembled into thehighly ordered structure in the ideal way.
     3. The thermal stability, the photocatalytic activity and the hydrogen storage abilityof titanate nanotubes thin films and self-assembly titanate nanotube aggregates werestudied in depth. The multilayer titanate nanotube film was stable on Ti substrate bythe washing procedure of slowly reducing pH value. The layer-delaminating ofmultilayered titanate nanotubes thin films have been come ture using ultrasonictreatment method. The thermal stability of Na-type titanate nanotubes films (TNTW)was higher than that of H-type titanate nanotubes films (TNTA). TNTW could still keep the nanotube structure when the heat treatment temperature was up to500℃, whileTNTA began to lose the nanotube structure when the heat treatment temperature wasmore than400℃. The photocatalytic activity of TNTW and TNTA was weak,however, their calcined products showed better photocatalytic activity. The visiblelight absorption wavelength of the calcined products of TNTW and TNTA shifted tolong wavelength. Their absorption ability for long wavelength was stronger than P25and was conducive to visible light photocatalytic reaction. At same pressure, thehydrogen adsorption capacity of urchin-like titanate nanotube self-assemblyaggregates and TNTA was higher than cattail-like nanotube self-assembly aggregatesand TNTW. According to the different properties of titanate nanotubes film andnanotubes self-assembled aggregates, it is expected to develop these functionalmaterials for different applications.
     4. Ni-doped titanate nanotubes films were synthesized on Ti substrate byhydrothermal treatment,followed by a facile ion-exchange process in NiCl2solution.The nickel doping greatly broadened the absorption wavelength range of the titanatenanotubes film and brought an obvious red shift effect for the threshold wavelength.The utilization ratio of the visible light for the titanate nanotubes film was greatlyimproved. Therefore, Ni-doped titanate nanotubes film is expected to be a new kind ofcomposite material which is used in visible light catalysis.
     5. Ag/AgNO3modified titanate nanotubes film was prepared by hydrothermaltreatment method and followed by photo reduction method. The film exhibited highphotocatalytic actibity, which was due to the surface Plasmon resonance effect andfast separation of photogenerated electron-hole pairs. Ag/AgNO3acted as the activecenter and generated·O2-, HO2· and·OH. These strong oxidative free radicals not onlydegraded the organic matter, but also eliminated bacterium. The film exhibitedphotochromic property from grayish white to bluish black or brownish black afterUV-rays irradiation. Ag/AgNO3modified titanate nanotubes films would be apromising material in various of application areas in virtue of its excellentphotocatalytic activity, photochromic property and antibacterial activity.
引文
[1] CHEN Q, ZHOU W, DU G H, et al. Trititanate Nanotubes Made via a SingleAlkali Treatment [J]. Advanced Materials,2002,14(17):1208-1211.
    [2] SUN X M, LI Y D. Synthesis and Characterization of Ion-Exchangeable TitanateNanotubes [J]. Chemistry-A European Journal,2003,9(10):2229-2238.
    [3] NAKAHIRA A, KATO W, TAMAI M, et al. Synthesis of Nanotube from aLayered H2Ti4O9·H2O in a Hydrothermal Treatment using Various TitaniaSources [J]. J Mater Sci,2004,39:4239-4245.
    [4] SASAKI T, IZUMI F, WATANABE M, et al. Intercalation of Pyridine in LayeredTitanates [J]. Chem. Mater.,1996,8:777-782.
    [5] INOUE Y, KUBOKAWA T, SATO K, et al. Photocatalytic Activity ofAikaiEMetai Titanates Combined with Ru in the Decomposition of Water [J]. J.Phys. Chem.,1991,95:4059-4063.
    [6]刘扬,嵇天浩,周吉,等.由钛酸盐纳米带水热制备锐钛矿型TiO2纳米带[J].高等学校化学学报,2010,31(7):1297-1302.
    [7] GONG D W, GRIMES C A, VARGHESE O K, et al. Titanium Oxide Nanotubearrays prepared by anodic oxidation [J]. Journal of Materials Research,2001,16(12):3331-3334.
    [8] ZHU K, NEALE N R, FRANK A J, et al. Enhance Charge-Collection Effcienciesand Light Scattering in Dye-Sensitized Solar Cells using Oriented TiO2Nanotubes Arrays [J]. Nano Letters,2007,7(1):69-74.
    [9] CAI Q Y, YANG L X, YU Y, et al. Investigations on the Self-Organized Growthof TiO2Nanotube Arrays by Anodic Oxidization [J]. Thin Solid Films,2006,515:1802-1806.
    [10] SHANKAR K, MOR G K, VARGHESE O K, et al. Highly-Ordered TiO2Nanotube Arrays up to220μm in Length: use in Water Photoelectrolysis andDye-Sensitized Solar Cells [J]. Nanotechnology,2007,18:1-11.
    [11] GE R X, FU W Y, YANG H B, et al. Fabrieation and characterization of highly-ordered titania nanotubes via electrochemieal anodization [J]. Mater.Lett.2008,62:2688-2691.
    [12] MOR G K, CARVALHO M A, VARGHESE O K, et al. Room-TemperatureTiO2–Nanotube Hydrogen Sensor able to Selfclean Photoactively fromEnvironmental Contamination [J]. Journal of Materials Research,2004,19(2):628-634.
    [13] WANG J, LIN Z Q. Anodic Formation of Ordered TiO2Nanotube Arrays: Effectsof Electrolyte Temperature and Anodization Potential [J]. Journal of PhysicalChemistry C,2009,113:4026-4030.
    [14] LAI Y K, SUN L, ZUO J. Electrochemical fabrication and formation mechanismof TiO2nanotube arrays on metallic titanium surface [J]. Acta Phys.-Chim. Sin.,2004,20(9):1063-1066.
    [15] PAULOSE M, MOR G K, VARGHESE O K, et al. Visible LightPhotoelectrochemical and Water-Photoelectrolysis Properties of TitaniaNanotube Arrays [J]. Journal of Photochemistry and Photobiology A: Chemistry,2006,178(1):8-15.
    [16] YANG Y, WANG X H, LI L T, et al. Synthesis and growth mechanism of gradedTiO2nanotube arrays by two-step anodization [J]. Materials Science andEnginering B.2008,149:58-62.
    [17] VARGHESE O K, GONG D, PAULOSE M, et al. Extreme Changes in theElectrical Resistance of Titania Nanotubes with Hydrogen Exposure [J]. AdvMater,2003,15(7-8):624-627.
    [18] JONG H J, HIDEKI K, ELJDC K J, et al. Creation of Novel Helical Ribbon andDouble Layered Nanotube TiO2Structures using an Organogel Template [J].Chem Mater,2002,14(4):1445-1447.
    [19] LI X H, ZHANG X G, LI L H. Template Synthesis and Character ization of TiO2Nanotubules [J]. Chemical journal of chinese universities,2001,22(1):130-132.
    [20] MICHAILOWSKI A, AIMAWLAWI D, CHENG G S, et al. Highly RegularAnatase Nanotubule Arrays Fabricated in Porous Anodic Templates [J].Chemical Physics Letters,2001,349:1-5.
    [21] Brinda B L, PETER K D, CHARLES R M. Sol Gel Template Synthesis ofSemiconductor Nanostructures [J]. Chemical of Materials,1997,9:857-862.
    [22]李云飞,韦志仁,罗小平,等.钛酸盐纳米管的研究及应用进展[J].材料导报,2008,22(4):50-52.
    [23] KASUGA T, HIRAMATSU M, HOSON A, et al. Formation of Titanium OxideNanotube [J]. Langmuir,1998,14:3160-3163.
    [24] ZHANG Q H, GAO L, ZHENG S. Preparation of Long TiO2Nanotubes withUniform Morphology [J]. ACTA CHIMICA SINICA,2002,60(8):1439-1444.
    [25] THORNE A, KRUTH A, TUNSTALL D, et al. Formation, Structure, andStability of Titanate Nanotubes and Their Proton Conductivity [J]. J. Phys. Chem.B,2005,109:5439-5444.
    [26] WANG Y A, YANG J, ZHANG J, et al. Microwave-assisted preparation oftitanate nanotubes [J]. Chemistry Letters,2005,35:1168-1169.
    [27] WU S,JIANG Q Z,MA Z F. Synthesis of Titania Nanotubes by MicrowaveMethod [J]. Chinese journal of inorganic chemistry,2006,22(2):341-345.
    [28] ZHANG Q H, GAO L, SUN J, et al. Preparation of long TiO2nanotubes fromultrafine rutile nanocrystals [J]. Chem Mater,2002,2:226-227.
    [29] WANG Y Q, SUN Y M, SONG B. Preparation and its application of titaniananotube composite film electrodes in dye-sensitized solar cells [J]. Journal ofsoutheast university (Natural science edition),2008,38(1):162-165.
    [30] PENG H R, LI G C, ZHANG Z K, et al. Synthesis of bundle-likes trueture oftitania nanotubes [J]. Materials Letters,2005,59(10):1142–1145.
    [31] SONG X C, YUE L H, XU Z D. Preparation of Fe-doped TiO2nanotubes withsmall diameter by hydrothermal method [J]. Chinese journal of inorganicchemistry,2003,19(8):899-901.
    [32] WEI M D, KONISHI Y, ZHOU H, et al. Formation of nanotubes TiO2fromlayered titanate Partieles by a soft chemieal Proeess [J]. Solid StateCommunications,2005,133:493-497.
    [33] ZHONG Y Y, SU B L. Titanium oxide nanotubes, nanofibers and nanowires [J].Colloids and Surfaces A: Physicochem Eng,2004,241:173-183.
    [34]王美丽,宋功保,李健,等.水热法制备钛酸盐纳米管的研究进展[J].材料导报,2006, S2:121-123.
    [35]王美丽.离子掺杂钛酸盐纳米管的水热合成及物理性能研究[D].四川省绵阳市:西南科技大学,2007.
    [36] WU D, LIU J, ZHAO X N, et al. Sequence of Events for the Formation ofTitanate Nanotubes, Nanofibers, Nanowires, and Nanobelts [J]. Chem. Mater.,2006,18:547-553.
    [37] TIAN Z R, VOIGT J A, LIU J, et al. Large Oriented Arrays and ContinuousFilms of TiO2-Based Nanotubes [J]. J. AM. CHEM. SOC.2003,125:12384-12385.
    [38] DMITRY V B, JENS M F, Frank C. W, et al. Protonated Titanates and TiO2Nanostructured Materials: Synthesis, Properties, and Applications [J]. AdvancedMaterials,2006,18:2807-2824.
    [39] CHEN Q., DU G H., ZHANG S, et al. The structure of trititanate nanotubes [J].Acta Crystal lographica Section B,2002,58:587-593.
    [40] YANG J, JIN Z, WANG X, et al. Study on composition, structure andformation process of nanotube Na2Ti2O4(OH)2[J]. Journal of the ChemicalSociety Dalton Transactions,2003,20:3898-3901.
    [41] MA R Z, BANDO Y, SASAKI T, et al. Nanotubes of lepidocrocite titanates [J].Chemical Physics Letters,2003,380:577-582.
    [42] TSAI C C, TENG H. Structural Features of Nanotubes Synthesized from NaOHTreatment on TiO2with Different Post-Treatments [J]. Chem. Mater.,2006,18:367-373.
    [43] ZHANG S, CHEN Q, PENG L M, et al. Structure and formation of H2Ti3O7nanotubes in an alkali environment [J]. PHYSICAL REVIEW B,2005,71:014104.
    [44] DMITRY V B, VALENTIN N P, ALEXEI A L, et al. The effect of Hydrothermalconditions on the mesoporous strustrue of TiO2nanotubes [J]. Materialschemistry,2004,14:3370-3377.
    [45] WANG Y Q, HU G Q, DUAN X F, et al. Microstructure and formationmechanism of titanium dioxide nanotubes [J]. Chem Phys Lett,2002,365:427-431.
    [46]徐惠,王毅,翟钧,等. TiO2纳米管的水热合成表征及其光催化性能研究[J].环境污染与防治,2006,28(2):81-83.
    [47] Zhou Q X, DING Y J, XIAO J P, et al. Investigation of the feasibility of TiO2nanotubes for the enrichment of DDT and its metabolites at trace levels inenvironmental water samples [J]. Journal of Chromatography A,2007,1147:10-16.
    [48] SHANKAR K, TEP K C, MOR G K, et al. An electrochemical strategy toincorporate nitrogen in nanostructured TiO2thin films: modification of bandgapand photoelectrochemical properties [J]. Journal of Physics D: Applied Physics,2006,39(11):2361-2366.
    [49] HAHN R, GHICOV A, SALONEN J, et al. Carbon doping of self-organizedTiO2nanotube layers by thermal acetylene treatment [J]. Nanotechnology,2007,18:105604.
    [50] CHIEN S H, LIOU Y C, KUO M C, et al. Preparation and characterization ofnanosized Pt/Au particles on TiO2-nanotubes [J]. Synthetic Metals,2005,152:333-336.
    [51] MACAK J M, BARCZUK R J, TSUCHIYA H, et al. Self-organized NanotubularTiO2Matrix as Support for Dispersed Pt/Ru Nanoparticles: Enhancement of theElectrocatalytic Oxidation of Methanol [J]. Electrochem. Commun.,2005,7:1417-1422.
    [52] DING X, XU X G, CHEN Q, et al. Preparation and characterization ofFe-incorporated titanate nanotubes [J]. Nanotechnology,2006,17:5423-5427.
    [53] CHOI W, TERMIN A, HOFFMANN M R, et al. Effects of Metal-ion Dopantson the Photocatalytic Reactivity of Quantum-sized TiO2Partieles [J]. Angew.Chem.-Int. Edit.,1994,33:1091-1092.
    [54] CELIK E, YILDIZ A Y, AZEM N F A, et al. Preparation and Characterization ofFe3O2-TiO2Thin Films on Glass Substrate for Photocatalytic Applications.Mater. Sci. Eng. B-Solid State Mater [J]. Adv. Technol.2006,129:193-199.
    [55] DILLERT R, CASSANO A E, GOSLICH R, et al. Large Scale Studies in SolarCatalytic Wastewater Treatment [J]. Catal. Today,1999,54:267-282.
    [56]凌云汉,吕怡,马洁,等. Pd掺杂TiO2纳米管阵列的制备及氢敏性能[J].无机化学学报,2010,26(4):627-632.
    [57] VARGHESE O K, Gong D W. Hydrogen sensing using titania nanotubes [J].Sensors and Actuators B,2003,93(1):338-344.
    [58]杨丽霞,罗胜联,蔡青云,等.二氧化钛阵列的制备、性能及传感应用研究[J].科学通报,2009,23:3605-3611.
    [59] GRIMES C A, ONG K G, VARGHESE O K, et al. A sentinel sensor network forhydrogen sensing [J]. Sensors,2003,3(3):69-82.
    [60] WEI M D, KONISHI Y, ZHOU H S, et al. Utilization of Titanate Nanotubes asan Electrode Material in Dye-Sensitized Solar Cells [J]. Journal of theElectrochemical Society,2006,153(6):A1232-A1236.
    [61] TAKEUCHI Y, HIRAKAWA K, SUSUMU K, et al. Electrochemicaldetermination of charge transfer direction of "center-to-edge" phosphorus (V)porphyrin arrays [J]. Electrochemistry,2002,70:449-451.
    [62] TOKUDOME H, MIYAUCHI M. Titanate nanotube thin film via alternate layerdeposition [J]. Chem. Commun.,2004,8:958-959.
    [63] KIM G S, SEO H K, GODBLE V P, et al. Electrophoretic deposition of titanatenanotubes from commercial titania nanoparticles: Application to dye-sensitizedsolar cells [J]. Electrochemistry Communications,2006,8:961-966.
    [64] ADACHI M, MURATA Y, OKADA I, et al. Formation of titania nanotubes andapplications for dyesensitized solar cells [J]. Journal of Electrochemical Society,2003,150(8):499-493.
    [65] UCHIDA S, CHIBA R, TOMIHA M, et al. Application of titania nanotubes to adyesensitized solar cell [J]. Electrochemistry,2002,70(6):418-420.
    [66] WEN Z, GU Z, HUANG S, et al. Research on spray-dried lithium titanate aselectrode materials for lithium ion batteries [J]. Journal of Power Sources,2005,146:670-673.
    [67] HAO Y J, LAI Q Y, LIU D Q, et al. Synthesis by citric acid sol-gel method andelectrochemical properties of Li4Ti5O12anode material for lithium-ion battery [J].Materials Chemistry and Physics,2005,94:382-387.
    [68] LI J R, TANG Z L, ZHANG Z T, et al. H-titanate nanotube:a novel lithiumintercalation host with large capacity and high ratecapability [J].Electrochemistry Communications,2005,7:62-67.
    [69] VARGHESE O K, PAULOSE M, SHANKAR K, et al. Water-photolysisproperties of micton-length highly-ordered Titania nanotube-arrays [J]. Journalof nanoscience and nanotechnology,2005,5(7):1158-1165.
    [70] MOHAPATRA S K, MAHAJAN V K, MISRA M, et al. Double-side illuminatedtitania nanotubes for high volume hydrogen generation by water splitting [J].Nanotechnology,2007,18:445705.
    [71] WOLCOTT A, SMITH W A, ZHAO Y P, et al. Photoelectrochemical watersplitting using dense and aligned TiO2nanorod arrays [J]. SMALL,2009,5(1):104-111.
    [72]韦顺文,柴立元,彭兵,等.前躯体对载银二氧化钛粉体结构和抗菌性能的影响[J].中南大学学报:自然科学版,2008,39(4):0652-0657.
    [73]程永清,李丽玲,尹晓敏,等.溶胶-凝胶法制备的掺银TiO2的相变和抗菌性能研究[J].贵金属,2007,28(1):37-42.
    [74]丁更新,杨芳儿,洪建和,等.银离子掺杂对抗菌薄膜中的二氧化钛机构的影响[J].稀有金属材料与工程,2004,12(S3):027-030.
    [75] MARTHA E S, HELGE F B, MOHAMMED E S, et al. Versatile nanocompositecoatings with tunable cell adhesion and bact ericidity [J]. Advanced functionalmaterials,2008,18(20):3179-3188.
    [76] SHAH M S A S, NAG M, KALAGARA T, et al. Silver on PEG-PU-TiO2polymer nanocomposite films: An excellent system for antibacterial applications[J]. Chem. Mater.,2008,20(7):2455-2460.
    [77] ZHAO L Z, WANG H R, HUO K F, et al. Antibacterial nano-structured titaniacoating incorporated with silver, nanoparticles [J]. Biomaterials,2011,32(24):5706-5716.
    [78] HIROMASA T, MASAHIRO M. Electrochromism of titanate-based nanotubes[J]. Angew. Chem. Int.,2005,117:2010-2013.
    [79] MICHAEL B, ROGER A B. The role of Ti3+interstitials in TiO2(110) reductionand oxidation [J]. J. Phys.:Condens. Matter,2009,21:1-9.
    [80] OHKO Y, TATSUMA T, FUJISHIMA A, et al. Multicolour photochromism ofTiO2films loaded with silver nanoparticles [J]. Nature Materials,2003,2:29-31.
    [1] HOFFMANN M R, MARTIN S T, CHOI W, et al. Environmental Applicationsof Semiconductor Photocatalysis [J]. Chem. Rev.,1995,95:69-96.
    [2] VARGHESE O K, GONG D, PAULOSE M, et al. Extreme Changes in theElectrical Resistance of Titania Nanotubes with Hydrogen Exposure [J]. AdvMater,2003,15(7-8):624-627.
    [3] BRYAN J D, HEALD S M, CHAMBERS S A, et al. Strong Room-TemperatureFerromagnetism in Co2+-Doped TiO2Made from Colloidal Nanocrystals [J]. J.Am. Chem. Soc.,2004,126:11640-11647.
    [4] GONG D W, GRIMES C A, VARGHESE O K, et al. Titanium Oxide Nanotubearrays prepared by anodic oxidation [J]. Journal of Materials Research,2001,16(12):3331-3334.
    [5] HOYER P. Formation of a Titanium Dioxide Nanotube Array [J]. Langmuir,1996,12:1411-1413.
    [6] KASUGA T, HIRAMATSU M, HOSON A, et al. Formation of Titanium OxideNanotube [J]. Langmuir,1998,14:3160-3163.
    [7] SASAKI T, IZUMI F, WATANABE M, et al. Intercalation of Pyridine in LayeredTitanates [J]. Chem. Mater.,1996,8:777-782.
    [8] INOUE Y, KUBOKAWA T, SATO K, et al. Photocatalytic Activity ofAikaiEMetai Titanates Combined wlth Ru in the Decomposition of Water [J]. J.Phys. Chem.,1991,95:4059-4063.
    [9]安会琴,朱宝林,吴红艳,等.钛酸盐纳米管与二硫化碳修饰钛酸盐纳米管的合成、表征及其去除重金属离子性能[J].高等学校化学学报,2008,29(3):439-444.
    [10] TOKUDOME H, MIYAUCHI M. Electrochromism of Titanate-Based Nanotubes[J]. Angew. Chem. Int. Ed.,2005,44(13):1974-1977.
    [11] TIAN Z R, VOIGT J A, LIU J, et al. Large Oriented Arrays and ContinuousFilms of TiO2-Based Nanotubes [J]. J. AM. CHEM. SOC.2003,125:12384-12385.
    [12] NAKAHIRA A, KUBO T. Mater. Integr.,2004,18:15.
    [13] KIM H M, MIYAJI F, KOKUBO T, NAKAMURA T J. Biomed. Mater. Res.,1996,32:409.
    [14] YADA M, INOUE Y, UOTA M, et al. Plate, Wire, Mesh, Microsphere, andMicrotube Composed of Sodium Titanate Nanotubes on a Titanium MetalTemplate [J]. Langmuir,2007,23:2815-2823.
    [15] ZHANG S, PENG L M, CHEN Q, et al. Formation Mechanism of H2Ti3O7Nanotubes [J]. Phys. Rev. Lett.,2003,91:256103-256106.
    [16] WU D, LIU J, ZHAO X, et al. Sequence of Events for the Formation of TitanateNanotubes, Nanofibers, Nanowires, and Nanobelts [J]. Chem. Mater.,2006,18:547-553.
    [17] SUN X M, CHEN X, LI Y D. Large-Scale Synthesis of Sodium and PotassiumTitanate Nanobelts [J]. Inorg. Chem.,2002,41:4996-4998.
    [18] CHEN Q, ZHOU W, DU G H, et al. Trititanate Nanotubes Made via a SingleAlkali Treatment [J]. Advanced Materials,2002,14(17):1208-1211.
    [19] GUO Y P, LEE N H, OH H J, et al. Formation of1-D Nanostructures of TitanateThin Films and Thermal Stability Study [J]. J. Nanosci. Nanotechno.,2008,8:5316-5320.
    [1] WHITESIDES G M, GRZYBOWSKI B. Self-assembly at all scales [J]. Science,2002,295:2418-2421.
    [2] BARTL M H, BOETTCHER S W, FRINDELL K L, STUCKY G D.3-Dmolecular assembly of function in titania-based composite material systems [J].Acc.Chem. Res.,2005,38:263-271.
    [3] PARK S, LIM J H, CHUNG S W, MIRKIN C A. Self-assembly of mesoscopicmetal-polymer amphiphiles[J]. Science,2004,303:348-351.
    [4] CARUSO F. Nanoengineering of particle surfaces [J]. Adv. Mater,2001,13:11.
    [5] IZAWA H, KLKKAWA S, KOLZUML M. Ion exchange and dehydration oflayered (sodium and potassium) titanates, Na2Ti3O7and K2Ti4O9[J]. J. Phys.Chem.,1982,86(25):5023-5026.
    [6] SASAKI T, IZUMI F, WATANABE M, et al. Intercalation of Pyridine in LayeredTitanates [J]. Chem. Mater.,1996,8:777-782.
    [7] KASUGA T, HIRAMATSU M, HOSON A, et al. Formation of Titanium OxideNanotube [J]. Langmuir,1998,14:3160-3163.
    [8]刘扬,嵇天浩,周吉,等.由钛酸盐纳米带水热制备锐钛矿型TiO2纳米带[J].高等学校化学学报,2010,31(7):1297-1302.
    [9]安会琴,朱宝林,吴红艳,等.钛酸盐纳米管与二硫化碳修饰钛酸盐纳米管的合成、表征及其去除重金属离子性能[J].高等学校化学学报,2008,29(3):439-444.
    [10] WEN P, BIN H, YAN C, WEI W H, LI G, HONG M Y, SHOU H F.Hydrothermal Synthesis and Characterization of Pyrochlore Titanate R2Ti2O7(R=Gd3+, Tb3+, Dy3+)[J]. Chem. Res. Chinese Universities,2011,27(2):161-165.
    [11] KHALSA H S, SMITH M D, LOYE H C. Crystal growth and structuredetermination of K2TiO3: A five coordinate titanate [J]. Materials ResearchBulletin,2009,44:91-94.
    [12] TSAI J Y, CHAO J H, LIN C H. Low temperature carbon monoxide oxidationover gold nanoparticles supported on sodium titanate nanotubes [J]. J. Mol. Catal.A: Chem.,2009,298(1-2):115-124.
    [13] RAN B Y, MING Z Z, JUN C, JIN X D, GUI R L, XIAN R X. Synthesis andCharacterization of Cubic Zinc Titanate Doped with Lithium [J]. Chem. Res.Chinese Universities,2010,26(2):185-188.
    [14] LIU B, ZENG H C. Fabrication of ZnO "dandelions" via a modified kirkendallprocess [J]. J. Am. Chem. Soc.,2004,126:16744-16746.
    [15] LIU B, ZENG H C. Mesoscale organization of CuO nanoribbons: Formation of"dandelions"[J]. J. Am. Chem. Soc.,2004,126:8124-8125.
    [16] YUAN J K, LAUBERNDS K, ZHANG Q H, SUIB S L. Self-assembly ofmicroporous manganese oxide octahedral molecular sieve hexagonal flakes intomesoporous hollow nanospheres [J]. J. Am. Chem. Soc.,2003,125:4966-4967.
    [17] JIANG X C, SUN L D, YAN C H. J. Ordered nanosheet-based YBO3: Eu3+assemblies: Synthesis and tunable luminescent properties [J]. Phys. Chem. B,2004,108:3387-3390.
    [18] YAN C L, XUE D F. Novel self-assembled MgO nanosheet and its precursors [J].J. Phys. Chem. B,2005,109:12358-12361.
    [19] HOU Y L, KONDOH H, OHTA T. Self-assembly of Co nanoplatelets intospheres: Synthesis and characterization [J]. Chem. Mater.,2005,17:3994-3996.
    [20] MAO Y B, KANUNGO M, TIRAMDAI H B, STANISLAUS S W. Synthesis andgrowth mechanism of titanate and titania one-dimensional nanostructuresself-assembled into hollow micrometer-scale spherical aggregates [J]. J. Phys.Chem. B,2006,110:702-710.
    [21] HUANG J Q, HUANG Z, GUO W, WANG M, CAO Y G, HONG M C. Facilesynthesis of titanate nanoflowers by a hydrothermal route [J]. Crystal Growth&Design,2008,8(7):2444-2446.
    [22] FENG X J, ZHAI J, JIANG L. The Fabrication and SwitchableSuperhydrophobicity of TiO2Nanorod Films [J]. Angew. Chem. Int. Ed.,2005,44:5115-5118.
    [1] MA R Z, BANDO Y, SASAKI T, et al. Nanotubes of lepidocrocite titanates [J].Chemical Physics Letters,2003,380:577-582.
    [2] NAKAHIRA A, KATO W, TAMAI M, et al. Synthesis of Nanotube from aLayered H2Ti4O9·H2O in a Hydrothermal Treatment using Various TitaniaSources [J]. J Mater Sci,2004,39:4239-4245.
    [3] YADA M, INOUE Y, UOTA M, et al. Plate, Wire, Mesh, Microsphere, andMicrotube Composed of Sodium Titanate Nanotubes on a Titanium MetalTemplate [J]. Langmuir,2007,23:2815-2823.
    [4] ZHANG S, PENG L M, CHEN Q, et al. Formation Mechanism of H2Ti3O7Nanotubes [J]. Phys. Rev. Lett.,2003,91:256103-256106.
    [5] WU D, LIU J, ZHAO X, et al. Sequence of Events for the Formation of TitanateNanotubes, Nanofibers, Nanowires, and Nanobelts [J]. Chem. Mater.,2006,18:547-553.
    [6] YANG J, JIN Z, WANG X, et al. Study on composition, structure andformation process of nanotube Na2Ti2O4(OH)2[J]. Journal of the ChemicalSociety Dalton Transactions,2003,20:3898-3901.
    [7] BOVTUN V, KAMABA S, VELJKO S, et al. J. Phys. Rev. B,2009,79:104111(1-12).
    [8] YANG Y, WANG X H, SUN C K. J. Nanotechnology,2009,20:1-5.
    [9] CHU J B, HUANG S M, ZHANG D W, et al. J. Appl. Phys. A,2009,95:849-855.
    [10] GANESH T, MANE R S, CAI G, CHANG J H, HAN S H. ZnONanoparticles-CdS Quantum Dots/N3Dye Molecules: Dual Photosensitization[J]. J. Phys. Chem. C,2009,113:7666-7669.
    [11]范霞,李娴,田东亮,翟锦,江雷.染料敏化的TiO2纳米管薄膜的光电浸润性[J].高等学校化学学报,2011,32(12):2861-2864.
    [12]徐惠,王毅,翟钧,等. TiO2纳米管的水热合成表征及其光催化性能研究[J].环境污染与防治,2006,28(2):81-83.
    [13] ZHOU Q X, DING Y J, XIAO J P, et al. Investigation of the feasibility of TiO2nanotubes for the enrichment of DDT and its metabolites at trace levels inenvironmental water samples [J]. Journal of Chromatography A,2007,1147:10-16.
    [14] HAHN R, GHICOV A, SALONEN J, et al. Carbon doping of self-organizedTiO2nanotube layers by thermal acetylene treatment [J]. Nanotechnology,2007,18:105604.
    [15] DING X, XU X G, CHEN Q, et al. Preparation and characterization ofFe-incorporated titanate nanotubes [J]. Nanotechnology,2006,17:5423-5427.
    [16] BAVYKIN D V, LAPKIN A A, PLUCINSKI P K, et al. Reversible storage ofmolecular hydrogen by sorption into multilayered TiO2nanotubes [J]. J PhysChem B,2005,109(41):19422-19427.
    [17] VARGHESE O K, et al. Hydrogen sensing using titania nanotubes [J]. SensorsActuators B,2003,93(1-3):338-344.
    [18] KAVAN L, KALBAC M, ZUKALOVA M, EXNAR I, LORENZEN V, NESPERR, GRATZE M. Lithium storage in nanostructured TiO2made by hydrothermalgrowth [J]. Chem.Mater.,2004,16:477-485.
    [19] LEE C, WANG C, LYU M, JUANG L, LIU S, HUNG S. Effects of sodiumcontent and calcination temperature on the morphology, structure andphotocatalytic activity of nanotubular titanates [J]. J. Colloid Interf. Sci.,2007,316:562-569.
    [20] ZHANG M, JIN Z, ZHANG J, GUO X, YANG J, LI W, WANG X, ZHANG Z.Effect of annealing temperature on morphology, structure and photocatalyticbehavior of nanotubed H2Ti2O4(OH)2[J]. J.Mol.Catal. A,2004,217:203-210.
    [1] OU H H, LIAO C H, LIOU Y H, et al. Photocatalytic oxidation of aqueousammonia over microwave-induced titanate nanotubes [J]. Environ. Sci. Technol.,2008,42:4507-4512.
    [2] TESTA J J, GRELA M A, LITTER M I. Experimental evidence in favor of aninitial one-electron-transfer process in the heterogeneous photocatalyticreduction of chromium(VI) over TiO2[J]. Langmuir,2001,17(12):3515-3517.
    [3] WANG J, SUN W, ZHANG Z. H. Sonocatalytic degradation of methyl parathionin the presence of micron-sized and nano-sized rutile titanium dioxide catalystsand comparison of their sonocatalytic abilities [J]. Journal of Molecular CatalysisA:Chemical,2007,272:84-90.
    [4] KANG S F, LIAO C H, CHEN M C. Pre-oxidation and coagulation of textilewastewater by the Fenton process [J]. Chemosphere,2002,46(6):923-928.
    [5] CARMEN S D, LUIS M M, RUI A R B. Effect of oil refinery sludges on thegrowth and antioxidant system of alfalfa plants [J]. Journal of HazardousMaterials,2009,164(2):987-994.
    [6] CHEN S F, ZHANG S J, LIU W, ZHAO W. Preparation and activity evaluationof p-n junction photocatalyst NiO/TiO2[J]. J. Hazard. Mater.,2008,155:320-326.
    [7] KHAN M A, HAN D H, YANG O B. Enhanced photoresponse towards visiblelight in Ru doped titania nanotube [J]. Appl Surf Sci,2009,255(6):3687-3690.
    [8] YANG L X, XIAO Y, LIU S H. Photocatalytic reduction of Cr(VI) on WO3doped long TiO2nanotube arrays in the presence of citric acid [J]. Appl Catal B:Environ,2010,94(1-2):142-149.
    [9] YANG H, PAN C X. Synthesis of carbon-modified TiO2nanotube arrays forenhancing the photocatalytic activity under the visible light [J]. J Alloy Compd,2010,501(1): L8-L11.
    [10] XUA J. Zinc-ion implanted and deposited titanium surfaces reduce adhesion ofStreptococccus mutans [J]. Appl Surf Sci,2010,256(24):7540-7544.
    [11] KUO C S, TSENG Y H, HUANG C H, LI Y Y. Carbon-containing nano-titaniaprepared by chemical vapor deposition and its visible-light-responsivephotocatalytic activity [J]. J. Mol. Catal. A: Chem,2007,270:93-100.
    [12] LI X B, JIANG X Y, HUANG J H, WANG X J. Photocatalytic Activity forWater Decomposition to Hydrogen over Nitrogen-doped TiO2Nanoparticle [J]Chin. J. Chem.,2008,26(12):2161-2164.
    [13] COEY J, KWANRUTHAI W, ALARIA J. Charge-transfer ferromagnetism inoxide nanoparticles [J]. J Phys D: Appl Phys,2008,41(13):134012(1-6).
    [14] WANG X, ZHI L. Transparent, conductive graphene electrodes fordye-sensitized solar cells [J]. Nano Lett,2008,8(1):323-327.
    [15]陈英,刘宝生,岑小龙.稀土改性Ni/TiO2光催化剂及其重复利用催化活性[J].稀土,2010,1:40-47.
    [16]孙彦刚,徐菁利,唐博.纳米Ni/TiO2粉体的制备及其光催化性能[J].合成化学,2010,6:705-708.
    [17] DING X, XU X G, CHEN Q, PENG L M. Preparation and characterization ofFe-incorporated titanate nanotubes [J]. Nanotechnology,2006,17:5423-5427.
    [18]宋旭春,郑遗凡,曹广胜,殷好勇.过渡金属离子置换钛酸纳米管的制备和光催化活性[J].无机化学学报,2005,12:1897-1900.
    [19] JIANG J H, GAO Q M, CHEN Z, et al. Syntheses, characterization andproperties of novel nanostructures consisting of Ni/titanate and Ni/titania [J].Mater. Lett.,2006,60:3803-3808.
    [20] LEE C, WANG C, LYU M, et al. Effects of sodium content and calcinationtemperature on the morphology, structure and photocatalytic activity ofnanotubular titanates [J]. J. Colloid Interf. Sci.,2007,316:562-569.
    [21] KAVAN L, KALBAC M, ZUKALOVA M, et al. Lithium storage innanostructured TiO2made by hydrothermal growth [J]. Chem. Mater.,2004,16:477-485.
    [1] HERRMAN J M, CHANTAL G, JEAN D. Applied Catalysis B: Environmental,2002,35(4):281-294.
    [2] PEDEN C H F, HERRMAN J M. Model catalyst studies with single crystals andepitaxial thin oxide films [J]. Catalysis Today,1999,53(1):115-129.
    [3] IRELAND J C, KLOSTERMANN P, RICE E W. Inactivation of Escherichia coliby titanium dioxide photocatalytic oxidation [J]. Appl Environ Microbiol,1993,59(4):1668-1670.
    [4] HARIZNOV O, HARIZANOVA A. Development and investigation of sol-gelsolutions for the formation of TiO2coatings [J]. Solar Energy Materials andSolar Cells,2000,(63):185-195.
    [5] ANDRIAINARIVELO M, CORRIU R, MUTIN P, et al. Nonhydrolytic Sol-GelProcess: Aluminum Titanate Gels [J]. Chem. Mater.,1997,(9):1098-1102.
    [6] LU Z X, ZHOU L, ZHANG Z L. Cell damage induced by photocatalysis of TiO2thin films [J]. Langmuir,2003,19:8765-8768.
    [7] SUNADA K, WATANABE T, HASHIMOTO K. Studies on photokilling ofbacteria on TiO2thin film [J]. Journal of Photochemistry and Photobiology A:Chemistry,2003,156:227-233.
    [8] HIERONIM S, ANNA S G, ADAM R, et al. Photo-induced properties of thinTiO2films deposited using the radio frequency plasma enhanced chemical vapordeposition method [J]. Thin Solid Films,2007,515:5275-5281.
    [9] PENG W, HU B, CHEN Y, et al. Hydrothermal Synthesis and Characterizationof Pyrochlore Titanate R2Ti2O7(R=Gd3+, Tb3+, Dy3+)[J]. Chem. Res. ChineseUniversities,2011,27(2):161-165.
    [10] VAMATHEVAN V, AMAL R, BDYDOUN D. J Photochem Photobiol: chem A,2002,148(1/3):229-233.
    [11] COLMENARES J C, ARAMENDIA M A, MARINAS A. Synthesis,characterization and photocatalytic activity of different metal-doped titaniasystems [J]. Applied Catalysis A,2006,306(6):120-127.
    [12] TRAPALIS C C, KEIVANIDIS P, KORDAS G. TiO2(Fe3+) nanostructured thinfilms with antibacterial properties [J]. Thin Solid Films,2003,433:186-190.
    [13] MOSKOVITS M. Rev. Mod. Phys.,1985,57:783-826.
    [14] KNEIPP K, WANG Y, KNEIPP H. Nonhydrolytic Sol-Gel Process: AluminumTitanate Gels [J]. Phys. Rev. Lett.,1997,78:1667-1670.
    [15] TATON T A, MIRKIN C A, LETSINGER R L. Scanometric DNA arraydetection with nanoparticle probes Science [J]2000,289:1757-1760.
    [16] ANDERSSON M, BIRKEDL H, FRANKLIN N R, et al. Ag/AgCl-loadedordered mesoporous anatase for photocatalysis [J]. Chem Mater,2005,17:1409-1415.
    [17] WANG P, HUANG B B, QIN X Y, et al. Ag@AgCl: A Highly Efficient andStable Photocatalyst Active under Visible Light [J]. Angew Chem Int Ed,2008,47:7931-7933.
    [18] WANG P, HUANG B B, QIN X Y, et al. Ag/AgBr/WO3center dot H2O:Visible-Light Photocatalyst for Bacteria Destruction [J]. Inorg Chem,2009,48:10697-10702.
    [19] PRIYA R, BAIJU K V, SHUKLA S, et al. Comparing Ultraviolet and ChemicalReduction Techniques for Enhancing Photocatalytic Activity of SilverOxide/Silver Deposited Nanocrystalline Anatase Titania [J]. J Phys Chem C,2009,113:6243-6255.
    [20] SUN L, LI J, WANG C L, et al. Ultrasound aided photochemical synthesis of Agloaded TiO2nanotube arrays to enhance photocatalytic activity [J]. J HazardMater,2009,171:1045-1050.
    [21] SUN S M, WANG W Z, ZHANG L, et al. Ag@C core/shell nanocomposite as ahighly efficient plasmonic photocatalyst [J]. Catal Commun,2009,11:290-293.
    [22] LI Y Y, DING Y. Porous AgCl/Ag Nanocomposites with Enhanced Visible LightPhotocatalytic Properties [J]. J Phys Chem C,2010,114:3175-3179.
    [23] AWAZU K, FUJIMAKI M, ROCKSTUHL C. A plasmonic photocatalystconsisting of sliver nanoparticles embedded in titanium dioxide [J]. J. Am. Chem.Soc.,2008,130(5):1676-1680.
    [24] LI Y Z, ZHANG H, GUO Z M, et al. Highly efficient visible-light-inducedphotocatalytic activity of nanostructured AgI/TiO2photocatalyst [J]. Langmuir,2008,24:8351-8357.
    [25] HU C, LAN Y Q, QU J H. Ag/AgBr/TiO2visible light photocatalyst fordestruction of azodyes and bacteria [J]. J Phys Chem B,2006,110(9):4066-4072.
    [26] YU J G, DAI G P, HUANG B B. Fabrication and Characterization ofVisible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2TiO2NanotubeArrays [J]. J Phys Chem C,2009,113:16394-16401.
    [27] OHKO Y, TATSUMA T, FUJISHIMA A. Multicolour photochromism of TiO2films loaded with silver nanoparticles [J]. Nature Materials,2003,2(1),29-31.
    [28] GAO Y P, FANG P F, LIU Z, et al. A facile one-pot synthesis of layeredprotonated titanate nanosheets loaded with silver nanoparticles with enhancedvisible-light photocatalytic performance [J]. Chem. Asian J,2013,8:204-211.
    [29] GONG D G, TANG Y X, TAY Q L, et al. Silver decorated titanate/titaniananostructures for efficient solar driven photocatalysis [J]. Journal of Solid StateChemistry,2012,189:117-122.
    [30] REN N, LI R, CHEN L M, et al. In situ construction of a titanate-silvernanoparticle-titanate sandwich nanostructure on a metallic titanium surface forbacteriostatic and biocompatible implants [J]. J. Mater. Chem.,2012,22:19151-19160.
    [31] JIANG J H, GAO Q M, CHEN Z, et al. Syntheses, characterization andproperties of novel nanostructures consisting of Ni/titanate and Ni/titania [J].Mater. Lett.,2006,60:3803-3808.
    [32] KUMBHAR A S, KINNAN M K, CHUMANOV G. Multipole plasmonresonances of submicron silver particles [J]. J Am Chem Soc,2005,127:12444-12445.
    [33] MOSKOVITS M. Rev. Mod. Phys.,1985,57:783-826.
    [34] TIAN Y, TATSUMA T. Mechanisms and applications of plasmon-inducedcharge separation at TiO2films loaded with gold nanoparticles [J]. J. Am. Chem.Soc.,2005,127:7632-7637.
    [35] KAWAHARA K, SUZUKI K, TATSUMA T. Electron transport insilver-semiconductor nanocomposite films exhibiting multicolor photochromism[J]. Phys. Chem. Chem.Phys.,2005,7:3851-3855.
    [36] KOLLE U, MOSER J, GRAETZEL M, et al. Dynamics of interfacialcharge-transfer reactions in semiconductor dispersions. Reduction ofcobaltoceniumdicarboxylate in colloidal titania [J]. Inorg. Chem.,1985,24:2253-2258.
    [37] KORMANN C, BAHNEMANN D W, HOFFMAN M R. Preparation andcharacterization of quantum-size titanium dioxide [J]. J. Phys. Chem.,1988,92:5196-5201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700