用户名: 密码: 验证码:
石油焦的理化性质及其催化气化反应特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油焦是渣油延迟焦化的副产物,而高温气化则是实现其高效、清洁利用的有效方法。然而,石油焦的气化活性很低,这制约了石油焦用做大规模高效气化原料的可行性。因此,研究石油焦的理化性质及其气化反应特性以寻找制约其气化活性的关键因素显的尤为重要。催化气化技术可有效改善石油焦的气化反应活性以实现其高效利用,而建立一个准确、普适性的催化气化反应动力学模型对于解决石油焦催化气化的现实性问题,如气化炉的设计和优化,具有极其重要的意义。本文的主要研究内容和结果如下:
     在热解温度为350-500℃范围内,以减压渣油、煤沥青和生物质沥青为原料分别制备了三类液相炭化焦,并对三类液相炭化焦的理化性质和气化反应特性进行了研究,在此基础上进一步考察了三类液相炭化焦在高温煅烧过程中理化性质和气化反应特性的演变规律。结果表明:①液相炭化焦中可溶有机质的含量高达14.12~66.69%,经CS2处理后,液相炭化焦碳微晶结构的变化很小,而BET比表面积和孔体积均大幅增加,从而导致其气化反应活性的大幅提高;②液相炭化焦中存在的大量小分子有机物质是制约其气化反应活性的一个重要因素;③三种液相炭化焦经高温煅烧后的碳微晶结构的有序化程度存在如下关系,即煤沥青焦>石油焦>生物质沥青焦,而三者的气化反应活性则完全相反。
     以五种煤气化灰渣为研究对象,对其物相组成、表面形态和粒度分布等理化性质进行了分析表征,并考察了不同煤气化灰渣对石油焦/CO2和石油焦/水蒸气气化反应特性的影响。结果表明:①煤气化灰渣的组成极不均匀,不同粒度气化灰渣的化学组成有很大的差异,可通过简单的筛分过程初步实现气化灰渣的分级利用;②气化灰渣残炭及其原煤的快速热解焦的碳结构有序化程度存在如下关系,即DSHHZ>DSHFH>SF-RP1400,而气化灰渣残炭的气化反应活性则要优于其原煤的快速热解焦;③不同气化灰渣对石油焦/CO2气化反应促进作用的大小顺序为:SHFH≈SHHZ>GTHZB≈GTHZA>LNHZ,气化灰渣对气化反应促进作用的大小与气化灰渣中Fe2O3+CaO和Fe2O3+CaO+Na2O+K2O含量近似成线性关系。
     在气化温度为800~1000℃范围内,分别考察了气化温度、原煤掺入量以及煤种对不同煤阶原煤与石油焦共气化反应特性的影响。结果表明:①随着神府煤掺入量的增加,神府煤/石油焦共气化的气体产物中H2产率以及气体产物的总产率均逐渐增加,气体产物中H2的含量逐渐从石油焦单独气化时的51.88%增加至共气化时的62.05%;②不同煤阶原煤与石油焦的共其气化反应速率存在如下关系:即XLT>SF>GP;三种原煤/石油焦共气化过程中水煤气变换反应均未达到平衡状态,但水煤气变换反应的发生程度存在如下关系:即XLT>SF>GP;③原煤/石油焦共气化,尤其是褐煤/石油焦共气化技术,可实现石油焦和褐煤资源的高效、清洁利用,是一条可行、具有推广前景的技术。
     对石油焦在水蒸气/CO2混合气氛下的非催化和催化气化反应特性进行了研究,主要考察了气化剂组成、气化温度等参数对石油焦在水蒸气/CO2混合气氛下的气化反应活性、气体产物中H2+CO的总产率以及H2/CO比值的影响。结果表明:①催化气化条件下单位质量的碳完全气化所产生的气体产物中H2+CO总产率以及H2/CO比值均大非催化气化;②石油焦在水蒸气/CO2混合气氛下催化气化一步法定向调控气体产物中H2/CO比值以生产费托合成反应的原料气经初步试验表明是可行的。
     考察了单种金属盐、复合金属盐以及可弃催化剂作用下石油焦/CO2的气化反应特性,并提出了一个普适性的催化气化反应动力学模型。结果表明:①本文所提出的修正随机孔模型不仅能很好地解释单种金属盐的催化气化行为,而且能很好地解释复合金属盐、甚至可弃催化剂的催化气化反应行为,是一个普适性的催化气化反应动力学模型;②所提出的催化气化反应动力学模型中的模型参数α和β值的大小可在一定烈度上表征催化剂的催化能力,具有一定的物理意义。
Petroleum coke is the by-product of crude oil delayed coking unit, and gasification technology can realize its efficient and clean use. However, the gasification activity of petroleum coke is extremely low, which greatly restricts the applicability of petroleum coke as the feedstock of gasifiers. Therefore, it is very important to investigate the physico-chemical properties and gasification characteristics of petroleum coke and to find out main reasons leading to the low gasification activity of petroleum coke. Catalytic gasification technology can effectively improve the gasification activity of petroleum coke, and establish a accurate and universal catalytic gasification kinetic model for solving the reality problems of catalytic gasification of petroleum coke, such as the design and optimization of the gasifiers, is of great significance. The main contents and results of this study were summarized as follows.
     Three kinds of Liquid-Phase Carbonization Cokes (LPCCs) were separately prepared from vacuum residue, coal tar pitch and biomass tar pitch at the pyrolysis temperatures of350~500℃, and the physico-chemical properties and gasification characteristics of LPCCs were investigated. Furthermore, the effects of high temperature calcination on the physico-chemical properties and gasification characteristics of LPCCs were also investigated. The following results were obtained.①A large number of CS2-soluble fraction existed in LPCCs (as high as14.12~66.69%), although the carbon crystalline structures of LPCCs after extraction were almost unchanged, the BET surface areas and total pore volumes of extracted LPCCs increased significantly, which resulted in a greatly increasing gasification activity of LPCCs;②The soluble fractions contained in LPCCs were the most important factor of affecting on the gasification activity of LPCCs;③The ordering of carbon microcrystalline structures of the high temperature calcined cokes from three LPCCs was as follows:coal pitch coke>petroleum coke>biomass pitch coke, while the ordering of gasification activities of the three high temperature calcined cokes was completely opposite.
     The physico-chemical properties of five coal gasification slag, such as chemical composition, surface morphologies, particle size distribution,and so on,were investigated, and the effects of coal gasification slag on the CO2and steam gasification of petroleum coke were studied. The following results were obtained.①The composition of coal gasification slag is very uneven, the chemical composition of coal gasification slag of different particle sizes are very different, that means the classification and utilization of coal gasification slag can realized through screening process;②The ordering of carbon microcrystalline structures among the different types of residual carbon from coal gasification slag and their rapid pyrolysis char was as follows:DSHHZ>DSHFH>SF-RP1400, while the gasification activities of residual carbon are superior to the rapid pyrolysis char;③The ordering of the catalytic action of different coal gasification slag on the CO2gasification reaction was:SHFH≈SHHZ>GTHZB≈GTHZA>LNHZ, and the catalytic action of coal gasification slag is approximately linear with the Fe2O3+CaO and Fe2O3+CaO+Na2O+K2O contents.
     The effects of gasification temperatures and loading contents of coal on the gasification activity, gas yields and H2production characteristics of petroleum coke and coal co-gasification processes were investigated. The following results were obtained.¦ith the increasing loading contents of Shenfu coal, the H2yields and total yields of gaseous products from co-gasification increased, and the H2contents increased from51.88%to62.05%;②The ordering of co-gasification reactivity of petroleum coke with coals of different ranks was as follows:XLT>SF>GP; The water-gas shift reactions did not reach equilibrium during the co-gasification of petroleum coke with coals of different ranks, and the extent of the water-gas shift reaction was:XLT>SF>GP;③Coal and petroleum coke co-gasification, especially lignite and petroleum coke co-gasification technology can realize the efficient and clean use of petroleum coke.
     The effects of composition of gasifying agent and gasification temperature on the non-catalytic and catalytic gasification characteristics of petroleum coke gasified in steam and CO2mixed atmosphere were investigated.①The H2+CO yields and H2/CO ratio in gaseous products from the catalytic gasification are larger than those of non-catalytic gasification;②A single-step to control the composition of synthesis gas with desirable H2/CO ratio to produce the feed gas of FT synthesis reaction from catalytic gasification of petroleum coke in steam and CO2mixed environment is feasible.
     The CO2catalytic gasification characteristics of petroleum coke catalyzed by different catalysts at the gasification temperature of900℃were investigated,and a universal catalytic gasification kinetic model were established.①The extended random pore model (ERPM) proposed in this paper can not only explain the catalytic gasification characteristics of various metal salts, but also can explain the catalytic gasification characteristics of composite metal salts, even disposable catalysts;②The value of parameters α and β in proposed ERPM can characterization the catalytic ability of catalysts to a certain extent.
引文
[1]罗艳托.石油焦市场发展趋势概述.石油规划设计,2008,19(6):10-11.
    [2]施辉献,谢刚,杨猛等.石油焦工业应用综述.炭素,2012,151(3):35-39.
    [3]缪超,宋爱萍.我国高硫石油焦市场现状与预测.石油规划设计,2012,23(1):16-22.
    [4]赵子明.高硫石油焦的工业利用前景分析.中外能源,2006,11(5):65-68.
    [5]瞿国华,王辅臣.延迟焦化-石油焦制氢组合工艺技术.炼油技术与工程.2010,40(11):20-23.
    [6]瞿国华,王辅臣.高硫石油焦气化制氢工艺在炼油工业中的发展前景.当代石油石化.2010,190(10):1-7.
    [7]Wu Y Q, Wu S Y, Gu J, et al. Differences in physical properties and CO2 gasification reactivity between coal char and petroleum coke. Process Safety and Environmental Protection,2009,87(5):323-330.
    [8]Gu J, Wu S Y, Zhang X, et al. CO2 gasification reactivity of different carbonaceous materials at elevated temperatures. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects,2007,31(3):232-243.
    [9]Tran K N and Bhatia S K. Air reactivity of petroleum cokes:role of inaccessible porosity. Ind. Eng. Chem. Res,2007,46(10):3265-3274.
    [10]Zhan X L, Jia J. Zhou Z J. et al. Influence of blending methods on the co-gasification reactivity of petroleum coke and lignite. Energy Conversion and Management,2011, 52(4):1810-1814.
    [11]Salvador S, Commandre J M, Stanmore B R. Reaction rates for the oxidation of highly sulphurised petroleum cokes:the influence of thermogravimetric conditions and some coke properties. Fuel,2003,82(6):715-720.
    [12]Liu X, Zhou Z J, Hu Q J, et al. Experimental study on co-gasification of coal liquefaction residue and petroleum coke. Energy & Fuels,2011,25(8):3377-3381.
    [13]Zhan X L, Zhou Z J, Wang F C. Catalytic effect of black liquor on the gasification reactivity of petroleum coke. Applied Energy,2010,87(5):1710-1715.
    [14]Wang J, Yao Y H, Cao J Q, et al. Enhanced catalysis of K2CO3 for steam gasification of coal char by using Ca(OH)2 in char preparation.Fuel.2010,89(2):310-317.
    [15]Wang J, Jiang M Q, Yao Y, et al. Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane. Fuel.2009,88(9): 1572-1579.
    [16]Li J F, Xiao B, Yan R, et al. Development of a supported tri-metallic catalyst and evaluation of the catalytic activity in biomass steam gasification. Bioresource Technology,2009,100(21):5295-5230.
    [17]Xie Y R, Xiao J, Shen L H, et al. Effects of Ca-Based Catalysts on Biomass Gasification with Steam in a Circulating Spout-Fluid Bed Reactor. Energy & Fuels,2010,24(5): 3256-3261.
    [18]Zhao C S, Lin L S, Pang K L, et al. Experimental study on catalytic steam gasification of natural coke in a fluidized bed. Fuel Processing Technology,2010,91(8):805-809.
    [19]Karimi A, Semagina N, Gray M R. Kinetics of catalytic steam gasification of bitumen coke. Fuel,2011,90(3):1285-1291.
    [20]Liu H, Luo C H, Kaneko M, et al. Unification of gasification kinetics of char in CO2 at elevated temperatures with a modified random pore model. Energy & Fuels,2003,17(4): 961-970.
    [21]Zhang Y, Ashizawa M, Kajitani S, et al. Proposal of a semi-empirical kinetic model to reconcile with gasification reactivity profiles of biomass chars. Fuel,2008,87(4-5): 475-481.
    [22]Zhang Y, Hara S, Kajitani S, et al. Modeling of catalytic gasification kinetics of coal char and carbon. Fuel,2010,89(1):152-157.
    [23]谢克昌.煤的结构和反应性[M].北京:科学出版社.2002,P.113-130.
    [24]张济宇,陈彦,林驹.催化气化工业化进程展望.煤炭转化,2010,33(4):90-97.
    [25]孟磊,周敏,王芬.煤催化气化催化剂研究进展.煤气与热力,2010,30(4):18-22.
    [26]赵彬,罗英涛,苏自伟等.石油焦脱硫技术研究进展.炭素技术,2011,30(2):30-32.
    [27]王玉章,申海平,刘自宾.延迟焦化石油焦及其应用.炼油技术与工程,2008,38(2):25-30.
    [28]2010年中国石油焦利用现状.中国磨料磨具网www.abrasives.org.cn.2011.
    [29]唐黎华,陈冬霞,朱学栋等.石油焦高温气化反应性.燃料化学学报.2005,33(6):687-691.
    [30]李庆峰,房倚天,张建民等.石油焦的气化反应特性.燃烧科学与技术.2004,10(3):254-259.
    [31]刘鑫,张保申,周志杰等.高温热处理对石油焦结构及气化活性的影响.石油学报(石油加工).2011,27(1):138-143.
    [32]吴诗勇,吴幼青,顾菁等.高温煅烧条件下石油焦和沥青焦的物理结构及其C02气化特性.石油学报(石油加工),2009,25(2),258-264.
    [33]陈喜平,周孑民,李旺兴.煅烧石油焦反应性的实验研究.轻金属,2007,5:37-39.
    [34]郭永恒.煅后石油焦平均尺寸的研究.科学技术与工程,2006,18(6),2997-2998.
    [35]苏玉长,徐仲榆.高温热处理石油焦的微观结构与其充放电性能的关系.湖南大学 学报(自然科学版),2001,28(4),43-48.
    [36]杜亚平,张德祥,毛清龙等.石油焦原料性质及炭化工艺对活性炭性能的影响.石油炼制与化工,2002,33(11):36-40.
    [37]Wu S Y, Gu J, Zhang X, et al. Variation of carbon crystalline strctures and CO2 gasification reactivity of Shenfu coal chars at elevated temperatures. Energy & Fuels, 2008,22(1):199-206.
    [38]孙利,沈本贤.X射线衍射法研究石油焦炭化过程的微晶变化.石油学报(石油加工),2004,20(2):53-56.
    [39]李庆峰,房倚天,张建民等.气化活性与孔比表面积的关系.煤炭转化.2003,26(3):45-48.
    [40]李庆峰,房倚天,张建民等.石油焦水蒸气气化过程孔隙结构和气化速率的变化.燃料化学学报.2004,32(4):435-439.
    [41]吴幼青.不同热解过查产物炭的理化性质及石油焦催化气化反应特性研究[博士论文].华东理工大学,2010,P.22-63.
    [42]宋远明,钱觉时,王智.燃煤灰渣活性对比及差异来源分析.第四届中国粉煤灰、矿渣及煤矸石加工与应用技术交流大会,2006,P72-78.
    [43]Wu T, Gong M, Lester E, et al. Characterization of residual carbon from entrained-bed coal water slurry gasifiers. Fuel,2007,86(7-8):972-982.
    [44]Ghosal S, Ebert J L, Self S A. Chemical composition and size distribution for fly ashes. Fuel Processing Technolgoy,1995,44(1-3):81-94.
    [45]Song W J, Tang L H, Zhu X D, et al. Flow properties and rheology of slag from coal gasification. Fuel,2010.89(7):1709-1715.
    [46]Matjie R H, Alphen C V. Mineralogical features of size and density fractions in Sasol coal gasification ash, South Africa and potential by-products. Fuel,2008,87(8-9): 1439-1445.
    [47]Dahl O, Nurmesniemi H, Poykio R, et al. Comarsion of the characteristics of bottom ash and fly ash from a medium-size (32MW) municipal district heating plant incinerating forest residues and peat in a fluidized-bed holier. Fuel Processing Technology,2009,90(7-8):871-878.
    [48]Foner H A, Robl T L, I lower J C, et al. Characterization of fly ash from Israel with reference to its possible utilization. Fuel,1999,78(2):215-223.
    [49]Wagner N J, Matjie R H, Slaghuis J H, et al. Characterization of unburned carbon present in coarse gasification ash. Fuel,2008,87(6):683-691.
    [50]Zhao X L. Zeng C. Mao Y Y, et al. The surface characteristics and reactivity of residual carbon in coal gasification slag. Energy & Fuels.2010.24(1):91-94.
    151] Xu S Q, Zhou Z J, Gao X X, et al. The gasification reactivity of unburned carbon present in gasification slag from entrained-flow gasifier. Fuel Processing Technology, 2009,90(9):1062-1070.
    [52]王亮.粉煤灰综合利用研究[硕士学位论文].天津大学,2006,P1 1-12.
    [53]Wu Y Q, Wang J J, Wu S Y, et al. Potassium-catalyzed steam gasification of petroleum coke for H2 production:Reactivity, selectivity and gas release. Fuel Processing Technology,2011,92(3):523-530.
    [54]胡启静,周志杰,刘鑫等.氯化铁对高硫石油焦一C02气化的催化作用.石油学报(石油加工),2012,28(3):463-469.
    [55]李庆峰,房倚天,张建民等.煤灰对石油焦水蒸气气化的影响.燃料科学与技术,2004,10(4):359-362.
    [56]邹建辉,周志杰,代正华.三种工业废料对石油焦C02气化动力学的影响.燃料化学学报.2008,36(3):279-285.
    [57]平雅敏,黄胜,吴诗勇等.气化灰渣的理化性质及其对石油焦/CO2气化反应特性的影响.华东理工大学学报(自然科学版),2012,38(1):12-16,52.
    [58]周志杰,熊杰,展秀丽等.造纸黑液对石油焦—CO2气化的催化作用及动力学补偿效应.化工学报,2011,62(4):934-939.
    [59]Howaniec N, Smolinski A, Stanczyk K, et al. Steam co-gasification of coal and biomass derived chars with synergy effect as an innovative way of hydrogen-rich gas production. International Journal of Hydrogen Energy,2011,36(22):14455-14463.
    [60]Seo M W, Goo J H, Kim S D, et al. Gasification Characteristics of Coal/Biomass Blend in a Dual Circulating Fluidized Bed Reactor. Energy & Fuels,2010,24(5):3108-3118.
    [61]Kumabe K, Hanaoka T, Fujimoto S, et al. Co-gasification of woody biomass and coal with air and steam. Fuel,2007,86(5-6):684-689.
    [62]李克忠,张荣,毕继诚.煤和生物质共气化制备富氢气体的实验研究.燃料化学学报,2010,38(6):660-665.
    [63]Yoon S J, Choi Y C, Lee S H, et al. Thermogravimetric study of coal and petroleum coke for co-gasification. Korean J. Chem. Eng,2007,24(3):512-517.
    [64]刘鑫,张保申,陈雪莉等.石油焦和稻草焦共气化研究.燃料化学学报,2012,40(2):164-169.
    [65]徐桂英,孙国刚.生物质和石油焦共气化特性的研究.燃料化学学报,2011,39(6):438-442.
    [66]张泽凯,王黎,冯霄等.煤催化气化的修正缩核反应模型研究.西安交通大学学报,2003,37(11):1190-1193.
    [67]Struis R P W J, Scala C V, Stucki S, et al. Gasification reactivity of charcoal with CO2: Part I:Conversion and structural phenomena.Chemical Engineering Science,2002, 57(17):3581-3592.
    [68]Struis R P W J, Scala C V, Stucki S, et al. Gasification reactivity of charcoal with CO2: Part Ⅱ:Metal catalysis as a function of conversion. Chemical Engineering Science, 2002,57(17):3593-3602.
    [69]Yuan S, Chen X L, Li J, et al. CO2 gasification kinetics of biomass char derived from high-temperature rapid pyrolysis. Energy & Fuels,2011,25(5):2314-2321.
    [70]王黎,张占涛,张丽.煤焦催化气化的修正随机孔模型研究.西安交通大学学报,2006,40(3):319-323.
    [71]Wu Y Q, Wu S Y, Huang S, et al. Physicochemical properties and structural evolutions of gas-phase carbonization chars at high temperatures. Fuel Processing Technology, 2010,91(11):1662-1669.
    [72]Zong Z M, Zhang J W, Xie R L, et al. Effect of charring temperature on the composition and solubility of chars formed from rapid heating of Shenfu coal. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects,2010,32(7):620-627.
    [73]Lu L, Sahajwalla V, Kong C, et al. Quantitative X-ray diffraction analysis and its application to various coals. Carbon,2001,39(12):1821-1833.
    [74]Alvarez A G, Martinez-Escandell M, Molina-Sabio M, et al. Pyrolysis of petroleum residues:analysis of semicokes by X-ray diffraction. Carbon,1999,37(10):1627-1632.
    [75]Bo F, Suresh K B, John C B. Variation of the crystalline structure of coal char during gasification. Energy & Fuels.2003,17(3):744-754.
    [76]Hang S, Reimers J N, Dahn J R. Structure-Refinement program for disordered carbon. Journal of Applied Crystallography,1993,26(4):827-836.
    [77]Wang J, Morishita K, Takarada T. High-temperature interactions between coal char and mixtures of calcium oxide, quartz and kaolinite. Energy & Fuels.2001,15(5): 1145-1152
    [78]Szekely J, Evans J W, Sohn H W.气-固反应(胡道和译).北京:中国建筑工业出版社.1986, P.113-115.
    [79]刘辉.吴少华,孙锐等.快速热解褐煤焦的比表面积及孔隙结构.中国电机工程学报.2005,25(12):86-90.
    [80]Gregg S J, Sing K S W. Adsorption,surface area and porosity. Academic Press, London. 1982.
    [81]Takanohashi T. Teraob Y, Iino M. Sorption behaviors of methanol vapor by coal extracts and residues. Fuel.2000,79(3-4):349-353.
    [82]李文军.焦子阳,刘丽丽等.甲醇萃取对大雁褐煤孔隙结构的影响.煤炭转化,2009,32(4):5-7.
    [83]王飞,张代钧,李小鹏等.煤及其容剂萃取产物的氮气吸附行为.燃料化学学报,2003,31(5):395-399.
    [84]Sadhukhan A K, Gupta P, Saha R K. Characterization of porous structure of coal char from a single devolatilized coal particle:coal combustion in a fluidized bed. Fuel Processing Technology.2009,90(5):692-700.
    [85]吴诗勇.不同煤焦的理化性质及高温气化反应特性研究[博士论文].华东理工大学,2007,P32.
    [86]Goodarzi F. Characteristics and composition of fly ash from Canadian coal-fired power plants. Fuel,2006,85(10-11):1418-1427.
    [87]Wu H W, Yip K, Kong Z Y, et al. Removal and recycling of inherent inorganic nutrient species in mallee biomass and derived biochars by water leaching. Industrial & Engineering Chemistry Research,2011,50(21):12143-12151.
    [88]Pattersson A, Amand L E, Steenari B M. Chemical fractionation for the characterization of fly ashes from co-combustion of biofuels using different methods for alkali reduction. Fuel,2009,88(9):1758-1772.
    [89]Jordan C A, Akay G. Speciation and distribution of alkali, alkali earth metals and major ash forming elements during gasification of fuel cane bagasse. Fuel,2012,91(1): 253-263.
    [90]Werkelin J, Skrifvars B J, Zevenhoven M, et al. Chemical forms of ash-forming elements in woody biomass fuels. Fuel,2010,89(2):481-493.
    [91]鞠付栋,陈汉平,杨海平等.煤气化过程中焦炭的表面孔隙结构及其分形特征中国电机工程学报,2010,30(8):9-14.
    [92]李庆钊,林柏泉,赵长遂等.基于傅里叶红外光谱的高温煤焦表面化学结构特性分析.中国电机工程学报,2011,31(32):46-52.
    [93]Ibarra J V, Munoz E and Moliner R. FTIR study of the evolution of coal structure during the coalification process. Organic Geochemistry,1996,24(6-7):725-735.
    [94]Ibarra J V, Moliner R, Bonet A. FTIR investigation on char formation during the early stages of coal pyrolysis. Fuel,1994,73(6):918-924.
    [95]Koch A., Krzton A, Finqueneisel G, et al. A study of carboneous char oxidation in air by semi-quantitative FTIR spectroscopy. Fuel,1998,77(6):563-569.
    [96]Sheng C D. Char structure characterized by Raman spectroscopy and its correlations with combustion reactivity. Fuel,2007,86(15):2316-2324.
    [97]Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information. Carbon, 2005,43(8):1731-1742.
    [98]Chabalala V P, Wagner N, Potgieter-Vermaak S. Investigation into the evolution of char structure using Raman spectroscopy in conjunction with coal petrography; Part1. Fuel Processing Technology,2011,92(4):750-756.
    [99]李美芬,曾凡桂,齐福辉,孙蓓蕾.不同煤级煤的Raman光谱特征及与XRD结构参数的关系.光谱学与光谱分析,2009,29(9):2246-2249.
    [100]刘武标,刘昌德,米铁等.流化床水煤气炉飞灰反应性实验研究.中国电机工程学报,2003,23(9):189-192.
    [101]房倚天,汤忠,李梅等.流化床气化炉飞灰气化反应性的研究,Ⅰ.与实验室制备焦气化反应性的差别.燃料化学学报,1996,24(2):143-149.
    [102]Ochoa J, Cassanello M C, Bonelli P R, et al. CO2 gasification of Argentinean coal chars:a kinetic characterization. Fuel Processing Technology,2001,74(12):161-176.
    [103]Kasaoka S, Sakata Y, Kayano S, et al. Kinetic evaluation of reactivity of various coal chars for gasification with carbon dioxide in comparison with steam. International Chemical Engineering.1984,25(1):160-175.
    [104]Luo C. Gasification kinetics of coal chars carbonized under rapid and slow heating conditions at elevated temprelures. Journal of Energy Resources Technology.2001, 123(3):21-26.
    [105]梁新星,金国荣,梁杰.灰渣对煤炭地下气化催化效果的初步研究.煤炭转化,2008,31(1):21-25.
    [106]Acharya B, Dutta A, Basu P. An investigastion into steam gasification of biomass for hydrogen enriched gas production in presence of CaO. International Journal of Hydrogen Energy,2010,35(4):1582-1589.
    [107]Sharma A, Takanohashi T, Morishita K, et al. Low temperature catalytic steam gasification of HyperCoal to produce H2 and synthesis gas. Fuel,2008,87(4-5): 491-497.
    [108]Fermoso J, Arias B, Gil M V, et al. Co-gasification of different rank coals with biomass and petroleum coke in a high-pressure reactor for H2-rich gas production. Bioresource Technology,2010,101(9):3230-3235.
    [109]Matjie R H, French D, Ward C R, et al. Behaviour of coal mineral matter in sintering and slagging of ash during the gasification process.Fuel Processing Technology,2011, 92(8):1426-1433.
    [110]Zhu W; Song W; Lin W, et al. Catalytic gasification of char from co-pyrolysis of coal and biomass. Fuel Processing Technology,2008,89(9):890-896.
    [111]Kumabe K, Hanaoka T, Fujimoto S, et al. Co-gasification of woody biomass and coal with air and steam. Fuel,2007,86(5-6):684-689
    [112]Aigner I, Pfeifer C, Hofbauer H, et al. Co-gasification of coal and wood in a dual fluidized bed gasificr.Fuel,2011.90(7):2404-2412.
    [113]Encinar M J, Gonzalez F J, Gonzalez J. Steam gasification of Cynara cardunculus L. influence of variables. Fuel Processing Technology,2002,75:27-43.
    [114]许世森,张东亮,任永强.大规模煤气化技术[M].北京:化学工业出版社.2006,P.170-264.
    [115]Sharma A, Takanohashi T, Saito I. Effect of catalyst addition on gasification reactivity of HyperCoal and coal with steam at 700-775. Fuel,2008,87(12):2686-2690.
    [116]Xu S Q, Zhou Z J, Xiong J, et al. Effects of alkaline metal on coal gasification at pyrolysis and gasification phases. Fuel,2011,90(5):1723-1730.
    [117]Sharma A, Saito I, Takanohashi T, et al. Effect of steam partial pressure on gasification rate and gas composition of product gas from catalytic steam gasification of HyperCoal. Energy & Fuels,2009,23(10):4887-4892.
    [118]Sharma A and Takanohashi T. Controlling the H2/CO ratio of the synthesis gas in a single step by catalytically gasifying coal in a steam and carbon dioxide mixed environmental at low temperatures. Energy & Fuels,2010,24(3):1745-1752.
    [119]Roberts D G and Harris D J. Char gasification in mixtures of CO2 and H2O: Competition and inhibition. Fuel,2007,86(17-18):2672-2678.
    [120]Takarada T, Tamai Y and Tomia A. Reactivities of 34 coals under steam gasification. Fuel,1985,64(10):1438-1442.
    [121]Irfan M F, Usman M R, Kusakabe K. Coal gasification in CO2 atmosphere and its kinetics since 1948:A brief review. Energy,2011,36(1):12-40.
    [122]Malekshahian M and Hill J M. Kinetics analysis of CO2 gasification of petroleum coke at high pressure. Energy & Fuels,2011,25(9):4043-4048.
    [123]Mani T, Mahinpey N, Murugan P. Reaction kinetics and mass transfer studies of biomass char gasification with CO2. Chemical Engineering Science,2011,66:36-41.
    [124]Senneca O. Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Processing Technology,2007,88(1):87-97.
    [125]Matsumoto K, Takeno K, Ichinose T, et al. Gasification reaction kinetics on biomass char obtained as a by-product of gasification in an entrained-flow gasifier with steam and oxygen at 900-1000℃. Fuel,2009,88(3):519-527.
    [126]Huttinger K J and Minges R. The influence of the catalyst precursor anion in catalysis of water vapour gasification of carbon by potassium 2 catalytic acitivity as influenced by activation and deactivation reactions. Fuel.1986,65(8):1122-1128.
    [127]刘鑫.热处理及金属活化对石油焦气化过程的影响研究[博士论文].华东理工大学,2012,P.56-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700