用户名: 密码: 验证码:
金属微纳米线中表面等离激元的特性及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于金属微纳结构的表面等离激元,存在于金属与介质之间,是金属表面自由电子的集群振荡。表面等离激元结构可使金属-介质界面间电磁场的空间局域性及近场强度显著增加,从而可以突破光的衍射极限,实现光信号和电信号的同时传输。对金属微纳结构表面等离激元器件的研究,已经成为微纳光子器件集成领域取得突破性进展的主攻方向之一。研究表面等离激元在金属微纳结构中的分布及传输特性,是实现光电子器件结构微型化及光电同传的基础性研究工作,是当前微纳光子学领域中的研究热点之一。本文主要以目前最为典型的贵金属(Au及Ag)作为表面等离激元材料,研究一维微纳米线中表面等离激元的特性及器件应用。
     本文首先介绍金属微纳米线及微纳光纤的制备方法。用化学法制备Au及Ag的纳米结构(纳米线、纳米带);用火焰拉伸方法制备微纳光纤;使用扫描近场光学显微镜(scanning near-field optical microsopy,SNOM)研究微光纤外倏逝场的分布,及其激发金属纳米线表面等离激元的分布特征,为本文的后续工作打下基础。
     本文第二部分研制了金属纳米线光栅结构,并对其传输特性进行了研究。采用聚焦离子束(focus ion beam, FIB)刻蚀的方法,制备出基于单根Au纳米线的布拉格(Bragg)金属光栅;通过纳米光纤锥的耦合,得到纳米线光栅的输出信号。通过分析发现,基于单根Au纳米线的金属光栅,具有明显的光栅效应;调节光栅周期,可以改变其布拉格波长;同时,还研究了Au纳米线光栅特性与光栅刻槽宽度、深度以及光栅长度等参数的关系。单根Au纳米线光栅结构集成度高、灵活性强,作为一种具有特定光学性能的表面等离激元器件,在光电互联、光学传感等方面具有潜在的应用价值。
     本文第三部分研究Au微米线中表面等离激元的回音壁谐振。我们采用微光纤倏逝场耦合的方法,激发直径为30μm的Au微米线中表面等离激元的回音壁模式谐振。发现,在这种无轴向方向约束的结构中,表面等离激元通过自干涉,在Au微米线横截面的圆周平面上形成稳定的回音壁谐振,这种回音壁谐振腔的品质因子最高可达375;微光纤和Au微米线垂直耦合时,可得到最佳的谐振模式;耦合角度偏离90°时,表面等离激元的回音壁谐振不稳定。实验证明表面等离激元,可以在二维圆周平面上实现回音壁谐振,且谐振稳定性与耦合角度相关。这种基于Au微米线的表面等离激元回音壁谐振腔,结构灵活、制备简单,可以扩展至金属纳米线或纳米管等一维结构中,为表面等离激元在光学传感等领域的研究应用提供了一种新颖的结构。
     此外,在本文的第四部分,我们用电子束激发Au纳米线的表面等离激元,分析了Au纳米线组合结构对表面等离激元的组成及峰位分布的影响。结果表明,相互耦合的Au纳米线中的表面等离激元,存在不同的模式。由于不同模式的形成及相互影响,表面等离激元在电子能量损失谱中形成复杂的漂移峰位。深入理解峰位漂移的特征与形成机制,对解释耦合结构对表面等离激元的影响,具有重要的理论价值。
     在本论文的研究工作中,我们首次在单根金属纳米线上实现了布拉格光栅,并且首次在金属微米线上实现二维约束下的表面等离激元回音壁谐振腔,研究结果对于深入探讨一维金属微纳结构中表面等离激元的激发、传输及器件应用等具有重要参考价值。
Surface plasmon polaritons (SPPs) in the metallic micro/nanostructures are the collective oscillations of the free electrons on the interface of metal and dielectric. Owing to its unique properties of tight confinement and field enhancement on the surface, SPP waveguides can break the diffraction limit of light and carry optical and electrical signals simultaneously. Plasmonic components and devices based on the metallic micro/nanostructures have become one of the main research topics for the next-generation high-density photonic circuits. For this purpose, field distribution and waveguiding properties of plasmonic strucutres are among the basic and hot topics in the current micro/nanophotonics research. In this work, we focus on the characterizations and applications of SPPs in one-dimensional Au and Ag micro/nanowires which are among the typical plasmonic micro/nanostructures.
     In the first part of this work, we introduce the fabrication of metallic micro/nanowires and glass microfibers. We synthesized Au and Ag nanowires by chemical method, and fabricated silica microfibers by flame-heated taper drawing of optical fibers. We investigated the field distribution of waveguiding microfibers and metallic nanowires using a scanning near-field optical microscopy (SNOM), which was proved helpful for the following studies.
     In the second part of this work, we introduce the fabrication and characterization of single-nanowire plasmonic Bragg gratings. We fabricated the single-nanowire Bragg gratings by focused-ion-beam (FIB) milling of single Au nanowires, and collected singals out of the nanowire using nanofiber evanescent coupling. We observed evident grating features in the single-nanowire gratings. The Bragg wavelength can be adjusted by changing the grating periodicity. The grating effect is also sensitive to the grating parameters, such as grating depth, width and length. Our results suggest a novel approach to one-dimensional plasmonic grating with high compactness and flexibilities, which may find applications in low-dimensional wavelength-selective plasmonic circuits and nanoscale optical sensing.
     In the third part of this work, we demonstrated the whispering gallery (WG) resonances of SPPs in Au microwires. On the surface of a30-μm-diameter Au microwire, SPP WG resonances were observed by using a fiber-taper-coupling technique. Although SPPs leaked out along the axis direction, the SPP WG resonance could be supported in the circumference plane of the Au microwire by SPP self-interference. The quality factors of WG resonator went up to375. The coupling-angle-dependence of the WG resonance was also investigated. The obvious WG resonance could be found under the condition of vertical coupling. The SPP WG resonator we proposed opens opportunities to realize easy-fabrication, flexible, high-quality and compact SPP cavities and can be extended to diverse metallic structures such as metallic nanowires. The simple SPP resonator we demonstrated has potential applications in a variety of areas including plasmonic sensing.
     In the last part of our work, we used electron beam to excite SPPs in single-crystalline Au nanowires, and characterizied the SPPs using electron energy loss (EEL) spectroscopy. The preliminary results of the EEL spetra revealed different SPP modes in coupled nanowires. The spectral shape was more complex than that of a single Au nanowire. The peak shift was attributed to the multiple SPP modes in the coupling structure. Further understanding of the formation of the peak-shift is important to the study of SPP in metallic micro/nanostructures.
     Overall, in this work, for the first time, we demonstrated the Bragg grating in single metallic nanowire and realized the plasmonic WG resonantor with two-dimensional confinement in metallic microwires. Our results may helpful for the excitation, propagation and application of SPPs in one-dimensional metallic micro/nanostructures.
引文
1. R. H. Ritchie, "Plasma losses by fast electrons in thin films," Phys. Rev.106, 874-881 (1957).
    2. R. Kirchain and L. Kimerling, "A roadmap for nanophotonics," Nat. Photonics 1. 303-305 (2007).
    3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424,824-830 (2003).
    4. S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nat. Photonics 1,641-648 (2007).
    5. D. K. Gramotnev and S.I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nat. Photonics 4,83-91 (2010).
    6. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, "Plasmons in strongly coupled metallic nanostructures," Chem. Rev.111,3913-3961 (2011).
    7. S. A. Maier, Plasmonics:fundamentals and applications. (Springer,2007)
    8. H. R. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Berlin, Springer,1988)
    9. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, "Confinement and propagation characteristics of subwavelength plasmonic modes," New J. Phys.10,105018 (2008).
    10. C. R. Yonzon, E. Jeoung, S. L. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, "A comparative analysis of localized and propagating surface plasmon resonance sensors:the binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer," J. Am. Chem. S.126,12669-12676 (2004).
    11. K. A.Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing." Annu. Rev. Phys. Chem.58.267-97 (2007).
    12. T. Laroche and C. Girard, "Near-field optical properties of single plasmonic nanowires," Appl. Phys. Lett.89,233119 (2004).
    13. A. Jenkins. "The road to nanophotonics," Nat. Photonics 2,258-260 (2008).
    14. H. Wei,Z. X. Wang, X. R. Tian, M. Kall, and H. X. Xu, "Cascaded logic gates in nanophotonic plasmon networks," Nat. Comm.2,387 (2011).
    15. http://www.mpip-mainz.mpg.de/-menges/EWO.html
    16. R. W. Wood, "Anomalous diffraction gratings," Phys. Rev.48,928-936 (1935).
    17. H. Lochbihler, "Surface polaritons on gold-wire gratings," Phys. Rev. B 50. 4795-4801 (1994).
    18. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391. 667-669(1998).
    19. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture." Science 297.820-822 (2002).
    20. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry. "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett.83,2845-2848 (1999).
    21. G. Schider, J. R. Krenn, W. Gotschy. B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Optical properties of Ag and Au nanowire gratings," J. Appl. Phys. 90,3825-3830(2001).
    22. J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, Ch. Lienau, J. H. Kang. and Q. Park, "Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures," Appl. Phys. Lett.88,071114 (2006).
    23. A. Alu, G. D'Aguanno, N. Mattiucci, and M. Bloemer, "Plasmonic brewster angle: broadband extraordinary transmission through optical gratings," Phys. Rev. Lett.106, 123902(2011).
    24. J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas. "Metallodielectric gratings with subwavelength slots Optical properties," Phys. Rev. B 68,205103 (2003).
    25. C. E. Moran, J. M. Steele. and N. J. Halas, "Chemical and dielectric manipulation of the plasmonic band gap of metallodielectric arrays," Nano. Lett.4,1497-1500 (2004).
    26. J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux. T. Ebbesen, C. Girard,M. U. Gonzalez, and A. L. Baudrion, "Near-field characterization of Bragg mirrors engraved in surface piasmon waveguides," Phys. Rev. B 70,235406 (2004).
    27. B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocaivities on flat metallic surfaces," Appl. Phys. Lett.87,013107 (2005).
    28. M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, "Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors," Phys. Rev. B 73,155416 (2006).
    29. W. S. Cai, J. Compact, S. White, and M. L. Brongersma, "High-speed and power-efficient electrooptic plasmonic modulators," Nano Lett.9,4403-4411 (2009).
    30. P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, "Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings," Nano Lett.10,4880-4883 (2010).
    31. A. Kocabas, S. S. Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic gratings," Phys. Rev. B 77,195130 (2008).
    32. S. Balci, M. Karabiyik, A. Kocabas, C. Kocabas, and A. Aydinli, "Coupled plasmonics caivities on Moire surface," Plasmonics 5,429-436 (2010).
    33. P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, "Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications," Opt. Express 19,3627-3636 (2011).
    34. N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, and J. R. Heath, "Ultrahigh-density nanowire lattices and circuits," Science 300,112-115 (2003).
    35. G. Y. Jung, E. Johnston-Halperin, W. Wu. Z. N. Yu, S. Y. Wang, W. M. Tong, Z. Y. Li, J. E. Green. B. A. Sheriff. A. Boukai, Y. Bunimovich, J. R. Heath, and R. S. Williams, "Circuit fabrication at 17 nm half-pitch by nanoimprint lithography," Nano Lett.6.351-354(2006).
    36. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot. Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett.82.12.2590-2593 (1999).
    37. S. A. Maier. P. G. Kik. and H. A. Atwater. "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B.67,205402 (2003).
    38. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer. E. Harel, B. E. Koel. and A. A.G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Mater.2, 229-232 (2003).
    39. D. Brunazzo. E. Descrovi, and O. J. F. Martin, "Narrowband optical interactions in a plasmonics nanoparticle chain coupled to a metallic film," Opt. Lett.34. 1405-1407(2009).
    40. Q. B. Xu, J. M. Bao, F. Capasso, and G. M. Whitesides, "Surface plasmon resonances of free-standing gold nanowires fabricated by Nanoskiving," Angew. Chem.118,3717-3717 (2006).
    41. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg. and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett.95,257403 (2005).
    42. M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, Mikhail, and V. Artemyev. "Surface plasmon nediated interference phenomena in low-Q silver nanowires cavities," Nano Lett.8,31-35 (2008).
    43. V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal. and X. Zhang. "Plasmonic Fabry-Perot nanocavity." Nano Lett.9,3489-3493 (2009).
    44. H. T. Miyazaki and Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett.96.097401 (2006).
    45. J. C. Weeber. A. Bouhelier. G. Colas des Francs. L. Markey. and A. Dereux. "Submicrometer in-plane integrated surface plasmon cavities," Nano Lett.7. 1352-1359(2007).
    46. S. I. Bozhevolnyi. V. S. Volkov, E. Devaux. J. Y. Laluet, and T. W. Ebbesen. "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440,508-511 (2006)
    47. M. Kuttge,F. J. G. de Abajo, and A. Polman. "How grooves reflect and confine surface plasmoni polaritons," Opt. Express 17,10385-10392 (2009).
    48. E. J. R. Vesseur, F. J. G. de Abajo, and A. Polman, "Modal decomposition of surface-plasmon whispering gallery resonators," Nano Lett.9,3147-3150 (2009).
    49. X. Guo, X. N. Zhang, and L. M. Tong, "Silver nanowire ring resonator," Chin. Sci. Bull.55,2649-2651 (2010).
    50. Y. F. Xiao, B. B. Li, X. Jiang, X. Y. Hu, Y. Li, and Q. H. Gong, "High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip," J. Phys. B:At. Mol. Opt. Phys.43,035402 (2010).
    51. M. K. Seo, S. H. Kwon, H. S. Ee, and H. G. Park, "Full three-dimensional subwavelength high-Q surface-plasmon-polariton cavity," Nano Lett.9,4078-4082 (2009).
    52. X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, "Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits," Nano Lett.9,4515-4519 (2009).
    53. R. Perahia, T. P. Mayer Alegre, A. H. Safavi-Naeini, and O. Painter, "Surface-plasmon mode hybridization in subwavelength microdisk lasers," Appl. Phys. Lett.95,201114 (2009).
    54. M. W. Kim, Y. H. Chen, J. Moore, Y. K. Wu, L. J. Guo, P. Bhattacharya, and P. C. Ku, "Subwavelength surface plasmon optical cavity—scaling, amplification, and coherence," IEEE J. Sel. Topics Quantum Electron.15,1521-1528 (2009).
    55. B. Min, E. Ostby. V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, "High-Q surface-plasmon-polariton whispering-gallery microcavity," Nature 457, 455-458 (2009).
    56. M. Kuttge. F. J. G. de Abajo. and A. Polman, "Ultrasmall mode volume plasmonic nanodisk resonators," Nano Lett.10,1537-1541 (2010).
    57. D. Pines and D. Bohm, "A collective description of electron interactions:Ⅱ. Collective vs individual particle aspects of the interactions." Phys. Rev.85,338-353 (1952).
    58. G. Ruthermann. "Discrete energy losses of electrons of medium velocity on passage through thin foils," Ann. Phys.2,113-117 (1948).
    59. W. Lang, "Loss of velocity of moderately fast electrons in passing through thin metal foils," Optik 3,233-246 (1948).
    60. C. J. Powell and J. B. Swan, "Origin of the characteristic electron energy losses in aluminum," Phys. Rev.115,869-875 (1959).
    61. Y.Y. Teng and E.A. Stern, "Plasma radiation from metal grating surfaces," Phys. Rev. Lett.19,511-514(1967).
    62. R. B. Pettit, J. Silcox, and R. Vincent, "Measurement of surface-plasmon dispersion in oxidized aluminum films," Phys. Rev. B 11,3116-3123 (1975).
    63. Z. L. Wang and C. Hui. Electron Microscopy of Nanotubes (Tsinghua University press,2004, Beijing).
    64. F. J. Garcia de Abajo, "Optical excitations in electron microscopy," Rev. Mod. Phys.82,209-275(2010).
    65. M. Rocca, F. Biggo, and U. Valbusa, "Surface-plasmon spectrum of Ag (001) measured by high-resolution angle-resolved electron-energy-loss spectroscopy," Phys. Rev. B 42,2835-2841 (1990).
    66. M. Kuttge, E. J. R. Vesseur,J. Verhoeven, H. J. Lezec, H. A. Atwater. and A. Polman, "Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy," Appl. Phys. Lett.93,113110 (2008).
    67. Wei Cai, Rebecca Sainidou. Jingjun Xu, A. Polman, and F. Javier Garcia de Abajo, "Efficient generation of propagating plasmons by electron beams," Nano Lett. 9,1176-1181 (2009).
    68. N. Yamamoto, K. Araya, A. Toda, and H. Sugiyama, "Light emission from surfaces, thin films and particles induced by high-energy electron beam." Surf. Interface Anal.31,79-86 (2001).
    69. N. Yamamoto, M. Nakano, and T. Suzuki, "Light emission by surface plasmons on nanostructures of metal surfaces induced by high-energy electron beams." Surf. Interface Anal.38,1725-1730 (2006).
    70. J. Nelayah, M. Kociak, O. Stephan, F. J. Garcia de Abajo. M. Tence, L. Henrard. D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzan. and C. Colliex, "Mapping surface plasmons on a single metallic nanoparticle," Nat. Phys.3,348-353 (2007).
    71. M. N'Gom. J. Ringnalda, J. F. Mansfield, A. Agarwal, and N. Kotov, "Single particle plasmon spectroscopy of silver nanowires and gold nanorods." Nano Lett.8. 3200-3204 (2008).
    72. M. Bosman, V. J Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, "Mapping surface plasmons at the nanometre scale with an electron beam," Nanotechnology 18, 165505(2007).
    73. T. C. Petersen, M. Bosman, V. J. Keast, and G. R. Anstis, "Plasmon resonances and electron phase shifts near Au nanospheres," Appl. Phys. Lett.,93,101909 (2008).
    74. A. Pulisciano, S. J. Park, and R. E. Palmer, "Surface plasmon excitation of Au and Ag in scanning probe energy loss spectroscopy," Appl. Phys. Lett.93,213109 (2008).
    75. M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. Garcia de Abajo, "Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam," Nano Lett.9,399-404 (2009).
    76.顾本源.表面等离激元亚波长光学原理和新颖效应.物理,36,280-287(2007)
    77. http://optics.hanyang.ac.kr/-shsong/SPP%20on%20real%20metals-2011-07-06%20.p df
    78. F. J. Garcia de Abajo, "Light scattering by particle and hole arrays," Rev. Mod. Phys.79,1267-1290 (2007).
    79. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep.408,131-314 (2005).
    80. A. V Zayats and I. I. Smolyaninov, "Near-field photonics:surface plasmon polaritons and localized surface plasmons," J. Opt. A:Pure Appl. Opt.5, S16-S50 (2003).
    81. K. F. MacDonald. Z. L. Samson, M. I. Stockman, and N. I. Zheludev, "Ultrafast active plasmonics," Nat. Photon.3,55-58 (2009).
    82. L. M. Tong, J. Y. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035(2004).
    83. Z. Ma, X. N. Zhang, X. Guo, Q. Yang, Y. G. Ma, and L. M. Tong, "Surface plasmon excitation in silver nanowires directly deposited on a laser diode chip," Appl. Phys. Lett.96,051119(2010).
    84. P. Bharadwaj, A. Bouhelier, and L. Novotny, "Electrical excitation of surface plasmons," Phys. Rev. Lett.106,226802 (2011).
    85. E. Rudberg, "EELS measurements in reflection on noble metals," K. Svenska Vet. Akad. Handl.7,1-6(1929).
    86. W. L. Barnes, S. C. Kitson, T. W. Preist, and J. R. Sambles. "Photonic surfaces for surface-plasmon polaritons," J. Opt. Soc. Am. A 14.1654-1661 (1997).
    87. Y. G. Ma, X. Y. Li, H. K. Yu, L. M. Tong, Y. Gu, and Q. H. Gong, "Direct measurement of propagation losses in silver nanowires," Opt. Lett.35,1160-1162 (2010).
    88. Q. Li. S. S. Wang, Y. T. Chen, M. Yan. L. M. Tong, and M. Qiu, "Experimental demonstration of plasmon propagation, coupling, and splitting in silver nanowire at 1550-nm wavelength," IEEE J. Sel. Top. Quant. Elect.17,1107-1111 (2011).
    89. Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin. F. Kim, and H. Q. Yan, "One-dimensional nanostructures:synthesis, characterization, and applications," Ad. Mater.15,353-389 (2003).
    90. J. Y. Chen, B. J. Wiley, and Y. N. Xia. "One-dimensional nanostructures of metals:large-scale synthesis and some potential applications," Langmuir 23. 4120-4129(2007).
    91. C. Burda, X. B. Chen, R. Narayanan, and M. A. El-Sayed, "Chemistry and properties of nanocrystals of different shapes," Chem. Rev.105,1025-1102 (2005).
    92. Y. G. Sun, B. Gates, B. Mayers, and Y. N. Xia, "Crystalline silver nanowires by soft solution processing." Nano Lett.2,165-168 (2002).
    93. Y. G. Sun, and Y. N. Xia, "Large-scale synthesis of uniform silver nanowires through a soft. self-Seeding, polyol process," Adv. Mater.14,833-837 (2002).
    94. Y. G. Sun, Y. D. Yin, B. T. Mayers, T. Herricks, and Y. N. Xia, "Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone)." Chem. Mater.14,4736-4745 (2002).
    95. A. W. Sanders. D. A. Routenberg. B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, "Observation of plasmon propagation, redirection, and fan-out in silver nanowires," Nano Lett.6,1822-1826 (2006).
    96. B. Wiley, Y. G. Sun, B. Mayers, and Y. N. Xia, "Shape-controlled synthesis of eetal nanostructures:the case of silver," Chem. Eur. J.11,454-463 (2005).
    97. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett.93,137404 (2004).
    98. Y. Z. Huang, W. Z. Wang, H. Y. Liang, H. Wei, and H. X. Xu, "Ultrasonic-assisted synthesis of Au nanobelts and nanowires," J. Nanosci. Nanotechnology.10,7515-7518 (2010).
    99. R. J. Black, F. Gonthier, S. Lacroix, J. Lapierre, and J. Bures, "Tapered fibers:an overview," Proc SPIE 839,2-19 (1987).
    100. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426,816-819 (2003).
    101. Z. Ma, S. S. Wang, Q. Yang, and L. M. Tong, "Near-field characterization of optical micro/nanofibers," Chin. Phys. Lett.24,3006-3008 (2007).
    102. Y. M. Lim, and S. H. Kim, "Diameter control of an extremely thin cylindrical microprobe by electrochemical etching," Rev. Sci. Instrum.71,2166-2168 (2000).
    103. A. L. Pyayt, B. Wiley B, Y. N. Xia, A. Chen, and L. Dalton, "Integration of photonic and silver nanowire plasmonic waveguides," Nature Nanotech.3,660-665 (2008).
    104. C. L. Zou, F. W. Sun, Y. F. Xiao, C. H. Dong, X. D. Chen, J. M. Cui, Q. Gong, Z. F. Han, and G. C. Guo, "Plasmon modes of silver nanowire on a silica substrate," Appl. Phys. Lett.97,183102 (2010).
    105. Z. P. Li, K. Bao, Y. R. Fang, Z. Q. Guan. N. J. Halas. P. Nordlander, and H. X. Xu, "Effect of a proximal substrate on plasmon propagation in silver nanowires," Phys. Rev. B 82,241402(R) (2010).
    106. S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, "Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides," Opt. Express 13,4674-82 (2005).
    107. X. N. Zhang, Z. Ma, R. Luo, Y. Gu. C. Meng, X. Q. Wu, Q. H. Gong, and L. M. Tong, "Single-nanowire surface plasmon gratings," Nanotechnology 23,225202 (2012).
    108. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York,1998).
    109. R. A. Synowicki, "Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants," Thin Solid Films 313-314,394-397 (1998).
    110. J. A. Sanchez-Gil and A. A. Maradudin, "Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges:efficient mirrors," Appl. Phys. Lett.86. 251106(2005).
    111. Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett.88,057403 (2002).
    112. Y. H. Lu, M. H. Cho. Y. P. Lee, and J. Y. Rhee, "Polarization-independent extraordinary optical transmission in onedimensional metallic gratings with broad slits," Appl. Phys. Lett.93,061102 (2008).
    113. F. Lopez-Tejeira. F. J. Garcia-Vidal, and L. Martin-Moreno, "Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces," Phys. Rev. B 72,161405(R)(2005).
    114. K. Ohashi, K. Nishi, T. Shimizu, M. Nakada, J. Fujikata, J. Ushida, S. Torii, Koichi N., M. Mizuno, H. Yukawa, M. Kinoshita, N. Suzuki, A. Gomyo, T. Ishi. D. Okamoto, K. Furue, T. Ueno, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, and J. Akedo, "On-chip optical interconnect," Proc. IEEE 97,1186-1198 (2009).
    115. D. Choi, I. M. Lee, J. Jung, J. H. Park, J. H. Han, and B. Lee, "Metallic-grating-based interconnector between surface plasmon polariton waveguides," J. Lightw. Technol.27,5675-5680 (2009).
    116. J. T. Kim. J. J. Ju, S. Park. M. Kim. S. K. Park1, and M. Lee, "Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides." Opt. Express 16.13133-13138 (2008).
    117. X. N. Zhang, Z. Ma, H. K. Yu, X. Guo, Y. G. Ma, and L. M. Tong, "Plasmonic resonance of whispering gallery modes in an Au cylinder," Opt. Express 19, 3902-3907(2011).
    118. C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, "Surface polaritons in circularly cylindrical interface:surface plasmons," Phys. Rev. B 10,3038-3051 (1974).
    119. S. A. Maier, P. E. Barclay, T. J. Johnson, M. D. Friedman, and O. Painter, "Low-loss fiber accessible plasmon waveguide for planar energy guiding and sensing," Appl. Phys. Lett.84,3990-3992 (2004).
    120. C. H. Dong, X. F. Ren, R. Yang, J. Y. Duan, J. G. Guan, G. C. Guo, and G. P. Guo, "Coupling of light from an optical fiber taper into silver nanowires," Appl. Phys. Lett.95,221109(2009).
    121. P. Dawson, J. P. Goudonnet, and F. de Fornel, "Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope.' Phys. Rev. Lett.72,2927-2930 (1994).
    122. M. Sumetsky, "Mode localization and the Q-factor of a cylindrical microresonator,"Opt. Lett.35,2385-2387 (2010).
    123. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl. "Local excitation, scattering, and interference of surface plasmons," Phys. Rev. Lett.77. 1889-1892(1996).
    124. A. Bouhelier and G. P. Wiederrecht, "Surface plasmon rainbow jets," Opt. Lett. 30,884-886 (2005).
    125. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, "Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper," Opt. Lett.22,1129-1131 (1997).
    126. V. A. Sychugov, V. P. Torchigin, and M. Y. Tsvetkov, "Whispering-gallery waves in optical fibres," Quantum Electron.32,738-742 (2002).
    127. A. W. Poon. R. K. Chang, and J. A. Lock, "Spiral morphology-dependent resonances in an optical fiber:effects of fiber tilt and focused Gaussian beam illumination," Opt. Lett.23,1105-1107 (1998).
    128. J. K. Kitur, V. A. Podolskiy, and M. A. Noginov, "Stimulated emission of surface plasmon polaritons in a microcylinder cavity," Phys. Rev. Lett.106,183903 (2011).
    129. O. Nicoletti, M. Wubs, N. A. Mortensen,W. Sigle,P. A. van Aken, and P. A. Midgley, "Surface plasmon modes of a single silver nanorod:an electron energy loss study," Opt. Express 19,15371-15379 (2011).
    130. E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, "Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy," Nano Lett.7,2843-2846 (2007).
    131. M. Kuttge, E. J. R. Vesseur, and A. Polman, "Fabry-Perot resonators for surface plasmon polaritons probed by cathodoluminescence," Appl. Phys. Lett.94,183104 (2009).
    132. B. Schaffer, U. Hohenester, A. Trugler, and F. Hofer, "High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy," Phys. Rev. B 79,041401(R) (2009).
    133. E. E. Koch and A. Otto, "Characteristic energy losses of 30 keV electrons in vapours of aromatic hydrocarbons," Opt. Commun.1,47-49 (1969).
    134. M. N'Gom, S. Z. Li, G. Schatz, R. Erni, A. Agarwal, N. Kotov, and T. B. Norris. "Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods," Phys. Rev. B 80,113411 (2009).
    135. R. F. Egerton, "Electron energy-loss spectroscopy in the TEM," Rep. Prog. Phys. 72,016502(2009).
    136. B. Schaffer, K. Riegler,G. Kothleitner,W. Grogger, and F. Hofer, "Monochromated, spatially resolved electron energy-loss spectroscopic measurements of gold nanoparticles in the plasmon range," Micron 40,269-273 (2009).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700