用户名: 密码: 验证码:
基于荧光纳米粒子的一些生物功能成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以荧光纳米粒子作为探针的生物荧光成像是当前纳米生物光子学领域的一个研究热点,新型荧光纳米材料的开发及生物荧光成像技术的应用引起了研究者的广泛关注。本论文围绕离体细胞荧光成像、宏观活体荧光成像和显微活体荧光成像技术及生物学应用展开研究工作,研究了多种新颖的荧光成像纳米探针的生物医学应用。
     在细胞成像层面:
     对氧化石墨烯纳米材料的单光子激发和多光子激发荧光特性进行了系统的表征,利用双光子荧光显微镜作为工具,以氧化石墨烯纳米材料作为荧光造影剂,研究了氧化石墨烯纳米材料在离体HeLa细胞的荧光成像,对氧化石墨烯纳米材料通过细胞膜进入细胞的机理进行了实验分析验证,利用多光谱荧光成像技术和细胞器荧光标记物研究了氧化石墨烯材料在亚细胞层面的分布情况。
     利用多孔二氧化硅纳米小球包覆光动力治疗药物(PpIX)制备了具有荧光成像和光动力治疗功能的纳米探针(PpIX@SiO2),提出并验证了利用近红外飞秒脉冲激光激发光动力药物来实现光动力治疗的可行性,利用PpIX@SiO2对离体HeLa细胞进行标记,完成了利用近红外飞秒光激发的细胞荧光成像和细胞光动力治疗。
     在宏观活体成像层面:
     利用有机修饰的多孔二氧化硅纳米小球(ORMOSIL)包覆近红外荧光染料(IR-820),制备了具有近红外荧光特性的荧光纳米探针(IR-820@ORMOSIL),在人造模拟组织结构中验证了这种近红外荧光探针用于深层组织成像的潜力,利用IR-820@ORMOSIL荧光纳米探针实现了对活体肿瘤的非特异性的标记和宏观活体荧光成像诊断,通过长期的观察验证了这种纳米探针用于肿瘤的长期标记和荧光成像的能力。
     利用聚合物分子(DSPE-mPEG5000)包覆了一种具有聚集增强荧光特性的荧光染料(StCN),制备了具有良好荧光特性和生物兼容性的聚合物荧光纳米粒子(StCN@PEG),利用这种纳米颗粒实现了活体SLN荧光成像定位和非特异的活体肿瘤荧光成像诊断。通过化学方法在StCN@PEG纳米粒子表面连接了能够跟肿瘤细胞特异性结合的多肽,利用多肽修饰的StCN@PEG荧光纳米粒子实现了靶向的肿瘤荧光成像。
     提出了在油酸-液体石蜡体系中合成近红外荧光发射特性的硫化铅量子点的“绿色”合成方法,通过二氧化硅-聚乙二醇双层包覆的方法对油溶性的PbS量子点进行表面包覆,制备了具有超强化学稳定性和良好生物兼容性的近红外荧光纳米颗粒(PbS@SiO2@PEG),利用这种纳米颗粒实现了对小鼠活体前哨淋巴结(SLN)荧光成像定位。
     在显微活体成像层面:
     研究了一种新颖的具有聚集诱导荧光特性的荧光染料(TPE-TPA-FN)的单光子激发荧光和双光子激发荧光特性,利用DSPE-mPEG5000聚合物分子包覆TPE-TPA-FN染料分子,制备了具有优良荧光特性和生物兼容性的荧光纳米粒子(TPE-TPA-FN@PEG),利用这种荧光纳米粒子作为双光子荧光成像探针,以双光子荧光共聚焦显微镜作为工具,实现了对小鼠活体耳部血管和脑部血管的荧光成像。
In recent years, fluorescent nanoparticles based bioimaging forms a major thrust of bio-photonics. Much focus has been given to the development of efficient optical agents and fluorescence imaging systems. In this thesis, we focuse on the applications of some novel fluorescent nanoparticles, including in vitro cell bioimaging, in vivo fluorescence bioimaging, and in vivo two-photon excited microscopic functional bioimaging. The detail content of our research work is as follows.
     For in vitro cell imaging:
     We systemically study the multi-photon excited fluorescence of graphene oxide nanoparticles. Grafted with PEG molecules, GO nanoparticles exhibited high chemical stability under various pH values. GO-PEG nanoparticles were also shown to have negligible cytotoxicity by a cell proliferation assay and histological analysis, which could facilitate their in vitro applications. In in vitro cell imaging, fluorescence bioimaging clearly illustrated the distribution of GO-PEG nanoparticles in cellular/subcellular components.
     Mesoporous silica nanoparticles are used to encapsulate PpIX (a kind of photodynamic therapy drugs), and the as-synthesized nanoparticles (PpIX@SiO2) are water soluble, with good chemical stability and biocompatibility. The one-photon and two-photon optical properties of PpIX@SiO2nanoparticles have been systematically investigated, and their applications in in vitro two-photon fluorescence imaging and photodynamic therapy of tumor cells have been demonstrated.
     For macroscopical in vivo bioimaging:
     Organically modified silica (ORMOSIL) nanoparticles are used to encapsulate a kind near infra-red (NIR) organic fluorescent agents (IR-820). Our study indicates that IR-820doped ORMOSIL nanoparticles, which located beneath1.5cm-depth in phantom, could be easily discriminated by utilizing NIR fluorescence imaging. We also demonstrate that intravenously injected NIR nanoparticles can target the subcutaneously xenografted tumor of a mouse through blood circulation and the "enhanced permeability and retention"(EPR) effect. ORMOSIL nanoparticles have bright prospects in future biomedical applications, such as disease diagnosis and clinical therapies.
     We report polymeric nanomicelles doped with organic fluorophores (StCN.(Z)-2.3-bis [4-(N-4-(diphenylamino)styryl)phenyl]-acrylonitrile), which have the property of aggregation-enhanced fluorescence. These fluorescent nanomicelles are utilized as efficient optical probes for in vivo SLN mapping of mice. The StCN@PEG nanomicelles, as well as their bioconjugates with arginine-glycine-aspartic acid (RGD) peptides, are used to target subcutaneously xenografted tumors in mice, and in vivo fluorescence images demonstrate the potential to use PEGylated phospholipid nanomicelles with aggregation-enhanced fluorescence as bright nanoprobes for in vivo diagnosis of tumors.
     PbS semiconductor quantum dots (QDs) with NIR photoluminescence were synthesized in oleic acid and paraffin liquid mixture by using aneasily handled and 'green' approach. Surface functionalization of the QDs was accomplishedwith a silica and polyethylene glycol (PEG) phospholipid dual-layer coating and the excellentchemical stability of the nanoparticles is demonstrated. We then successfully applied the ultrastable PbS QDs to in vivo sentinel lymph node (SLN) mapping of mice. Histological analyses were also carried out to ensure that the intravenously injected nanoparticles did not produce any toxicity to the organism of mice. These experimental results suggested that our ultrastable NIR PbS QDs can serve as biocompatible and efficient probes for in vivo optical bioimaging and has great potentials for disease diagnosis and clinical therapies in the future.
     For microcosmic in vivo bioimaging:
     A new kind of organic fluorescent compounds (TPE-TPA-FN) with aggregation induced emission (AIE) property is studied. TPE-TPA-FN encapsulated DSPE-mPEG nanomicelles are prepared. We intravenously inject TPE-TPA-FN@PEG nanomicelles into mice body from the tail vein, and observed their flow, distributions in blood vessels, by utilizing a deep-penetrating in vivo two-photon imaging technique.
引文
[1]江泽民.论科学技术[M].中央文献出版社,2001.
    [2]Ridley M.理性乐观派[J]. China Investment,2012,2:044.
    [3]Weissleder R, Pittet M J. Imaging in the era of molecular oncology[J]. Nature,2008, 452(7187):580-589.
    [4]张峰,任燕.绿色荧光蛋白及其应用[J].生命科学,1999,11(2):61-65.
    [5]普拉萨德,何赛灵.生物光子学导论[M].浙江大学出版社,2006.
    [6]钱骏.具有优良光谱特性的纳米颗粒在生物光学成像中的应用研究[D].浙江大学,2009.
    [7]詹求强.几种基于高信噪比探测技术的光学生物成像方法的研究[D].浙江大学,2012.
    [8]Wang C, Tao H, Cheng L, et al. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles[J]. Biomaterials,2011,32(26): 6145-6154.
    [9]Chudakov D M, Matz M V, Lukyanov S, et al. Fluorescent proteins and their applications in imaging living cells and tissues[J]. Physiological reviews,2010,90(3): 1103-1163.
    [10]Larson D R, Zipfel W R, Williams R M, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo[J]. Science,2003,300(5624):1434-1436.
    [11]Bates M, Huang B, Dempsey G T, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science,2007,317(5845):1749-1753.
    [12]Xiong L, Chen Z, Tian Q, et al. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors[J]. Analytical chemistry,2009, 81(21):8687-8694.
    [13]Kumar R, Ohulchanskyy T Y, Roy I, et al. Near-infrared phosphorescent polymeric nanomicelles:efficient optical probes for tumor imaging and detection[J]. ACS Applied Materials & Interfaces,2009,1(7):1474-1481.
    [14]Wang L V, Hu S. Photoacoustic tomography:in vivo imaging from organelles to organs[J]. Science,2012,335(6075):1458-1462.
    [15]Drexler W, Morgner U, Kartner F X, et al. In vivo ultrahigh-resolution optical coherence tomography[J]. Optics letters,1999,24(17):1221-1223.
    [16]龙凌亮.一系列有机小分子荧光功能材料的设计、合成及其应用研究[D].湖南大学,201 0.
    [17]中国生物技术发展中心,华中科技大学.生物成像方法[M].科学出版社,2012.
    [18]Johnson I D, Davidson M W. Available online at http://www.olympusmicro.com/p rimer/java/jablonski/jabintro/
    [19]樊美公.光化学基本原理与光子学材料科学[M].科学出版社,2001.
    [20]Lichtman J W, Conchello J A. Fluorescence microscopy[J]. Nature Methods,2005, 2(12):910-919.
    [21]Conchello J A, Lichtman J W. Optical sectioning microscopy[J]. Nature Methods,2005, 2(12):920-931.
    [22]Claxton N S, Fellers T J, Davidson M W. Laser scanning confocal microscopy [J]. Olympus. Available online at http://www.olympusconfocal.com/theory/LSCMIntro. pdf,2006.
    [23]Cahalan M D, Parker I, Wei S H, et al. Two-photon tissue imaging:seeing the immune system in a fresh light[J]. Nature Reviews Immunology,2002,2(11):872-880.
    [24]Stutzmann G E, Parker I. Dynamic multiphoton imaging:a live view from cells to systems[J]. Physiology,2005,20(1):15-21.
    [25]Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science,1990,248(4951):73-76.
    [26]Mainen Z F, Maletic-Savatic M, Shi S H, et al. Two-photon imaging in living brain slices[J]. Methods,1999,18(2):231-239.
    [27]Axelrod D. Cell-substrate contacts illuminated by total internal reflection fluorescence[J]. The Journal of cell biology,1981,89(1):141-145.
    [28]Axelrod D. Total internal reflection fluorescence microscopy in cell biology[J]. Traffic, 2001,2(11):764-774.
    [29]Yao G, Fang X, Yokota H, et al. Monitoring molecular beacon DNA probe hybridization at the single-molecule level[J]. Chemistry-A European Journal,2003.9(22): 5686-5692.
    [30]Clegg R M. Fluorescence resonance energy transfer[J]. Current opinion in biotechnology,1995,6(1):103-110.
    [31]Xia Z, Liu Y. Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes[J]. Biophysical journal,2001,81(4):2395.
    [32]Jares-Erijman E A, Jovin T M. FRET imaging[J]. Nature biotechnology,2003,21(11): 1387-1395.
    [33]Bastiaens P I H, Squire A. Fluorescence lifetime imaging microscopy:spatial resolution of biochemical processes in the cell[J]. Trends in cell biology,1999,9(2):48-52.
    [34]Liu L X, Qu J L, Lin Z Y, et al. Fluorescence lifetime imaging and its biomedical applications[J]. Shenzhen Daxue Xuebao Ligong Ban(Journal of Shenzhen University of Science and Engineering),2005,22(2):133-141.
    [35]Chang C W, Sud D, Mycek M A. Fluorescence lifetime imaging microscopy[J]. Methods in cell biology,2007,81:495-524.
    [36]Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo:recent advances[J]. Current opinion in biotechnology,2007,18(1):17-25.
    [37]Ntziachristos V, Ripoll J, Wang L V, et al. Looking and listening to light:the evolution of whole-body photonic imaging[J]. Nature biotechnology,2005,23(3):313-320.
    [38]陈德强,夏安东,王克逸,等.双光子激光扫描荧光显微镜及其应用[J].物理,2000,29(04):0.
    [39]Ustione A, Piston D W. A simple introduction to multiphoton microscopy[J]. Journal of Microscopy,2011,243(3):221-226.
    [40]Kobat D, Durst M E, Nishimura N, et al. Deep tissue multiphoton microscopy using longer wavelength excitation[J]. Optics express,2009,17(16):13354-13364.
    [41]张怡,韩或,赵春林.活体动物体内光学成像技术的研究进展[J].生命科学,2006,18(1):25-30.
    [42]李慧,戴汝为.在体生物光学成像技术的研究进展[J].自动化学报,2008,34(12):1449-1457.
    [43]Rice B W, Cable M D, Nelson M B. In vivo imaging of light-emitting probes[J]. Journal of biomedical optics,2001,6(4):432-440.
    [44]Weissleder R, Ntziachristos V. Shedding light onto live molecular targets[J]. Nature medicine,2003,9(1):123-128.
    [45]Weissleder R. Scaling down imaging:molecular mapping of cancer in mice[J]. Nature Reviews Cancer,2002,2(1):11-18.
    [46]Taylor J R, Fang M M, Nie S. Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles[J]. Analytical Chemistry,2000,72(9): 1979-1986.
    [47]Josephson L, Kircher M F, Mahmood U, et al. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes[J]. Bioconjugate chemistry,2002,13(3): 554-560.
    [48]Li Z, Zhang Y, Jiang S. Multicolor core/shell-structured upconversion fluorescent nanoparticles[J]. Advanced Materials,2008,20(24):4765-4769.
    [49]Ye Z, Tan M, Wang G, et al. Preparation, characterization, and time-resolved fluorometric application of silica-coated terbium (Ⅲ) fluorescent nanoparticles[J]. Analytical chemistry,2004,76(3):513-518.
    [50]He X, Duan J, Wang K, et al. A novel fluorescent label based on organic dye-doped silica nanoparticles for HepG liver cancer cell recognition[J]. Journal of nanoscience and nanotechnology,2004,4(6):585-589.
    [51]Mandal S K, Lequeux N, Rotenberg B, et al. Encapsulation of magnetic and fluorescent nanoparticles in emulsion droplets[J]. Langmuir,2005,21(9):4175-4179.
    [52]Jiang S, Gnanasammandhan M K., Zhang Y. Optical imaging-guided cancer therapy with fluorescent nanoparticles[J]. Journal of the Royal Society Interface,2010,7(42): 3-18.
    [53]Shimomura O, Johnson F H, Saiga Y. Extraction, purification and properties of aequorin. a bioluminescent protein from the luminous hydromedusan, Aequorea[J]. Journal of cellular and comparative physiology,1962.59(3):223-239.
    [54]余梦晓.生物成像用新型发光探针的研究[D].复旦大学,2009.
    [55]www.probes.com and www.invitrogen.com
    [56]Haugland R P. The handbook:a guide to fluorescent probes and labeling technologies[M]. Molecular Probes,2005.
    [57]杨冰,李瑛,徐创霞,等.有机荧光材料研究进展[J].化学研究与应用,2003,15(1): 11-16.
    [58]Hong Y, Lam J W Y, Tang B Z. Aggregation-induced emission[J]. Chemical Society Reviews,2011,40(11):5361-5388.
    [59]Jacky W Y, SingaKwok H, ZhongaTang B. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chemical Communications,2001 (18): 1740-1741.
    [60]Hong Y, Lam J W Y, Tang B Z. Aggregation-induced emission:phenomenon, mechanism and applications[J]. Chemical Communications,2009 (29):4332-4353.
    [61]Chen J, Law C C W, Lam J W Y, et al. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4.5-tetraphenylsiloles[J]. Chemistry of materials,2003,15(7):1535-1546.
    [62]Liu J, Lam J W Y, Tang B Z. Aggregation-induced emission of silole molecules and polymers:Fundamental and applications[J]. Journal of Inorganic and Organometallic Polymers and Materials,2009,19(3):249-285.
    [63]Ning Z, Tian H. Triarylamine:a promising core unit for efficient photovoltaic materials[J]. Chemical Communications.2009 (37):5483-5495.
    [64]Dong Y Lam J W Y, Li Z. et al. Vapochromism of hexaphenylsilole[J]. Journal of Inorganic and Organometallic Polymers and Materials,2005,15(2):287-291.
    [65]Li Z, Dong Y Q, Lam J W Y, et al. Functionalized siloles:versatile synthesis, aggregation-induced emission, and sensory and device applications[J]. Advanced Functional Materials,2009,19(6):905-917.
    [66]Dong Y, Lam J W Y, Qin A, et al. Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light-emitting diodes[J]. Applied physics letters,2007,91(1):011111-011111-3.
    [67]Li Z, Dong Y, Mi B, et al. Structural control of the photoluminescence of silole regioisomers and their utility as sensitive regiodiscriminating chemosensors and efficient electroluminescent materials[J]. The Journal of Physical Chemistry B,2005, 109(20):10061-10066.
    [68]Toal S J, Jones K A, Magde D, et al. Luminescent silole nanoparticles as chemoselective sensors for Cr (Ⅵ)[J]. Journal of the American Chemical Society,2005, 127(33):11661-11665.
    [69]Ow H, Larson D R, Srivastava M, et al. Bright and stable core-shell fluorescent silica nanoparticles[J]. Nano letters,2005,5(1):113-117.
    [70]Kim S, Lim C K, Na J, et al. Conjugated polymer nanoparticles for biomedical in vivo imaging[J]. Chemical Communications,2010,46(10):1617-1619.
    [71]Kumar R, Ohulchanskyy T Y, Roy I, et al. Near-infrared phosphorescent polymeric nanomicelles:efficient optical probes for rumor imaging and detection[J]. ACS Applied Materials & Interfaces,2009,1(7):1474-1481.
    [72]Qian J, Jiang L, Cai F, et al. Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging[J]. Biomaterials,2011,32(6):1601-1610.
    [73]Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science,1998,281(5385):2013-2016.
    [74]Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science,1998,281(5385):2016-2018.
    [75]Han M, Gao X, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules[J]. Nature biotechnology,2001,19(7):631-635.
    [76]Baird G S. Zacharias D A, Tsien R Y. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral[J]. Proceedings of the National Academy of Sciences,2000,97(22):11984-11989.
    [77]Medintz I L, Uyeda H T, Goldman E R, et al. Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nature materials,2005,4(6):435-446.
    [78]Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J]. Nature biotechnology,2002,21(1): 41-46.
    [79]Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles[J]. Science,2002,298(5599):1759-1762.
    [80]Larson D R, Zipfel W R, Williams R M, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo[J]. Science,2003.300(5624):1434-1436.
    [81]Gao X. Cui Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nature biotechnology,2004,22(8):969-976.
    [82]Kim S, Lim Y T, Soltesz E G, et al. Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping[J]. Nature biotechnology,2003,22(1):93-97.
    [83]Qian J, Yong K T, Roy I, et al. Imaging pancreatic cancer using surface-functionalized quantum dots[J]. The Journal of Physical Chemistry B,2007,111(25):6969-6972.
    [84]Fu T, Qin H Y, Hu H J, et al. Aqueous synthesis and fluorescence-imaging application of CdTe/ZnSe core/shell quantum dots with high stability and low cytotoxicity[J]. Journal of Nanoscience and Nanotechnology,2010,10(3):1741-1746.
    [85]Nikoobakht B, Burda C, Braun M, et al. The quenching of CdSe quantum dots photoluminescence by gold nanoparticles in solution[J]. Photochemistry and photobiology,2002,75(6):591-597.
    [86]Li X, Qian J, Jiang L, et al. Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection[J]. Applied Physics Letters,2009,94(6): 063111-063111-3.
    [87]Dyadyusha L, Yin H, Jaiswal S, et al. Quenching of CdSe quantum dot emission, a new approach for biosensing[J]. Chemical communications,2005 (25):3201-3203.
    [88]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
    [89]Geim A K, Novoselov K S. The rise of graphene[J]. Nature materials.2007,6(3): 183-191.
    [90]Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388.
    [91]Stankovich S, Dikin D A, Dommett G H B. et al. Graphene-based composite materials[J]. Nature,2006,442(7100):282-286.
    [92]Schedin F. Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature materials,2007,6(9):652-655.
    [93]Liu Z, Robinson J T, Sun X, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs[J]. Journal of the American Chemical Society,2008, 130(33):10876-10877.
    [94]Yang K, Zhang S, Zhang G, et al. Graphene in mice:ultrahigh in vivo tumor uptake and efficient photothermal therapy[J]. Nano letters,2010,10(9):3318-3323.
    [95]Wang Y, Li Z, Wang J, et al. Graphene and graphene oxide:biofunctionalization and applications in biotechnology[J]. Trends in biotechnology,2011,29(5):205-212.
    [96]Liu F, Choi J Y, Seo T S. Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer[J]. Biosensors and Bioelectronics,2010,25(10):2361-2365.
    [97]Bao H, Pan Y, Ping Y, et al. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery[J]. Small,2011,7(11):1569-1578.
    [98]Chen J L, Yan X P, Meng K, et al. Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine[J]. Analytical chemistry. 2011,83(22):8787-8793.
    [99]Guo C, Book-Newell B, lrudayaraj J. Protein-directed reduction of graphene oxide and intracellular imaging[J]. Chemical Communications,2011,47(47):12658-12660.
    [100]Peng C, Hu W, Zhou Y, et al. Intracellular imaging with a graphene-based fluorescent probe[J]. Small,2010,6(15):1686-1692.
    [101]张达,周非凡,邢达.功能化氧化石墨烯的靶向肿瘤成像与光热治疗[J].科学通报, 2013,58(7):586-592.
    [102]Shukla S, Saxena S. Spectroscopic investigation of confinement effects on optical properties of graphene oxide[J]. Applied Physics Letters,2011,98(7): 073104-073104-2.
    [103]Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery[J]. Nano research,2008,1(3):203-212.
    [104]Li J L, Bao H C, Hou X L, et al. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy[J]. Angewandte Chemie International Edition,2012,51(8):1830-1834.
    [105]翟中和,王喜忠,生物学,等.细胞生物学[M].高等教育出版社,2000.
    [106]Fu Y, Galan J E. The Salmonella typhimurium tyrosine phosphatase SptP is tran slocated into host cells and disrupts the actin cytoskeleton[J]. Molecular microbiol ogy,1998,27(2):359-368.
    [107]Salvioli S, Dobrucki J. Moretti L, et al. Mitochondrial heterogeneity during staurosporine-induced apoptosis in HL60 cells:Analysis at the single cell and single organelle level[J]. Cytometry,2000,40(3):189-197.
    [108]Haugland R P. Handbook of fluorescent probes and research products[M]. Molecular Probes,2002.
    [109]Jeong H K, Lee Y P, Lahaye R J W E, et al. Evidence of graphitic AB stacking order of graphite oxides[J]. Journal of the American Chemical Society,2008,130(4):1362-1366.
    [110]傅强,包信和.石墨烯的化学研究进展[J].科学通报,2009,54(18):2657.
    [111]Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(6):1339-1339.
    [112]Matsuo Y, Tabata T, Fukunaga T, et al. Preparation and characterization of silylated graphite oxide[J]. Carbon,2005,43(14):2875-2882.
    [113]Schniepp H C, Li J L, McAllister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide[J]. The Journal of Physical Chemistry B,2006, 110(17):8535-8539.
    [114]Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature nanotechnology,2008,3(2):101-105.
    [115]Robinson J T, Tabakman S M, Liang Y, et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy [J]. Journal of the American Chemical Society,2011,133(17):6825-6831.
    [116]He G S, Zheng Q, Yong K T, et al. Two-and three-photon absorption and frequency upconverted emission of silicon quantum dots[J]. Nano letters,2008,8(9):2688-2692.
    [117]付涛.几种无机纳米颗粒的合成,光学性质及应用研究[D].浙江大学,2009.
    [118]Lavabre D. Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products[J]. Journal of Chemical Education,1999,76(9):1260.
    [119]顾兆泰,匡翠方,郑臻荣,等.共聚焦荧光寿命显微系统[J].光电子.激光,2012,8:011.
    [120]Cai F, Qian J, Jiang L, et al. Multifunctional optical imaging using dye-coated gold nanorods in a turbid medium[J]. Journal of Biomedical Optics,2011,16(1): 016002-016002-8.
    [121]Chen L, Jiang L, Wang Y, et al. Multilayered polyelectrolyte-coated gold nanorods as multifunctional optical contrast agents for cancer cell imaging[J]. Journal of Zhejiang University SCIENCE B,2010,11(6):417-422.
    [122]Jiang L, Qian J, Cai F, et al. Raman reporter-coated gold nanorods and their applications in multimodal optical imaging of cancer cells[J]. Analytical and bioanalytical chemistry, 2011,400(9):2793-2800.
    [123]Zhou X, Huang X, Qi X, et al. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces[J]. The Journal of Physical Chemistry C,2009,113(25):10842-10846.
    [124]Kudin K N, Ozbas B, Schniepp H C, et al. Raman spectra of graphite oxide and functionalized graphene sheets[J]. Nano Letters,2008,8(1):36-41.
    [125]Chen J L, Yan X P. Ionic strength and pH reversible response of visible and near-infrared fluorescence of graphene oxide nanosheets for monitoring the extracellular pH[J]. Chemical Communications,2011,47(11):3135-3137.
    [126]Zhou F, Xing D A, Wu B, et al. New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes[J]. Nano letters,2010,10(5):1677-1681.
    [127]Roy I, Ohulchanskyy T Y, Bharali D J, et al. Optical tracking of organically modified silica nanoparticles as DNA carriers:a nonviral, nanomedicine approach for gene delivery[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(2):279-284.
    [128]Qian J, Gharibi A, He S. Colloidal mesoporous silica nanoparticles with protoporphyrin IX encapsulated for photodynamic therapy[J]. Journal of biomedical optics,2009,14(1): 014012-014012-6.
    [129]Kim S, Pudavar H E, Bonoiu A. et al. Aggregation-enhanced fluorescence in organically modified silica nanoparticles:a novel approach toward high-signal-output nanoprobes for two-photon fluorescence bioimaging[J]. Advanced Materials,2007, 19(22):3791-3795.
    [130]Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting[J]. Advances in enzyme regulation,2001,41(1):189-207.
    [131]Krag D N, Weaver D L, Alex J C, et al. Surgical resection and radiolocalization of the sentinel lymph node in breast cancer using a gamma probe[J]. Surgical oncology,1993, 2(6):335-340.
    [132]傅妮娜,王红,张华山.近红外荧光探针及其在生物分析中的应用进展[J].分析科学学报,2008,24(2):233-239.
    [133]Park J S, Kim R H, Cho N S, et al. Enhanced emission and two-photon absorption cross-section by nanoaggregation of a cyano-substituted stilbene derivative [J]. Journal of Nanoscience and Nanotechnology,2008,8(9):4793-4796.
    [134]Georges J. Deviations from Beer's law due to dimerization equilibria:theoretical comparison of absorbance, fluorescence and thermal lens measurements[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,1995,51(6): 985-994.
    [135]Cai W, Shin D W, Chen K, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects[J]. Nano letters,2006,6(4):669-676.
    [136]Qian H, Dong C, Peng J, et al. High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition[J]. The Journal of Physical Chemistry C,2007,111(45):16852-16857.
    [137]Kim S, Fisher B, Eisler H J, et al. Type-Ⅱ quantum dots:CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures[J]. Journal of the American Chemical Society, 2003,125(38):11466-11467.
    [138]Pons T, Lequeux N, Mahler B, et al. Synthesis of near-infrared-emitting, water-soluble CdTeSe/CdZnS core/shell quantum dots[J]. Chemistry of Materials,2009,21(8): 1418-1424.
    [139]Allen P M. Bawendi M G. Ternary Ⅰ-Ⅲ-Ⅵ quantum dots luminescent in the red to near-infrared[J]. Journal of the American Chemical Society,2008,130(29):9240-9241.
    [140]Bakueva L, Gorelikov I, Musikhin S, et al. PbS quantum dots with stable efficient luminescence in the near-IR spectral range[J]. Advanced Materials,2004,16(11): 926-929.
    [141]Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. Journal of the American Chemical Society,1993,115(19):8706-8715.
    [142]Peng X, Manna L, Yang W, et al. Shape control of CdSe nanocrystals[J]. Nature,2000, 404(6773):59-61.
    [143]廖宇峰.应用于生物光子成像的CdSe量子点核壳结构材料的绿色制备[D].浙江大学,2008.
    [144]Deng Z, Cao L, Tang F, et al. A new route to zinc-blende CdSe nanocrystals: mechanism and synthesis[J]. The Journal of Physical Chemistry B,2005,109(35): 16671-16675.
    [145]Liu T Y, Li M, Ouyang J, et al. Non-injection and low-temperature approach to colloidal photoluminescent PbS nanocrystals with narrow bandwidth[J]. The Journal of Physical Chemistry C,2009,113(6):2301-2308.
    [146]Hu X, Gao X. Silica-polymer dual layer-encapsulated quantum dots with remarkable stability[J]. ACS nano,2010,4(10):6080-6086.
    [147]Fent K, Weisbrod C J, Wirth-Heller A, et al. Assessment of uptake and toxicity of fluorescent silica nanoparticles in zebrafish (Danio rerio) early life stages[J]. Aquatic Toxicology,2010,100(2):218-228.
    [148]夏伟强,周源,石明.双光子显微成像技术的新进展[J].中国医疗器械杂志,2011,35(3):204-208.
    [149]Misgeld T, Kerschensteiner M. In vivo imaging of the diseased nervous system[J]. Nature Reviews Neuroscience,2006,7(6):449-463.
    [150]Stosiek C, Garaschuk O, Holthoff K, et al. In vivo two-photon calcium imaging of neuronal networks[J]. Proceedings of the National Academy of Sciences,2003,100(12): 7319-7324.
    [151]Chaigneau E, Oheim M, Audinat E, et al. Two-photon imaging of capillary blood flow in olfactory bulb glomeruli[J]. Proceedings of the National Academy of Sciences,2003, 100(22):13081-13086.
    [152]Tong L, He W, Zhang Y, et al. Visualizing systemic clearance and cellular level biodistribution of gold nanorods by intrinsic two-photon luminescence[J], Langmuir, 2009,25(21):12454-12459.
    [153]Geng J, Li K, Qin W, et al. Eccentric loading of fluorogen with aggregation-induced emission in PLGA matrix increases nanoparticle fluorescence quantum yield for targeted cellular imaging[J]. Small,2013,9(11):2012-2019.
    [154]Li K, Qin W, Ding D, et al. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing[J]. Scientific reports,2013,3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700