用户名: 密码: 验证码:
煤基多联产系统的全生命周期评价及关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国经济快速发展对能源的需求急速增加,煤炭生产与利用的快速增长为社会经济持续发展做出了巨大贡献,同时也导致了严重的环境问题,并引发了一系列的社会经济问题。开发对煤炭资源清洁高效转化的新一代煤利用技术对我国社会经济的进一步发展具有极其重要的意义。
     煤基分级转化多联产是新一代煤炭转化利用技术的代表,将煤利用的多个工艺作为一个整体考虑,将整体效率最优化,从而实现煤炭高效低污染利用。多联产系统理论缺乏全面和深层次研究,还没有形成完整的理论体系,相关理论研究滞后于工程应用发展。除了电力之外,多联产系统的一次产品还主要包括裂解气化生成的半焦和低热值煤气及合成气。为了提高系统的总体效益,半焦的综合利用,和低热值煤气及合成气的燃烧就成为煤分级利用多联产技术发展的两个关键问题。
     本文系统地对煤基分级转化多联产系统及各项先进的煤利用技术从资源、环境和经济效益等方面进行全面的评估。对象包括:超超临界煤粉炉(PC)发电技术、整体煤气化联合循环发电技术(IGCC)、循环流化床(CFB)发电技术、循环流化床(CFB)分级转化发电技术、超超临界煤粉炉(PC)分级转化发电技术。结果表明,IGCC技术具有十分清洁高效的特点,但是投资成本高。直接燃煤技术投资少,但对环境的影响较大。煤的分级转化技术则实现了在充分提高能量效率的基础上,对污染物的排放也得到了非常有效的控制,并且投资成本仅有小幅度的提高,有利于推广和商业化运作,具有很好的应用前景。
     对于半焦的综合利用,本文以我国典型褐煤为原料,利用裂解提质得到的半焦制备了高品质水煤浆,浆体浓度均超过65%,且具有“剪切变稀”的流变特性及良好的稳定性。傅里叶红外光谱对样品的测量结果显示,随着裂解温度的提高,样品亲水性含氧基团减少褐煤的成浆性能得到了显著的改善。
     低热值煤气及合成气的燃烧方面,本文采用试验测量与数值模拟结合的方法研究了低温等离子体中的O3活性分子对合成气燃烧的强化作用和机理。实验建立了以热流量法为核心的燃烧测试平台,准确测量火焰传播速度的变化,最小误差0.478cm/s,平均误差<1cm/s。此外,我们搭建了GRI-Mech3.0+Ozone、USC Mech H+Ozone和Davis H2/CO-O3三种臭氧强化燃烧的机理,对合成气的一维绝热层流火焰进行了数值模拟,并与试验结果进行了对比分析。研究结果表明,O3对合成气火焰有显著的强化作用,强化效果随臭氧浓度的升高呈接近线性的提高,而且03在贫燃与富燃区域对火焰的强化效果比速度峰值附近更为显著。O3能够加速支链反应,提高自由基的浓度,从而提高火焰传播速度,对合成气燃烧进行强化。
In recent years, the rapid growth of China's economy greatly increase the energy consumption of the country. The production and utilization of coal plays an critical role in meeting the energy demand of the economy growth. However, the huge amount of coal consumption brings serious enviromental problems, which result in negative impact on the people's daily life. There is an urgent demand for the development of the next generation coal utilization technology, which makes the coal use more efficient and enviromental-friendly at the same time.
     As a representative of the next generation coal utilization technology, coal staged-utilization system incorporates multiple coal conversion technologies. The optimized system can achieve high efficiecy while minimizes emissions to the environment. However, the lack of theoretical system study greatly slows down the development of the coal staged-utilization system. Besides electricity output, the main products of the system include the pyrolysis semi-char and syngas. Therefore, the utilization of semi-char and the steady combustion of syngas become two key challenges to improve the overall efficiency of the system.
     For the first time, a systematic life cycle assessment (LCA) of the coal staged-utilization system and three other advanced coal utilization systems is conducted, which are Ultra-super-critical pulverized coal power system (PC), Integrated gasification combine cycle system (IGCC), and Circulating fluidized bed system (CFB). The resources consumption, emissions to environment, and investment of the systems are evaluated and compared. Results show that, IGCC are highly efficient and clean, but the cost is high; PC has a low investment, but also has emission problems; the coal staged-utilization system reaches a high efficiency, and it has a good control on the emissions. Besides, the extra cost of the coal staged-utilization system is very reasonable, which make it very promising to future development.
     Regard the utilization of semi-char, this study adopts a typical Chinese lignite, and uses the semi-char of the lignite pyrolysis to produce high-quality coal-water-slurry (CWS). The coal concentration of CWS product are all above65%, and it has a good fluidity and steadiness. The Fourier Transform Infrared Spectroscopy measurement results show that, the amount of hydrophilic oxygen group of the sample decreases when the pyrolysis temperature increases, which is the reason that the quality of the CWS is improved.
     In this thesis, the enhancement effect of ozone addition for syngas/air premixed flames at ambient condition is investigated both experimentally and computationally. Adiabatic laminar velocities under different amount of O3addition were directly measured using the Heat Flux Method. The minimum uncertainty of the measurement is0.478cm/s, and the average uncertainty is less than1cm/s. Kinetic modeling works were conducted by integrating ozone sub-mechanism with three kinetic mechanisms:GRI-Mech3.0, Davis mechanism and USC Mech II. The research data shows significant enhancement of the burning velocities due to O3addition. The enhancement shows nearly linear increase when the O3concentration increases linearly. And the enhancement is more notable at off-peak equivalence ratios. The flame is enhanced due to the extra intermediate radicals promoted by O3
引文
[1]British Petroleum, BP statistical review of world energy 2012 [R],2012.
    [2]中国能源统计年鉴2012[R].北京:国家统计局能源统计司,2012.
    [3]报告编委会,中国矿产资源报告概要[R],2011.
    [4]中国电力企业联合会.全国电力工业统计快报[M].2011.
    [5]孟祥路.700℃超超临界燃煤发电技术蓄势待发[J].化工管理,2011,9:46-48.
    [6]周奎应.超超临界锅炉发展综述[J].中国特种设备安全,2010,5:10-18.
    [7]张振宇,姚晨光.我国超超临界燃煤发电技术及发展[J].沈阳工程学院学报:自然科学版,2011,7(1):29-32.
    [8]王贵民.超超临界:优先发展洁净煤发电[J].中国电力企业管理,2011,6:56-57.
    [9]唐飞,董斌,赵敏.超超临界机组在我国的发展及应用[J].电力建设,2010,1:80-82.
    [10]纪世东,周荣灿,王生鹏,等.700℃等级先进超超临界发电技术研发现状及国产化建议[J].热力发电,2011,40(7):86-88.
    [11]方源.超超临界机组的现状及发展前景[J].中国科技博览,2010,31:633-633.
    [12]董斌,赵敏.超超临界机组在我国的发展及应用情况分析[M].2008年中国电机工程学会年会论文集.2008.
    [13]James R. Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity [M]. U.S. Department of Energy. 2010.
    [14]周亮亮,刘朝.洁净燃煤发电技术全生命周期评价[J].中国电机工程学报,2011,(02):7-14.
    [15]Zhou L, Liu C. Life cycle assessment of clean coal technology [J]. Proceedings of The CSEE,2011,(02):7-14.
    [16]方梦祥,岑建孟,王勤辉,等.25mw循环流化床热、电、煤气多联产装置[J].动力工程,2007,27(4):635-639.
    [17]王志锋,梁鹏,董众兵,等.循环流化床多联产洁净煤技术的研究及应用[J].煤化工,2005,(5):22-26.
    [18]王勤辉,骆仲泱,方梦祥,等.12兆瓦热电气多联产装置的开发[J].燃料化学学报,2002,30(2):141-146.
    [19]Qu X A, Liang P, Wang Z F, et al. Pilot Development of a Polygeneration Process of Circulating Fluidized Bed Combustion combined with Coal Pyrolysis [J]. Chem Eng Technol,2011,34 (1):61-68.
    [20]Liang P, Wang Z F, Bi J C. Process characteristics investigation of simulated circulating fluidized bed combustion combined with coal pyrolysis [J]. Fuel Process Technol,2007,88(1):23-28.
    [21]赵振可.煤基多联产系统总体性能分析[D];上海交通大学,2011.
    [22]王五一.煤热解多联产技术与鲁奇煤气化技术结合生产代用天然气的方案[J].洁净煤技术,2010,2:45-48.
    [23]王勤辉,方梦祥,骆仲泱,等.煤的热电气焦油多联产技术的研究与开发[J].热电技术,2010,1:1-5.
    [24]倪维斗,李政.基于煤气化的多联产能源系统[M].清华大学出版社,2011.
    [25]刘耀鑫,李润东,杨天华,等.煤热解燃烧多联产方案试验研究[J].热力发电,2008,37(5):1-5.
    [26]李政,倪维斗,潘克西.以煤气化为核心的多联产及其在我国未来能源中的战略意义[J].发电设备,2004,(3):117-120.
    [27]岑可法,骆仲泱,王勤辉,等.煤的热电气多联产技术及工程实例[M].北京:化学工业出版社,2004.
    [28]岑建孟,方梦祥,王勤辉,等.煤分级利用多联产技术及其发展前景[J].化工进展,2011,30(01):88-94.
    [29]Fang M X, Cen J M, Wang Q H, et al. Study on coal combustion and pyrolysis gas tar and steam polygeneration system [C]. Proceedings of the Proceedings of the 6th International Symposium on Coal Combustion, Wuhan,2007:623-627.
    [30]岑可法,骆仲泱,方梦祥,等.新颖的热、电、燃气三联产装置[J].能源工程,1995,(1):17-19.
    [31]岑可法,方梦祥,骆仲泱,等.循环流化床热电气三联产装置研究[J].工程热物理学报,1995,11(6):499-502.
    [32]方梦祥,骆仲泱,王勤辉,等.循环流化床三联产装置的开发和应用前景分析[J].动力工程,1997,8(17):21-27.
    [33]李定凯,沈幼庭,徐秀清,等.循环流化床热—电—煤气联产技术及其应用前景[J].煤气与热力,1995,9(5):41-45.
    [34]胡中铎,唐雁春,孙育新,等.循环流化床热、电、煤气三联产装置的设计及应用[J].应用能源技术,2001,(2):14-16.
    [35]张召孝,吕士锋.循环流化床锅炉三联产技术应用前景[J].煤矿现代化,1999,(5):39-40.
    [36]朱国防,吴善洪.利用循环流化床技术实现热、电、煤气“三联产”的工艺研究[J].山东电力技术,1998,(3):19-23.
    [37]王勤辉,方梦祥,骆仲泱,等.汽气共生热电气联产技术的研究[J].浙江大学学报,1997,31(2):253-259.
    [38]Fang M X, Luo Z Y, Li X T, et al. A multi-product cogeneration system using combined coal gasification and combustion [J]. Energy,1998,23 (3):203-212.
    [39]吕小兰.煤部分气化燃烧集成系统的研究[D],2002.
    [40]徐秀清,沈幼庭,李定凯,等.循环流化床煤气—蒸汽联产炉[J].锅炉技术,1994,8:11-15.
    [41]张宗飞,任敬,李泽海,等.煤热解多联产技术述评[J].化肥设计,2010,48(6):11-21.
    [42]蔡宁生,章名耀PFBC-CC发电技术的进展及创新发展[J].东南大学学报(自然科学版),2002,32(3):437-442.
    [43]吕小兰.煤部分气化燃烧集成系统的研究[D],2002.
    [44]肖军,蔡宁生,章名耀,等.第二代PFBC—CC中试电站初步方案及性能分析[J].工程热物理学报,2002,23(S1):13-16.
    [45]李珊珊.精细水煤浆的颗粒孔隙、成浆及燃烧机理研究[D],2006.
    [46]高志芳.提质褐煤制浆及配煤成浆特性的研究[D];中国矿业大学(北京)2009.
    [47]张强,田莹,吕顺,等.水煤浆燃料环境影响的生命周期评价[J].环境科学与技术,2008,31(8):132-135.
    [48]梁兴,闫黎黎,徐尧.水煤浆技术现状分析及发展方向[J].洁净煤技术,2012,(06):62-66.
    [49]李智伟.我国水煤浆燃烧技术与工业发展前景[J].云南冶金,2002,(06):42-48.
    [50]李安.水煤浆技术发展现状及其新进展[.J].煤炭科学技术,2007,NO.390(05):97-100.
    [51]田薇,仝燕燕,解惠敏,等.水煤浆发展现状及节能减排分析[J].洁净煤技术,2010,v.16;NO.68(04):102-103+198.
    [52]张培丽.褐煤半焦制备水焦浆的研究[D];大连理工大学,2010.
    [53]王志光,饶志雄,张德祥.云南褐煤水煤浆成浆性分析[J].山东冶金,2007,No.144(04):41-43.
    [54]高志芳,朱书全,吴晓华.褐煤提质改性对水煤浆特性的影响[J].煤炭科学技术,2010,v.38;No.430(09):112-116.
    [55]董平,吕玉庭,聂丽君.洁净煤与褐煤水煤浆技术[J].应用能源技术,1997,(03):7-10.
    [56]孟子恒,刘明东,郭天武.褐煤水煤浆气化技术应用[J].化工科技,2012,v.20(04):55-58.
    [57]高志芳,朱书全,黄波,等.粒度分布对提质褐煤水煤浆性能影响的研究[J].选煤技术,2009,No.212(01):1-5+2.
    [58]Szego G G, Dally B B, Nathan G J. Operational characteristics of a parallel jet MILD combustion burner system [J]. Combust Flame,2009,156 (2):429-438.
    [59]Starikovskii A Y. Plasma supported combustion [J]. Proceedings of the Combustion Institute,2005,30 (2):2405-2417.
    [60]Kim W, Do H, Mungal M G, et al. Optimal discharge placement in plasma-assisted combustion of a methane jet in cross flow [J]. Combust Flame,2008, 153 (4):603-615.
    [61]Karpenko E I, Messerle V E, Ustimenko A B. Plasma-aided solid fuel combustion [J]. P Combust Inst,2007,31:3353-3360.
    [62]Rosocha L A, Kim Y, Anderson G K, et al. Combusion enhancement using silent electrical discharges [J]. International Journal of Plasma Environmental Science & Technology,2007,1(1):8-13.
    [63]张孝勇,纪少华,邓炜,等.一次风速度和煤粉浓度对等离子燃烧器一级燃烧筒点火特性的试验研究[J].锅炉技术,2010,41(4):41-46.
    [64]刘典福,刘学炉.神木烟煤等离子体气化所制半焦的特性研究[J].煤化工,2009,4:26-29.
    [65]杨家龙,于婷婷,陈明敏.燃气轮机连续弧等离子点火器仿真与实现[J].燃气轮机技术,2010,23(2):34-38.
    [66]宋云华.利用等离子点火技术对300mw锅炉燃烧器改造[J].电力科学与工程,2010,26(7):51-54.
    [67]薛锐,许厚谦.火电厂等离子点火技术的应用与研究[J].能源工程,2010,2:53-56.
    [68]葛伟峰,史珂.锅炉等离子点火燃烧器的应用及效果分析[J].华中电力,2010,1:61-64.
    [69]谢泽林,王晓霞.等离子燃烧技术的运行分析[J].经济技术协作信息,2010,14:232-232.
    [70]郑璐,薛立宗,齐伦.等离子点火系统应用研究[J].东北电力技术,2010,5:16-17.
    [71]Starikovskii S M. Plasma assisted combustion [J]. J Phys D-Appl Phys,2006,39 (16):R265-R299.
    [72]Ombrello T, Won S H, Ju Y G, et al. Flame propagation enhancement by plasma excitation of oxygen. Part I:Effects of O-3 [J]. Combust Flame,2010,157 (10): 1906-1915.
    [73]Ombrello T, Won S H, Ju Y G, et al. Flame propagation enhancement by plasma excitation of oxygen. Part II:Effects of O-2(a(1)Delta(g)) [J]. Combust Flame,2010, 157(10):1916-1928.
    [74]Starikovskaia S M. Plasma assisted ignition and combustion [J]. J Phys D-Appl Phys,2006,39 (16):R265-R299.
    [75]Ombrello T, Ju Y G, Fridman A. Kinetic Ignition Enhancement of Diffusion Flames by Nonequilibrium Magnetic Gliding Arc Plasma [J]. Aiaa J,2008,46 (10): 2424-2433.
    [76]McClurkin J D, Maier D E. Half-life time of ozone as a function of air conditions and movement [M].10th International Working Conference on Stored Product Protection. Portugal, Estoril Congress Center; Julius-Kuhn-Archiv:Portugal, Estoril Congress Center.2010:381-385.
    [77]Stockman E S, Zaidi S H. Miles R B, et al. Measurements of combustion properties in a microwave enhanced flame [J]. Combustion and Flame,2009,156 (7): 1453-1461.
    [78]Cathey C, Cain J. Wang H, et al. OH production by transient plasma and mechanism of flame ignition and propagation in quiescent methane-air mixtures [J]. Combustion and Flame,2008,154 (4):715-727.
    [79]Prager J, Riedel U, Warnatz J. Modeling ion chemistry and charged species diffusion in lean methane-oxygen flames [J]. P Combust Inst,2007,31:1129-1137.
    [80]Starik A M, Titova N S. Kinetics of ion formation in the volumetric reaction of methane with air [J]. Combust Explo Shock+,2002,38 (3):253-268.
    [81]Law C K. Combustion Physics [M]. New York:Cambridge University Press. 2006.
    [82]Goey L P H d, Maaren A v, Quax R M. Stabilization of Adiabatic Premixed Laminar Flames on a Flat Flame Burner [J]. Combustion Science and Technology, 1993,92 (1-3):201-207.
    [83]Guinee J B, Gorree M, Heijungs R, et al., Life cycle assessment:An operational guide to the ISO standards [R]:Centre of Environmental Science-Leiden University (CML),2001.
    [84]ISO. ISO 14040 (E) 2006. Environmental Management-Life Cycle Assessment-Principles and Framework [M]. Geneva; International Organization for Standardization.2006.
    [85]周亮亮.清洁燃煤发电技术全生命周期评价[D].重庆;重庆大学,2011.
    [86]Boustead I, Hancock G. Handbook of industrial energy analysis [M].1979.
    [87]Steen S, Ryding O, The EPS environ-accounting method [R],1992.
    [88]Spath P, Mann M, Kerr D, Life cycle assessment of coal-fired power production. National Renewable Energy Laboratory [R]:US Department of Energy Laboratory, 1999.
    [89]Schleisner L. Life cycle assessment of a wind farm and related externalities [J]. Renewable Energy,2000,20 (3):279-288.
    [90]Matteo C, Andrea C. Life cycle assessment of an integrated biomass gasification combined cycle (IBGCC) with CO2 removal [J]. Energy Conversion and Management,2005,46 (11):1790-1808.
    [91]Arpad H, Eric M, An Analysis of Measures to Reduce the Life-Cycle Energy Consumption andGreenhouse Gas Emissions of California's Personal Computers [R]: UC Energy Institute,2007.
    [92]Cherubini F, Bargigli S, Ulgiati S. Life cycle assessment (LCA) of waste management strategies:Landfilling, sorting plant and incineration [J]. Energy,2009, 34 (12):2116-2123.
    [93]杨建新,徐成,王如松.产品生命周期评价方法及应用[M].北京:气象出版社,2002.
    [94]汪劲松,段广洪,李方义,等.基于产品生命周期的绿色制造技术研究现状与展望[J].计算机集成制造系统,1999,5(4):1-8.
    [95]刘飞,曹华军.绿色制造的理论体系框架[J].中国机械工程,2000,11(9):961-964.
    [96]刘光复,刘志峰,李钢.绿色设计与绿色制造[M].北京:机械工业出版社,1999.
    [97]黄志甲,张旭.汽车燃料的生命周期评价模型[J].同济大学学报,2003,31(12):1472-1476.
    [98]陈胜震,陈铭.中国清洁能源汽车全生命周期的3E分析与评论[J].汽车工程,2008,30(6):465-522.
    [99]曾建春,蔡建国.面向产品生命周期的环境、成本和性能多指标评价[J].中国机械工程,2000,11(9):975-978.
    [100]蒋金良,马晓茜.基于生命周期评价的不同电源对环境影响的比较[J].电站系统工程,2004,20(3):26-28.
    [101]邹治平,马晓茜.风力发电的生命周期分析[J].中国电力,2003,36(9):83-87.
    [102]任玉珑,阳忠明,韩维健,等.低谷电电解制氢的生命周期3E评价[J].工业工程与管理,2006,4(0):79-82.
    [103]冯超,马晓茜.秸秆直燃发电的生命周期评价[J].大阳能学报,2008,29(6):711-715.
    [104]Voorspools K R, Brouwers E A, D'Haeseleer W D. Energy content and indirect greenhouse gas emissions embedded in'emission-free'power plants:results for the Low Countries [J]. Appl Energy,2000,67 (3):307-330.
    [105]John L. R. P, Philip W. G, Stefan S, et al. The lifetime pollution implications of various types of electricity generation. An input-output analysis [J]. Energy Policy, 1996,24 (3):229-237.
    [106]Scott W. White, L.Kulcinski G. Birth to death analysis of the energy payback ratio and CO2 gas emission rates from coal, fission, wind, and DT-fusion electrical power plants [J]. Fusion Engineering and Design,2000,48 (248):473-481.
    [107]Odeh N A, Cockerill T T. Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage [J]. Energy Policy,2008,36 (1):367-380.
    [108]Odeh N A, Cockerill T T. Life cycle analysis of UK coal fired power plants [J]. Energy Conversion and Management,2008,49 (2):212-220.
    [109]Koornneef J, van Keulen T, Faaij A, et al. Life cycle assessment of a pulverized coal power plant with post-combustion capture, transport and storage of CO2 [J]. Int J Greenh Gas Control,2008,2 (4):448-467.
    [110]Kannan R, Tso C P, Osman R, et al. LCA-LCCA of oil fired steam turbine power plant in Singapore [J]. Energy Conversion and Management,2004,45 (18-19): 3093-3107.
    [111]狄向华,聂祚仁,左铁镛.中国火力发电燃料消耗的生命周期排放清单[J].中国环境科学,2005,25(5):632-635.
    [112]郝丽芬,王灵梅.超超临界火电厂的生命周期评价[J].电站系统工程,2006,22(1):53-54.
    [113]晓斌,张阿玲,陈贵锋.中国洁净煤发电的生命周期清单分析[J].洁净煤技术,2005,11(2):1-4.
    [114]梁增英,马晓茜.选择性催化还原烟气脱硝技术的生命周期评价[J].中国电机工程学报,2009,29(17):63-69.
    [115]刘敬尧,钱宇,李秀喜,等.燃煤及其替代发电方案的生命周期评价[J].煤炭学报,2009,(01):133-138.
    [116]姚强,陈超.洁净煤技术[M].北京:化学工业出版社,2006.
    [117]温亮.循环流化床热电气焦油多联产技术的试验研究[D].杭州;浙江大学,2010.
    [118]宋宇,唐孝炎,方晨,等.北京市大气细粒子的来源分析[J].环境科学,2002,(06):11-16.
    [119]胡敏,赵云良,何凌燕,等.北京冬、夏季颗粒物及其离子成分质量浓度谱分布[J].环境科学,2005,(04):1-6.
    [120]崔晓曦,李忠,左永飞.以褐煤干馏提质为基础的多联产技术分析[J].煤化工,2012,(05):30-33+37.
    [121]冯勇,杜秀荣.低阶褐煤清洁高效转化利用热电气多联产技术开发探讨[C]. Proceedings of the,2012:5.
    [122]关珺,何德民,张秋民.褐煤热解提质技术与多联产构想[J].煤化工,2011,(06):1-4+9.
    [123]汪寿建.褐煤干燥成型多联产在工程实践中的应用和发展[J].化工进展,2010,(08):1379-1387.
    [124]汪寿建.大型褐煤分级提质多联产输配循环经济示范工程简介[C].Proceedings of the第六届中国煤化工产业发展论坛——‘十二五’煤化工产业升级与技术发展研讨会,中国海南海口,2011:11.
    [125]汪寿建.关于大型褐煤分级提质多联产循环经济解决方案的探讨[J].化肥设计,2012,(01):1-3+7.
    [126]张秋民.褐煤热解提质技术与多联产构想[C].Proceedings of the‘十二五’我国煤化工行业发展及节能减排技术论坛,中国新疆伊犁,2010:11.
    [127]陆津津.云南褐煤固体热载体法热解及其半焦燃烧特性的研究[D];大连理工大学,2010.
    [128]仝晓波,申春梅,吴少华,等.煤拔头半焦燃烧特性[J].过程工程学报,2009,(05):897-903.
    [129]王俊琪.煤的部分气化及半焦燃烧系统集成研究[D];浙江大学,2009.
    [130]余斌,李社锋,方梦祥.多联产半焦燃烧特性的热重研究[.J].动力工程学报,2010,(03):214-218.
    [131]赵红涛,武建军.浅析电石用碳素原料[J].聚氯乙烯,2011,07:3-4.
    [132]步学朋,徐振刚,李文华,等.活性焦性质对脱除SO_2性能的影响研究[J].煤炭学报,2011,(05):834-839.
    [133]常连成,肖军,张辉,等.改性活性焦低温脱硝实验研究[J].太原理工大学学报,2010,(05):593-597.
    [134]解炜,熊银伍,孙仲超,等.NH_3改性活性焦脱硝性能试验研究[J].煤炭科学技术,2012,(04):125-128.
    [135]李兰廷,吴涛,梁大明,等.活性焦脱硫脱硝脱汞一体化技术[J].煤质技术,2009,(03):46-49.
    [136]陶贺,金保升,朴桂林,等.活性焦烟气脱硫脱硝的静态实验和工艺参数选择[J].东南大学学报(自然科学版),2009,(03):635-640.
    [137]吴博,黄戒介,张荣俊,等.活性炭(焦)低温吸附催化脱除H_2S的基础研究[J].燃料化学学报,2009,(03):355-359.
    [138]吴涛,梁大明,李兰廷,等.两种活性焦脱除除烟气中SO_2及水洗再生性能对比分析[J].洁净煤技术,2010,(01):86-89.
    [139]张斌,侯文慧,范朋慧,等.工艺参数对活性焦烟气中联合脱硫脱汞性能的交互影响[J].煤炭学报,2010,(09):1548-1552.
    [140]张俊.活性焦烟气脱硫的实验研究[D];南京理工大学,2008.
    [141]张颖.活性焦同时脱硫脱硝试验研究[D];哈尔滨工业大学,2010.
    [142]朱惠峰.活性焦的制备及其烟气脱硫的实验研究[D];南京理工大学,2011.
    [143]沈强华,刘云亮,陈雯,等.昭通褐煤半焦气化特性的研究[J].煤炭转化,2012,(01):24-27.
    [144]孙德财,张聚伟,赵义军,等.粉煤气化条件下不同粒径半焦的表征与气化动力学[J].过程工程学报,2012,(01):68-74.
    [145]吴鹏,朱书全,王娜,等.热解温度对型煤半焦气化反应活性的影响[J].煤炭转化,2010,(04):35-39.
    [146]袁辉峰.一种宁夏煤热解及半焦气化模拟研究[D];大连理工大学,2012.
    [147]宋彬彬.褐煤低温热改质及成浆性能研究[D];大连理工大学,2008.
    [148]许耀光周A任A.大雁褐煤改质制水煤浆[J].煤炭分析及利用,1994,(03):20-23.
    [149]赵卫东.低阶煤水热改性制浆的微观机理及燃烧特性研究[D];浙江大学,2009.
    [150]段清兵,何国锋,王国房,等.低阶煤制备高浓度气化水煤浆新技术[J].煤质技术,2009,(05):41-43.
    [151]高丽.德士古水煤浆加压气化技术的应用[J].煤炭技术,2010,(07):161-162.
    [152]李铁,吴晅,袁竹林.水煤浆气化炉冷却管内气固两相流动与传热过程数值研究[J].中国电机工程学报,2010,(14):77-82.
    [153]邵守言,王忠华,王辅臣.水煤浆气化原料的成浆性研究[J].煤炭转化,2010,(04):26-30.
    [154]孙漾,张凌波,顾幸生Texaco水煤浆气化装置配煤模型及其优化[J].化工学报,2010,(08):1965-1970.
    [155]张大晶.多喷嘴对置式水煤浆气化技术设备概况[J].化肥工业,2009,(02):41-43.
    [156]袁红莉,杨金水,王风芹,等.不可再生能源物质褐煤的生物可持续发展问题展望——微生物转化与利用研究[J].世界科技研究与发展,2002,(03):13-17.
    [157]周德悟,崔玉玲,张勤,等.褐煤成浆性能的评价[J].矿物加工与综合利用,1994:4-8.
    [158]周德悟,李军,王柏春.大雁褐煤制水煤浆的研究[J].煤气与热力,1990:8-11.
    [159]肖保治,李佩君,朱友益.褐煤浆的研制[J].中国煤炭,1996,(8):46-47.
    [160]袁钧卢,赵建刚,颜涌捷,等.扎赉诺尔褐煤水煤浆流变性能的研究[J].燃料化学学报,1990,(01):53-58.
    [161]傅晓恒,朱书全,王祖讷,等.煤在水中的润湿热与水煤浆成浆性的关系[J].选煤技术,1997,(1):45-47.
    [162]刘旭光,李保庆.褐煤的热处理改质研究[J].煤炭转化,2000,23(1):39-43.
    [163]郝爱民,李新生,宋永玮.煤的改性提质对水煤浆成浆性的影响[J].煤炭转化,2001,24(3):47-50.
    [164]刘明强,刘建忠,王睿坤,等.热解温度对褐煤半焦成浆特性影响的实验研究[J].中国电机工程学报,2013,33(8):36-43.
    [165]全国煤炭标准化技术委员会.GB/T 18856.1-18856.14-2002水煤浆试验方法[M].北京;中国标准出版社.2002.
    [166]虞育杰,刘建忠,张传名,等.低挥发分煤的成浆特性和水煤浆流变特性[J].浙江大学学报(工学版),2011,45(2):335-340.
    [167]王睿坤,刘建忠,胡亚轩,等.水煤浆掺混湿污泥对浆体成浆特性的影响[J].煤炭学报,2010,35(S0):199-204.
    [168]全国煤炭标准化技术委员会.GBT 18855-2008水煤浆技术条件[M].北京;中国标准出版社.2008.
    [169]Mishra S K, Senapati P K, Panda D. Rheological Behavior of Coal-Water Slurry [J]. Energy Sources,2002,24 (2):159-167.
    [170]Lu P, Zhang M. Rheology of coal-water paste [J]. Powder Techno 1,2005, 150(3):189-195.
    [171]胡亚轩,刘建忠,王睿坤,等.配煤对水煤浆性质的影响[J].中国电机工程学报,2012,32(2):31-38.
    [172]张国枢,谢应明,顾建明.煤炭自燃微观结构变化的红外光谱分析[J].煤炭学报,2003,28(5):73-76.
    [173]冯杰,李文英,谢克昌.傅立叶红外光谱法对煤结构的研究[[J].中国矿业大学学报,2002,31(5):62-66.
    [174]肖宝清,张荣曾.煤的孔隙特性与煤浆流变性关系的研究[J].世界煤炭技术,1994,2:37-40.
    [175]孙成功,李保庆,尉迟唯.煤的孔隙结构特征对水煤浆性质的影响[J].燃料化学学报,1996,24(5):434-439.
    [176]杨丽.煤/生物质气化合成气燃烧特性的激光诊断研究[D].杭州;浙江大学,2011.
    [177]Mendes M A A, Pereira J M C, Pereira J C F. On the stability of ultra-lean H2/CO combustion in inert porous burners [J]. Int J Hydrogen Energ,2008,33 (0): 3416-3425.
    [178]Natarajan J, Lieuwen T, Seitzman J. Laminar flame speeds of H2/CO mixtures:Effect of CO2 dilution, preheat temperature, and pressure [J]. Combust Flame,2007,151 (1-2):104-119.
    [179]Prathap C, Ray A, Ravi M R. Effects of dilution with carbon dioxide on the laminar burning velocity and flame stability of H2-CO mixtures at atmospheric condition [J]. Combust Flame,2012,159 (2):482-492.
    [180]Prathap C, Ray A, Ravi M R. Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition [J]. Combust Flame,2008,155 (1-2):145-160.
    [181]Lee C, Kil H. Effects of nitrogen dilution for coal synthetic gas fuel on the flame stability and NOx formation [J]. Korean J Chem Eng,2009,26 (3):862-866.
    [182]Frassoldati A, Faravelli T, Ranzi E. The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1:Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds [J]. Int J Hydrogen Energ,2007,32 (15):3471-3485.
    [183]Cuoci A, Frassoldati A, Buzzi Ferraris G, et al. The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 2:Fluid dynamics and kinetic aspects of syngas combustion [J]. Int J Hydrogen Energ,2007,32 (15): 3486-3500.
    [184]Park J, Kwon O B, Yun J H, et al. Preferential diffusion effects on flame characteristics in H2/CO syngas diffusion flames diluted with CO2 [J]. Int J Hydrogen Energ,2008,33 (23):7286-7294.
    [185]Park J, Kim J S, Chung J O, et al. Chemical effects of added CO2 on the extinction characteristics of H2/CO/CO2 syngas diffusion flames [J]. Int J Hydrogen Energ,2009,34 (20):8756-8762.
    [186]Park J, Bae D S, Cha M S, et al. Flame characteristics in H2/CO synthetic gas diffusion flames diluted with CO2:Effects of radiative heat loss and mixture composition [J]. Int J Hydrogen Energ,2008,33 (23):7256-7264.
    [187]Park K, Lee D, Rai A, et al. Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry [J]. J Phys Chem B. 2005,109 (15):7290-7299.
    [188]Ouimette P, Seers P. Numerical comparison of premixed laminar flame velocity of methane and wood syngas [J]. Fuel,2009,88 (3):528-533.
    [189]Walton S M, He X, Zigler B T, et al. An experimental investigation of the ignition properties of hydrogen and carbon monoxide mixtures for syngas turbine applications [J]. P Combust Inst,2007,31 (2):3147-3154.
    [190]岑可法,姚强,骆仲泱,等.高等燃烧学[M].浙江大学出版社,2002.
    [191]Law C K, Sung C J. Structure, aerodynamics, and geometry of premixed flamelets [J]. Prog Energ Combust,2000,26 (4-6):459-505.
    [192]Zhao Z, Kazakov A, Dryer F L. Measurements of dimethyl ether/air mixture burning velocities by using particle image velocimetry [J]. Combust Flame,2004,139 (1-2):52-60.
    [193]Dong C, Zhou Q, Zhao Q, et al. Experimental study on the laminar flame speed of hydrogen/carbon monoxide/air mixtures [J]. Fuel,2009,88 (10):1858-1863.
    [194]Kishore V R, Muchahary R, Ray A, et al. Adiabatic burning velocity of H-2-0-2 mixtures diluted with CO2/N2/Ar [J]. Int J Hydrogen Energ,2009,34 (19): 8378-8388.
    [195]Bosschaart K J, de Goey L P H. Detailed analysis of the heat flux method for measuring burning velocities [J]. Combust Flame,2003,132 (1-2):170-180.
    [196]Bradley D, Gaskell P H, Gu X J. Burning velocities, Markstein lengths, and flame quenching for spherical methane-air flames:A computational study [J]. Combust Flame,1996,104 (1-2):176-198.
    [197]Aung K T, Hassan M I, Faeth G M. Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure [J]. Combust Flame, 1997,109(1-2):1-24.
    [198]Kwon O C, Faeth G M. Flame/stretch interactions of premixed hydrogen-fueled flames:Measurements and predictions [J]. Combust Flame,2001, 124 (4):590-610.
    [199]Badami G N, Egerton A. The Determination of Burning Velocities of Slow Flames [J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences,1955,228 (1174):297-322.
    [200]Scholte T G, Vaags P B. The influence of small quantities of hydrogen and hydrogen compounds on the burning velocity of carbon monoxide-air flames [J]. Combust Flame,1959,3 (0):503-510.
    [201]McLean I C, Smith D B, Taylor S C. The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO+OH reaction [J]. Symposium (International) on Combustion,1994,25 (1):749-757.
    [202]Vagelopoulos C M, Egolfopoulos F N, Law C K. Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique [J]. Symposium (International) on Combustion,1994,25 (1):1341-1347.
    [203]Brown M J, McLean I C, Smith D B, et al. Markstein lengths of CO/H2/air flames, using expanding spherical flames [J]. Symposium (International) on Combustion.1996,26 (1):875-881.
    [204]Hassan M I, Aung K T, Faeth G M. Properties of laminar premixed CO/H-2/air flames at various pressures [J]. J Propul Power,1997,13 (2):239-245.
    [205]Rumminger M D, Linteris G T. Inhibition of premixed carbon monoxide-hydrogen-oxygen-nitrogen flames by iron pentacarbonyl [J]. Combust Flame,2000.120 (4):451-464.
    [206]Konnov A A, Dyakov I V, de Ruyck J. Nitric oxide formation in premixed flames of H2+CO+CO2 and air [J]. P Combust Inst,2002,29 (2):2171-2177.
    [207]Sun H, Yang S I, Jomaas G, et al. High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion [J]. P Combust Inst,2007, 31 (1):439-446.
    [208]Natarajan J, Nandula S, Lieuwen T, et al. Laminar flame speeds of synthetic gas fuel mixtures [M].2005.
    [209]Natarajan J, Lieuwen T, Seitzman J, et al. Laminar flame speeds and strain sensitivities of mixtures of H-2 with CO, CO2 and N-2 at elevated temperatures [M]. 2007.
    [210]Som S, Ramirez A I, Hagerdorn J, et al. A numerical and experimental study of counterflow syngas flames at different pressures [J]. Fuel,2008,87 (3):319-334.
    [211]Natarajan J, Kochar Y, Lieuwen T, et al. Pressure and preheat dependence of laminar flame speeds of H2/CO/CO2/O2/He mixtures [J]. P Combust Inst,2009,32 (1):1261-1268.
    [212]Burke M P, Chen Z, Ju Y, et al. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames [J]. Combust Flame,2009,156 (4):771-779.
    [213]Ichikawa Y, Otawara Y, Kobayashi H, et al. Flame structure and radiation characteristics of CO/H2/CO2/air turbulent premixed flames at high pressure [J]. P Combust Inst,2011,33 (1):1543-1550.
    [214]Bouvet N, Chauveau C, Goekalp I, et al. Characterization of syngas laminar flames using the Bunsen burner configuration [J]. Int J Hydrogen Energ,2011,36 (1): 992-1005.
    [215]Bouvet N, Chauveau C, Gokalp I, et al. Experimental studies of the fundamental flame speeds of syngas (H2/CO)/air mixtures [J]. P Combust Inst,2011, 33 (1):913-920.
    [216]Goey L P H d, Somers L M T, Bosch W M M L, et al. Modeling of the Small Scale Structure of Flat Burner-Stabilized Flames [J]. Combustion Science and Technology,1995,104 (4-6):387-400.
    [217]Li B, Linden J, Li Z S, et al. Accurate measurements of laminar burning velocity using the Heat Flux method and thermographic phosphor technique [J]. P Combust Inst,2011,33 (1):939-946.
    [218]Wang Z H, Yang L, Li B, et al. Investigation of combustion enhancement by ozone additive in CH4/air flames using direct laminar burning velocity measurements and kinetic simulations [J]. Combust Flame,2012,159 (1):120-129.
    [219]Bosschaart K J, de Goey L P H. The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method [J]. Combust Flame,2004,136 (3):261-269.
    [220]Van Maaren A, de Goey L P H. Laser Doppler Thermometry in Flat Flames [J]. Combust Sci Technol,1994,99 (1-3):105-118.
    [221]Vagelopoulos C M, Egolfopoulos F N. Direct experimental determination of laminar flame speeds [J]. Symposium (International) on Combustion,1998,27 (1): 513-519.
    [222]Tahtouh T, Halter F, MounaTm-Rousselle C. Measurement of laminar burning speeds and Markstein lengths using a novel methodology [J]. Combustion and Flame,2009,156 (9):1735-1743.
    [223]Gu X J, Haq M Z, Lawes M, et al. Laminar burning velocity and Markstein lengths of methane-air mixtures [J]. Combustion and Flame,2000,121 (1-2):41-58.
    [224]Gregory P. Smith, David M. Golden, Michael Frenklach, et al. http://www.me.berkelev.edu/gri_mech/, date of last accessed:2012/07/05 [M].
    [225]Gamino B, Aguillon J. Numerical simulation of syngas combustion with a multi-spark ignition system in a diesel engine adapted to work at the Otto cycle [J]. Fuel,2010,89 (3):581-591.
    [226]Gordiets B F, Ferreira C M, Guerra V L, et al. Kinetic-model of a low-pressure N2-O2 flowing glow-discharge [J]. IEEE Trans Plasma Sci,1995.23 (4): 750-768.
    [227]Smekhov G D, Ibraguimova L B, Karkach S P, et al. Numerical simulation of ignition of a hydrogen-oxygen mixture in view of electronically excited components [J]. High Temp+,2007,45 (3):395-407.
    [228]Tachibana T, Hirata K, Nishida H, et al. Effect of ozone on combustion of compression ignition engines [J]. Combust Flame,1991,85 (3-4):515-519.
    [229]Decarne C, Bokova M N, Abi-Aad E, et al. Effects of ozone on catalytic and physicochemical properties of Cu-Ce-Al-0 catalysts for soot combustion [J]. Kinetics and Catalysis,2003,44 (5):677-681.
    [230]Nomaguchi T, Koda S. Spark ignition of methane and methanol in ozonized air [J]. Symposium (International) on Combustion,1989,22 (1):1677-1682.
    [231]Halter F, Higelin P, Dagaut P. Experimental and Detailed Kinetic Modeling Study of the Effect of Ozone on the Combustion of Methane [J]. Energ Fuel,2011,25 (7):2909-2916.
    [232]Davis S G, Joshi A V, Wang H, et al. An optimized kinetic model of H2/CO combustion [J]. P Combust Inst,2005,30 (1):1283-1292.
    [233]Wang H, You X, Ameya V. Joshi, et al. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds, http://ignis.usc.edu/USC Mech Ⅱ.htm, date of last accessed:2012/07/10 [M].2007.
    [234]Stanczyk K, Howaniec N, Smolinski A, et al. Gasification of lignite and hard coal with air and oxygen enriched air in a pilot scale ex situ reactor for underground gasification [J]. Fuel,2011,90 (5):1953-1962.
    [235]Pinto F, Franco C, Andre R N, et al. Effect of experimental conditions on co-gasification of coal, biomass and plastics wastes with air/steam mixtures in a fluidized bed system [J]. Fuel,2003,82 (15-17):1967-1976.
    [236]Kumabe K, Hanaoka T, Fujimoto S, et al. Co-gasification of woody biomass and coal with air and steam [J]. Fuel,2007,86 (5-6):684-689.
    [237]Karatas H, Olgun H, Akgun F. Coal and coal and calcined dolomite gasification experiments in a bubbling fluidized bed gasifier under air atmosphere [J]. Fuel Process Technol,2013,106 (0):666-672.
    [238]Mastellone M L, Zaccariello L, Santoro D, et al. The O2-enriched air gasification of coal, plastics and wood in a fluidized bed reactor [J]. Waste Management,2012,32 (4):733-742.
    [239]Rigdon, Robert, Schmoe, et al. The IGCC Reference Plant [M]. Gasification Technologies Conference. San Francisco.2005.
    [240]Murai A, Yamabe C, Ihara S. A Study of Ozone Formation on the Surfaces of Electrodes [J]. Ozone:Science & Engineering,2010,32 (3):153-160.
    [241]Starik A M, Kozlov V E, Titova N S. On the influence of singlet oxygen molecules on the speed of flame propagation in methane-air mixture [J]. Combust Flame,2010,157 (2):313-327.
    [242]Yu CL, Wang C, Frenklach M. Eastern States Section, Combustion Institute Meeting.,1990.
    [243]Timonen R S, Ratajczak E, Gutman D, et al. The addition and dissociation reaction H+CO=HCO.2. Experimental studies and comparison with theory [J]. J Phys Chem,1987,91:5325.
    [244]Tsang W, Hampson R F. Chemical Kinetic Data Base for Combustion Chemistry. Part Ⅰ. Methane and Related Compounds [J]. J Phys Chem Ref Data 1986, 15:1087.
    [245]Warnatz J. Combustion Chemistry [M]. Springer-Verlag,1984.
    [246]Miyoshi A, Matsui H, Washida N. An average of the values determined for the isomeric reaction 0+CH3CO [J]. J Phys Chem,1989,93:5813.
    [247]Bartels M, Edelbuttel-Einhaus J, Hoyermann K.23rd Symp (Int'l) on Combustion.1990:131.
    [248]Davidson D F, Petersen E L, Rohrig M, et al.26th Symposium (Int'l) on Combustion.1996:481.
    [249]Dixon-Lewis G. Complex Chemical Reactions Systems. Mathematical Modelling and Simulation [M]. Berlin:Springer-Verlag,1987.
    [250]Sridharan W C, Qiu L X, Kaufman F. Kinetics and product channels of the reactions of perhydroxyl with oxygen and hydrogen atoms at 296 K [J]. J Phys Chem, 1982,86 (23):4569-4574.
    [251]Keyser L F, Absolute rate constant and branching fractions for the atomic hydrogen+hydroperoxyl radical reaction from 245 to 300 K [J]. J Phys Chem,1986, 90 (13):2994-3003.
    [252]Hippler H, Troe J, Willner J. Shock wave study of the reaction HO2+HO2→ H2O2+O2:Confirmation of a rate constant minimum near 700 K [J]. J Chem Phys, 1990,93:1755.
    [253]Michael J V, Sutherland J W. Rate constants for the reactions of hydrogen atom with water and hydroxyl with hydrogen by the flash photolysis-shock tube technique over the temperature range 1246-2297 K [J]. J Phys Chem,1988,92:3853.
    [254]W.B. DeMore, S.P. Sander, D.M. Golden, et al. JPL Publication,1997,97 (4): 1-266.
    [255]Burbano H J, Pareja J, Amell A A. Laminar burning velocities and flame stability analysis of H2/CO/air mixtures with dilution of N2 and CO2 [J]. Int J Hydrogen Energ,2011,36 (4):3232-3242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700