用户名: 密码: 验证码:
煤矸石、尾矿代粘土匹配低品位石灰石煅烧水泥熟料试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国水泥产量位居世界首位,生产水泥需大量粘土和石灰石,而开采这些资源会破坏植被,影响环境。大量弃置的煤矸石、尾矿则占用土地,污染环境,甚至诱发地质灾害。本文以拓宽水泥原料为研究背景,依托国家“十一五”科技支撑计划重点项目:“煤矸石资源化关键技术研究”,对煤矸石、尾矿、低品位石灰石煅烧水泥熟料进行试验研究和理论分析。
     本文根据新型干法回转窑煅烧水泥熟料理论,主要进行了实验室试验研究、理论分析和工业试验等方面的工作。实验室试验研究主要包括:(1)煤矸石、石灰石的粉磨试验研究,(2)煤矸石、石灰石、尾矿理化特性及热解分析,(3)熟料煅烧的影响因素试验研究,(4)水泥熟料水化性能分析。理论分析主要包括:(1)粉体颗粒群粒径分布、粉体紧密堆积模型研究以及粒度分维预测,(2)煤矸石、尾矿和石灰石的热解动力学机理研究,(3)水泥熟料强度预测模型研究,(4)煤矸石、尾矿配低品位石灰石煅烧水泥熟料形成机理分析。最后,在新型干法回转窑上进行部分工业试验以及效益分析。
     煤矸石、石灰石的粉磨试验发现煤矸石易磨性不如砂岩,配低品位石灰石的水泥生料在粉磨初期易磨性比配高品位石灰石生料稍差,到后期则相接近。粉磨数据进行粒径分布、粉体紧密堆积模型研究验证了试验结论。
     对煤矸石、尾矿、石灰石等进行理化特性分析,结果表明煤矸石和尾矿均属粘土类物质,其重金属含量均优于三级土壤标准和农用粉煤灰中污染物控制标准;研究他们的热解动力学发现,随着热解反应的进行,煤矸石、石灰石、尾矿所需的活化能增加,高品位石灰石热解所需活化能要高于低品位石灰石。
     熟料煅烧的影响因素试验研究结果表明:温度是决定熟料质量主要因素之一,试验中烧成温度不高于实际水泥生产温度;煤矸石含有一定热值,能促进水泥熟料的烧成;尾矿具有一定地质潜能,能加速煅烧进程;低品位石灰石的化学组成和晶格结构等与高品位石灰石的差异,能降低物料的分解温度,其与尾矿、煤矸石等配制水泥生料,容易进行固相反应。
     水泥熟料进行水化性能分析结果可知:随着水化进程的进行和水化龄期的延长,各种水化产物增加,最终成为渐进致密硬化的浆体结构。对熟料进行基于神经网络的熟料性能预测模型研究,建立了误差反向传播(Error Back Propagation, BP)改进模型和径向基函数(Radial-Basis Function, RBF)网络模型,利用煤矸石、尾矿和不同品位石灰石等作为原料配制水泥生料,采用在两个煅烧温度下的熟料所得的主要9个参数为预测模型输入数据,净浆28d强度作为期望输出数据,得出样本输出数据。结果表明,用神经网络的三种水泥熟料预测强度模型训练后的网络是可行的,而且RBF网络模型优于BP改进模型。
     对煤矸石、尾矿配低品位石灰石煅烧水泥熟料形成机理进行了研究。主要分析煤矸石、尾矿热活化过程的潜能来源,探讨煤矸石、尾矿、低品位石灰石具有热激发作用。提出了煤矸石、尾矿、低品位石灰石配料的熟料形成动力学理论模型,通过分析物料的CaO转化率和反应表观活化能等参数,表明煤矸石、尾矿、低品位石灰石在煅烧水泥熟料中具有节能作用。
     最后,在2500t/d新型干法回转窑水泥生产线上进行了煤矸石、低品位石灰石等煅烧水泥熟料和在5000t/d新型干法回转窑水泥生产线上进行煤矸石代粘土煅烧水泥熟料的工业试验研究,试验结果表明:两生产线可分别年增水泥56381t和280503t,熟料标煤耗每年分别降低3601t和8132t,节约电量分别为1488245kw.h和11351274kw.h,综合利用煤矸石可达29万t。
     本文研究工作为煤矸石、尾矿、低品位石灰石煅烧水泥熟料提供了技术和理论参考。
China is the largest cement producers in the word. It needs a lot of clay and limestone to manufacture cement. However, the environment has been influenced because clay and limestone have been exploited. A large number of tailings and coal gangue had been accumulated in the field, which not only took up our land, but also threatened our ecological environment. Facing to discover some new raw materials for cement production, and sponsored by the National Key Technologies R&D Program of China in11th-five-year ("key technology research on resource utilization for coal gangue"), this paper has carried out detailed experimental research and theory analysis on utilization of coal gangue, tailings as clay and mixed with low-grade limestone.
     Experimental research, theory analysis and industrial test are carried out according to the theory of cement clinker calcinations in new dry-process rotary kiln. The experimental research includes:(1) grinding experiment to coal gangue and limestone;(2) physical&chemical characters and thermal decomposition research for coal gangue, limestone and tailings;(3) experimental research of influential factors for cement clinker calcinations;(4) the hydration properties analysis to cement clinker. Theory analysis includes:(1) the model of closed packing and predicting fractal dimension for the distribution of particle sizes;(2) kinetics of thermal decomposition for coal gangue, limestone and tailings;(3) strength prediction models for cement clinker;(4) the formation mechanism on utilization of coal gangue and tailings as clay mixed with low-grade limestone for cement clinker calcinations. At last, some industrial test and efficiency analysis are carried out in the new dry-process rotary kiln on2500tons per day (t/d) and5OOOt/d.
     The grinding experiment found that the grindability of coal gangue is less than sandstone. The raw meal which is mixed with low-grade limestone has a lower grindability compared to that mixed with high-grade limestone in the initial stage, but has a similar grindability in the last stage. The theory analysis on the modeling of closed packing and predicting fractal dimension to particle sizes also verified the experimental conclusion.
     The analysis results of physical&chemical characters for coal gangue, limestone and tailings show that coal gangue and tailings are belong to the clay. The heavy metal components of coal gangue is prior to the third class standard of soil and the standard of pollution control on fly ash for agricultural use. The result of their thermal decompensate kinetics found that their activate energy are increased during their thermal decomposition, and activate energy of high-grade limestone is higher than that of low-grade limestone.
     Experimental research of influential factors for cement clinker calcinations showed that temperature is one of the main factors to the quality of clinker. The temperature of clinker sintering is below the temperature of actual production. Coal gangue contains certain calorie capacity which can improve clinker sintering. Tailings contain certain geological potentiality, and it can accelerate burning process. The chemical composition and lattice structure of low-grade limestone are different from that of high-grade limestone. The low-grade limestone can decrease the raw material's decomposition temperature. The material mixed with tailings, coal gangue and low-grade limestone is easy to happen solid state reaction.
     The result of hydration properties analysis found that hydration products increased with the time past, and it became cement paste structure finally. The predicted model of improved Error Back Propagation (BP) and Radial-Basis Function (RBF) were set up based on neural networks for cement clinker.9parameters as input datas for predicted model. The expected output datas came from cement paste for28days strength, and the datas of sample were obtained at last. The result showed that it is feasible for three prediction models on cement strength, and the network model of RBF is better to improved model of BP.
     The formation mechanism on utilization of coal gangue, tailings as clay and mixed with low-grade limestone was discussed. Potentials of coal gangue and tailings during their thermal-activation were analyzed. The functions of heat excitation were founded in coal gangue, tailings and low-grade limestone. The kinetic model was put forward to them. The kinetic parameters such as the conversion rate for calcium oxide and apparent activation energy. Experimental results showed that they can reduce energy consumption during cement clinker calcinations.
     Industrial tests were carried out in the new dry-process rotary kiln of2500t/d and5OOOt/d. The results showed that the two production lines can increase cement output56381tons (t) and280503t in every year. They can save3601t and8132t of the clinker standard coal consumption. The two powers can save1488245kw.h and11351274kw.h. Coal gangue can be used up to290OOOt in each year.
     The research in this paper provides a technical and theoretical basis for coal gangue, tailings, and low-grade limestone for cement clinker calcinations.
引文
[1]吴中伟,廉慧珍.高性能混凝土.北京:中国铁道出版社,1999.1-6.
    [2]沈威,黄文熙,闵盘荣.水泥工艺学.北京:中国建材工业出版社,1986.7.
    [3]刘志江.新型干法水泥技术.北京:中国建材工业出版社,2005.1.
    [4]建筑材料咨询研究组.建筑材料咨询报告.北京:中国建材工业出版社,2000.
    [5]Anon. Development and prospects of the Chinese cement industry. World cement.1993; 24(10):17-18.
    [8]2003年中国水泥工业经济运行分析.吉林建材.2004;(2):29-32.
    [9]中国水泥协会.2010中国水泥年鉴.北京:中国水泥协会出版社,2011.6.
    [10]国家统计局.2011中国统计年鉴.北京:中国统计出版社,2010.
    [11]王文龙.联产高硅硫铝酸盐水泥熟料的试验研究[博士学位论文].杭州:浙江大学;2004.4.
    [12]王燕谋,苏慕珍,张量.硫铝酸盐水泥.北京:北京工业大学出版社,1999.60.
    [13]Donggy Sohn and Thomas O. Mason. Electrically Induced Microstructural Changes in Portland Cement Pastes. Advn Cem Bas Mat,1998;7:81-88.
    [14]李立光.浅谈低碳经济趋势下建材工业的节能减排.水泥工程;2010,3:1-8.
    [15]张文生,叶家元.水泥工业低碳经济技术的现状与发展方向.新世纪水泥导报.2010;3:1-5.
    [16]裘国华,施正伦,余春江等.煤矸石代黏土煅烧水泥熟料配方优化试验研究.浙江大学学报(工学版).2010;2(44):316-319.
    [17]沈卫国,蔡智.浅谈水泥混凝土工业低二氧化碳排放技术.新世纪水泥导报.2008;(4):1-6.
    [18]Shimada K,Tanaka Y. Developing a long-term local society design methodology towards a low-carbon economy:An application to Shiga Prefecture in Japan[J]. Energy Policy,2007,(35):4688-4703.
    [19]施惠生,袁玲.生态水泥的研究与进展.建筑材料学报.2003;6(2):166-172.
    [20]蔡运龙,傅泽强,戴尔埠.区域最小人均耕地面积与耕地资源调控.地理学报.2002;57(2):127-134.
    [21]陈百明,陈安宁.中国农业资源现状与近期潜力评估资源科学.2000.22(2):1-7.
    [22]陈栋.浅谈石灰石资源的研究现状及发展前景.科技资讯.2011;9:96-97.
    [23]李良友,王洪有.王瑛.石灰石资源的开发利用.矿产综合利用.1998;12(8):43-48.
    [24]曾学敏.水泥工业能源消耗现状与节能潜力.中国水泥.2006;3:16-21.
    [25]汪澜.论水泥工业能源消耗控制战略.中国水泥.,2006;10:22-25.
    [26]毛玉如,沈鹏,李艳萍,等.基于物质流分析的低碳经济发展战略研究仁.现代化工.2008;(11):9-13.
    [27]张楠郭丽娟.我国水泥工业发展状况研究.赤峰学院学报.2009;25(2):129-131.
    [28]曹红葵.对水泥企业生产环境负荷之浅析新疆环境保护.2009;31(1):35-38.
    [29]陈超,胡耽,文秋霞等.中国水泥生产的物质消耗和环境排放分析.安徽农业科学.2007;35(28):8986-8989.
    [30]Huntxinger D.N,Eatmon T.D. A life-cycle assessment of Portland cement manufac-turing:comparing the traditional process with alternative technologies.Journalof Cleaner Production.2009;(17):668-675.
    [31]何琼.中国能源安全问题探讨及对策研究.中国安全科学学报.2009;19(6):52-57.
    [32]毛健雄,毛健全,赵树民.煤的清洁燃烧.北京:科学出版社.1998.
    [33]http://www.bp.com/bodycopyarticle.do?categoryId=1&contentId=7052055]www.bp. com. Statistical Review of World Energy 2011..
    [34]曾学敏.水泥工业能源消耗现状与节能潜力.中国水泥.2006:3:16-21.
    [35]国家统计局,环境保护部.2010中国环境年鉴.北京:中国统计出版社,2011.
    [36]中华人民共和国环境保护部.2010中国环境状况公报[EB].http://www.mep.gov.cn/gzfw.
    [37]中华人民共和国环境保护部.2009中国环境状况公报[EB].http://www.mep.gov.cn/gzfw.
    [38]朱教群.中国水泥工业的可持续发展.山东建材.2001;(6):34-37.
    [39]Despo Fatta, Achilleas Papadopoulos, Nikos Stefanakis, Maria Loizidou and Chrysanthos Savvides. An Alternative Method for the Treatment of Waste Produced at a Dye and a Metal-Plating Industry Using Natural and, or Waste Materials. Waste Manage Re.2004; 22:234-239
    [40]Asokan Pappu, Mohini Saxena, Shyam R. Asolekar. Solid wastes generation in India and their recycling potential in building materials. Building and Environment.2007; (42):2311-2320.
    [41]M. Benzaazoua, P. Marion, I. Picquet, B. Bussiere. The use of pastefill as a solidification and stabilization process for the control of acid mine drainage. Mincral Engineering.2004; (17):233-243.
    [42]Filip Kokalj, Niko Samec and Bernardka Juri. Utilization of bottom ash from the incineration of separated wastes as a cement substitute. Waste Manage Re.2005;23:468-472
    [43]Guohua Qiu, Weiqiang Zeng, Zhenglun Shi, Mengxiang Fang, Zhongyang Luo. The Physical and Chemical Properties of Fly Ash from Coal Gasification and Study on its Recycling Utilization.2010 International Conference on Digital Manufacturing & Automation.738-741.
    [44]江旭吕.水泥同转窑川煤技术的进步及其燃烧器的发展.新世纪水泥导报.2002;(4):2427.
    [45]陈全德.新型干法水泥技术原理与应用.第1版.北京:中国建材工业出版社,2004.
    [46]刘龙.水泥煅烧技术及设备立窑篇.武汉:武汉理工大学出版社,2006.12.
    [47]Anon.150th anniversary of Portland cement. Cement technology,1974; 5(5):417-421.
    [48]张保生.新型干法水泥回转窑中低品位燃料燃烧特性和窑内燃烧过程研究[博士学位论文].杭州:浙江大学.2007.
    [49]A. Zabaniotou. C. Theofilou. Green energy at cement kiln in Cyprus Use of sewage sludge as a conventional fuel substitute Renewable and Sustainable. Energy Reviews,2008; (12):531-541.
    [50]雷前治.张建新.甲子沧桑书巨变盛世水泥铸辉煌(上)—写在中华人民共和国成立60年之际.中国水泥.2009;9:9-16.
    [51]Zhengwu Jiang, Zhenping Sun, Peiming Wang. Autogenous relative humidity change and autogenous shrinkage of high-performance cement pastes. Cement and Concrete Research.2005; (35):1539-1545.
    [52]李化建.煤矸石的综合利用.北京:化学工业出版社,2010.5.
    [53]许泽胜,杨巧文,王新国等.煤矸石的分类及其综合利用.中国环保产业.2001;7(增刊):24-26.
    [54]张长森.煤矸石资源化综合利用新技术.北京:化学工业出版社,2008.
    [55]王国平,孙传敏.浅论煤矸石资源化及其分类.煤炭经济研究.2004;(5):19-20.
    [56]冯琼.煅烧制度对煤矸石结构性能的影响西安建筑科技大学硕论学位论文2010.常允新,朱学顺,宋长斌,卫政润.煤矸石的危害与防治.中国地质灾害与防治学报.2001;12(2):39-43.
    [57]Giovanni Dotelli, Paolo Gallo Stampino, Luca Zampori, Isabella Natali Sora, Renato Pelosato. Immobilization of organic pollutants in cement pastes admixed with organophilic materials. Waste Management&Research.2008; 26:515-522.
    [58]常允新,朱学顺,宋长斌,卫政润.煤矸石的危害与防治.中国地质灾害与防治学报.2001;12(2):39-43.
    [59]刘迪.煤矸石的环境危害及综合利用研究.气象与环境学报.2006;22(3):60-62.
    [60]Giovanni Dotelli, Paolo Gallo Stampino, Luca Zampori, Isabella Natali Sora, Renato Pelosato. Immobilization of organic pollutants in cement pastes admixed with organophilic materials. Waste Management&Research.2008; 26:515-522.
    [61]江洪清.煤矸石对环境的危害及其综合治理与利用.煤炭加工与综合利用.2003;3:43-46.
    [62]冷发光.煤矸石综合利用的研究与应用现状.四川建筑科学研究.2000;26(2):44-46.
    [63]敬毅.煤矸石引发的环境问题及其综合利用现状.露天采矿技术.2008;4:64-66.
    [64]关博文,刘开平,赵秀峰等.煤矸石资源化再利用研究.煤炭转化,2008;31(1):89-96.
    [65]Bingqiang Han, Nan Li. Preparation of β-SiC/Al2O3 Composite from Kaolinite Gangue by Carbothermal Reduction. Ceramics International.2005;(31):227-231.
    [66]何恩广,王晓刚.陈寿田.用硅质煤矸石合成SiC的研究.硅酸盐学报.2001;(1):72-79.
    [67]万隆,刘元锋,卢志安等.溶胶-凝胶和碳热还原法合成碳化硅晶须的研究.硅酸盐学报.2002;(1):5-8.
    [68]王晓刚,陈维,陈寿田.煤矸石与烟煤合成β-SiC研究.煤炭学报.1998;(3):327-331.
    [69]董莉鹏,王海娟,王习东等.煤矸石还原氮化制备β-sialon复合陶瓷材料的研究.中国稀土学报.2006;(10):325-328.
    [70]杨中正,钟香崇.矾土、煤矸石烧结合成莫来石过程的相组成和显微结构研究.矿产综合用.2006;(6):31-34.
    [71]王翠萍.煤矸石在水泥工业中的应用.山西煤炭管理干部学院学报.2006;2:88-89.
    [72]Guohua Qiu, Weiqiang Zeng, Zhenglun Shi, Leming Cheng, Zhongyang Luo. Recycling Coal Gangue as Raw Material for Portland Cement Production in Dry Rotary Kiln.2010 International Conference on Digital Manufacturing & Automation.141-144.
    [73]杨凤玲,严生.低温合成煤矸石水泥的研究.水泥工程.2006;6:16-37.
    [74]刘连成,周虹彬.低温合成煤矸石水泥.新型建筑材料.2007;5:4-6.
    [75]孟宪民,仇是胜,高西峰.从煤矸石中提取氧化铝.中国物资再生.1999;5:10-11.
    [76]赵振民,张文栋,李永生.采用加压工艺用煤矸石生产硫酸铝.煤炭加工与综合利用.1999;(1):23-24.
    [77]崔莉,杨凤玲,程芳琴.煤矸石综合利用制取絮凝剂的研究.科技情报开发与经济.2005;15(8):177-178.
    [78]张宝军,杨建国.利用煤矸石生产聚合氯化铝的研究.再生资源研究.2001;4:28-30.
    [79]刘圣勇.煤矸石制取聚合氯化铝原理及工艺.环境保护科学.1997;23(1):43-45.
    [80]马艳然,于伯蕖,鲁秀国.从煤矸石中制备聚合氯化铝及应用研究.化学世界.2004;(2):63-65.
    [81]Matthias Achternbosch. Klaus-Rainer Brautigam, Nicola Hartlieb, Christel Kupsch, Ulf Richers, Peter Stemmermann. Impact of the use of waste on trace element concentrations in cement and concrete. Waste Manage Re.2005;23:328-337.
    [82]李琦,孙根年,韩亚芬等.我国煤矸石资源化再生利用途径的分析.煤炭转化.2007;30(1):78-82.
    [83]刘汝海,王起超,刘景双.东北地区煤矸石环境危害及对策.地理科学.2002;22(1):110-113.
    [84]徐友宁,袁汉春,何芳等.煤矸石对矿山环境的影响及其防治.中国煤炭.2004;30(2):50-52.
    [85]张庆玲.用煤砰石研制有机复合肥料.煤炭加工与综合利用.1996;(1):29-30.
    [86]初日明.煤矸石综合利用的新领域--煤矸石微生物肥料.煤矿环境保护.1997;11(3):53-55.
    [87]赵武,霍成立,刘明珠等.有色金属尾矿综合利用的研究进展.中国资源综合利用.2011;29(3):24-28.
    [88]张锦瑞等.金属矿山尾矿综合利用与资源化.北京:冶金工业出版社,2002,9.
    [89]国家统计局,环境保护局.2011中国环境统计年鉴.北京:中国统计出版社
    [90]李章大,周秋兰.我国尾矿利用现状及21世纪展望.1997;33(3):21-28.
    [91]张立诚,周连碧,敖宁.有色金属矿山复垦现状综述.土地资源.1999;(9):38-40.
    [92]徐宏达.我国尾矿库病害事故统计分析.工业建筑.2001;31(1):69-71.
    [93]徐凤平,周兴龙,胡天喜.我国尾矿资源利用现状及建议.云南冶金.2007,36(4):25-27.
    [94]Joan O.Grimalt. Miguel Ferrer.Enrique Macpherson.The mine tailing accident in Aznalcollar. The Science of The Total Environment.1999;242(1-3):3-11.
    [95]R.S.Sharma, T.S. Al-Busaidi. Groundwater pollution due to a tailingsdam. Engineering Geology,2001; 60 (l-4):235-244.
    [96]Elza Kovacs, William E.Dubbin, Janos Tamas.Influence of hydrology on heavy metal speciation and mobility in a Pb-Zn mine tailing.Environmental Pollution,2006;141(2):310-320.
    [97]L.Rodriguez, E.Ruizb, J.Alonso-Azcarate, J.Rincon. Heavy metal distributionandchemicalspeciationin tailings and soils around a Pb-Zn mine in Spain. Environmental Management,2009;90(2):1106-1116.
    [98]Bassak Mesci, Semra Qoruh,Osman Nuri Ergun. Leaching behaviour and mechanical properties of copper flotation waste in stabilized, solidified products. Waste Management&Research,2009; 27:70-77.
    [99]冯忠伟,宁发添,蓝桂密等.贵州某铅锌尾矿中铅锌硫的综合回收.金属矿山.2009;(4):157-164.
    [100]秦红彬,张海龙,徐利华等.钼尾矿中有价金属的提取与分离.金属矿山.2010;(5):175-178.
    [101]任浏祎,覃文庆,何小娟等.从锡石-多金属硫化矿尾矿中回收锡的浮选研究.矿冶工程.,2009;29(1):44-47.
    [102]卢友中.选冶联合工艺从钨尾矿及细泥中回收钨的试验研究.江西理工大学学报.2009;30(3):70-73.
    [103]Alexandra Courtin-Nomadede, Hubert Bril, Catherine Neel Jean-FranCOis Lenain. Arsenic in iron cements developed within tailings of a former metalliferous mine—Enguiales, Aveyron, France. Applied Geochemistry.2003;(18):395-408.
    [104]Ozlem Celik, Iffet Yakar Elbeyli, Sabriye Pi. Utilization of gold tailings as an additive in Portland cement. Waste Manage Re.2006;24:215-224.
    [105]R.C.K. Wong, J.E. Gillott, S. Law, M.J. Thomas, C.S. Poon. Calcined oil sands fine tailings as a supplementary cementing material for concrete. Cement and Concrete Research.2004; (34):1235-1242.
    [106]A. JANG, IN S. KIM. Solidification and stabilization of Pb, Zn, Cd and Cu in tailing wastes using cement and fly ash. Minerals Engineering.2000;(13):1659-1662.
    [107]C. Solisio, A. Loth, F. Veglio. Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobacillus ferrooxidans. Waste Management.2002; (22):667-675.
    [108]赵风清,倪文,王会君.利用铜尾矿制蒸养标准砖.矿业快报.2006;(4):34-36.
    [109]Mostafa Benzaazoua, Jean-Franois Fiset, Bruno Bussiere Mathieu Villeneuve. Benoit Plante.Sludge recycling within cemented paste backfill Study of the mechanical and leachability properties. Minerals Engineering.2006; (19):420-432.
    [110]匡敬忠,钟盛文.钨尾矿微晶玻璃的研究.金属矿山.2002(增):192-194.
    [111]Sanjay Kumar, Rakesh Kumar, Amitava Bandopadhyay.lnnovative methodologies for the utilisation of wastes from metallurgical and allied industries. Resources, Conservation and Recycling. 2006;(48):301-314..
    [112]吴振奎.应用铅锌尾矿煅烧水泥熟料.建材工业信息.2002;(5):30-31.
    [113]张国强.黄金尾矿在水泥中的资源化利用研究[博士学位论文].苏州:苏州大学,2009.
    [114]Isabelle Doye, Josee Duchesne. Neutralisation of acid mine drainage with alkaline industrial residues laboratory investigation using batch-leaching tests. Applied Geochemistry.2003; (18):1197-1213.
    [115]宣庆庚,朱建平,李东旭等.用铅锌尾矿制备中热水泥熟料的研究.硅酸盐通报.2007;26(5):929-934.
    [116]霍成立,刘明珠,赵武等.铝土矿选矿尾矿深加工及在PVC塑料中的应用.金属矿山.2010;(9):177-181
    [117]Surendra Roy, Govind R. Adhikari and Rama N. Gupta.Use of gold mill tailings in making bricks.a feasibility study. Waste Manage Re.2007;25:475182.
    [118]张立诚,周连碧,敖宁.有色金属矿山复垦现状综述.土地资源.1999;(9):38-40.
    [119]David A. Felleson. Iron Ore and Taconite Mine Reclamation and Revegetation Practices on The Mesabi Range in Northeastern Minnesota. Iron Ore and Taconite Mine Reclamation and Revegetation. 1999;5(5)1-6.
    [120]程琳琳,朱申红.国内外尾矿综合利用浅析.中国资源综合利用.2005;(11):30-32.
    [121]孙伟.有色金属矿山尾矿综合回收与利用.有色金属.1999;(3):44-47.
    [122]李良友,王洪有,王瑛.石灰石资源的开发利用.矿产综合利用.1998;(6):43-48.
    [123]左振军.三大因素调控水泥工业发展-我国水泥工业发展保障条件分析.中国水泥.2004;(10):30-34.
    [124]文俊强.石灰石粉作混凝土掺合料的性能研究及机理分析[博士学位论文].北京:中国建筑材料科学研究总院.
    [125]赵海晋,高建荣,阎冬.煤矸石掺加低品位石灰石煅烧高活性混合材的研究.建材技术与应用.2010;(1):4-6.
    [126]刘仁德,斯国朝,郦根南.新型干法回转窑煅烧低品位石灰石.水泥技术.2000;(5):35-38.
    [127]温长海,张继民.利用低品位石灰石生产优质水泥.四川水泥.1998;(2):30-32.
    [128]谢宏杰.低品位石灰石在水泥生产中的应用[硕士学位论文].长春:长春理工大学.
    [129]刘秉金.低品位石灰石的利用.中国建材.1988;(4):30-32.
    [130]Syvitski J P M ed. In Principles, Methods and Application of Paticle Size Analysis. New York: Combridge University Press.1991; 119-128.
    [131]Swithenbank J, Beer J M, Taylor D S. A laser diagnostic technique for the measurement of droplet and particle size distribution. Progress in Astronautics and Aeronautics.1977;53:421-447.
    [132]陈秀法,冯秀丽,刘冬雁等.激光粒度分析与传统粒度分析方法相关对比.青岛海洋大学学报(自然科学版).2002;(4):608-614.
    [133]胡小芳,夏靖,孟光月等.水泥颗粒的激光测试及数据特征分析.水泥.2001;(5):46-48.
    [134]张育才,林宗寿,周惠群等.不同粉磨方式矿粉颗粒特性的研究.武汉理工大学学报.2008;30(5):42-46.
    [135]吴成宝,段百涛.水泥粒度分布的分维评价研究.水泥.2007;(5):8-11.
    [136]W.B Fuller, S.E Thompson. The Laws of Prooportioning Concrete.American Mixtures Journal of the Sciety for Chemical Industry.1934;53:107-115.
    [137]乔龄山.水泥的最佳颗粒分布及其评价方法.水泥.2001;(8):1-5.
    [138]Horgan G W.Mathematical morphology for analyzing soil structure from images. European Journal of Soil Science.1998;49:161-173.
    [139]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征.科学通报.1993;38(20):1896-1899.
    [140]Katz A J, Thompson A H. Fractal Sandstone Proes:Implication for Conductivity and Pore Formation. Phys Rev Left.1985:54:1325-1328.
    [141]Mostafa Benzaazoua, Tikou Belem, Bruno Bussiere. Chemical factors that influence the performance of mine sulphidic paste backfill. Cement and Concrete Research.,2002; (32):1133-1144.
    [142]王拈生,傅圣勇.水泥新原料烧成新技术与新论.北京:中国科学技术出版社,1999.3:20.
    [143]徐扬.煤矸石代粘土配料煅烧水泥熟料试验研究[硕士学位论文].杭州:浙江大学,2008.
    [144]R.G. McGregor, D.W. Blowes.The physical, chemical and mineralogical properties of three cemented layers within sulfide-bearing mine tailings. Journal of Geochemical Exploration.2002; (76):195-207.
    [145]周宛瑜.灰渣资源化综合利用试验研究[硕士学位论文].杭州:浙江大学,,2010.
    [146]裘国华,徐扬,施正伦等.煤矸石代黏土生产水泥可行性分析.浙江大学学报(工学版).2010;44(5):1004-1008.
    [147]岳娟.煤矸石中重金属元素的形态及淋溶实验研究[硕士学位论文].西安:山西大学,2010.
    [148]Zhixun Lin. Mobilization and retention of heavy metals in mill-tailings from Garpenberg sulfide mines, Sweden. The Science of the Total Environment.1997; (198):13-31.
    [149]田采霞,郭保华.煤矸石堆对周围土壤中重金属元素的影响分析.矿业安全与环保.2007;34(3):23-26.
    [150]李淑强.不同气氛下煤矸石热解特性及热解动力学机理[硕士学位论文].重庆:重庆大学,2008.
    [151]吴玉芳.瑞士Mettler-Toledo公司的TGA/SDTA851e热天平简介[EB/OL]. http://combust.hit.edu.cn/ blog/userl/06S002050/archives/2006/6137.shtml.
    [152]Eugeniusz Mokrzycki, Alicja Uliasz-Bochenczyk. Quantification of hydrated cement products of blended cements in low and medium strength concrete using TG and DTA technique. Applied Energy. 2003; (74):95-100.
    [153]胡荣祖,史启祯.热分析动力学.北京:科学出版社,2001.
    [154]陈移峰.生物质与煤矸石混合热解与燃烧特性实验研究[专业硕士学位论文].重庆:重庆大学,2007;8.
    [155]李余增.热分析.北京:清华大学出版社,1987..
    [156]P.G. Ract, D.C.R. Espinosa, J.A.S. Tenorio. Determination of Cu and Ni incorporation ratios in Portland cement clinker. Waste Management.2003; (23):281-285.
    [157]QiuGuohua, Luo Zhongyang, Shi Zhenglun, Ni Mingjiang. Utilization of coal gangue and copper tailings as clay for cement clinker calcinations. Journal of Wuhan University of Technology-Mater. Sci. Ed. Dec.2011;(26):1205-1210.
    [158]郭伟,李东旭,陈建华等.煤矸石在热活化过程中的相组成和结构变化.材料科学与工程学报.2008;(2):205-207.
    [159]边炳鑫,解强,赵由才.煤系固体废弃物资源化技术.北京:化学工业出版社,2005.
    [160]M. Fall. M. Benzaazoua. S. Ouellet. Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill. Minerals Engineering.2005; (18):41-44.
    [161]陈尚迪.岩矿地质基础.北京:地质出版社,1985;(1):198-202.
    [162]Ali, M.M; Aqarwal, s.k; Mohan, K. Making use of limestone. World Cement,2005; 36(6):87-91.
    [163]王文龙.电厂煤粉炉直接联产高硅硫铝酸盐水泥熟料的试验研究[博士学位论文].杭州:浙江大学,2004.
    [164]陈友德,武晓萍.水泥预分解窑工艺与耐火材料技术.北京:化学工业出版社,2011.
    [165]W.-H. Choi, S.-R. Lee, J.-Y. Park. Cement based solidification stabilization of arsenic-contaminated mine tailings. Waste Management.2009; (29):1766-1771.
    [166]本斯迪德,巴恩斯 水泥的结构和性能.北京:化学工业出版社.2009.1.
    [167]V. Rahhal, R. Talero. Early hydration of portland cement with crystalline mineral additions [J]. Cement and Concrete Research,2005 (35):1285-1291.
    [168]Shi Tao-Xu Bi-wan-Shi Hui-sheng. The evolution of coal gangue (CG)-calcium hydroxide (CH)-gypsum-H2O system.Materials and Structures.2008; (41):1307-1314.
    [169]陈益民,许仲梓.高性能水泥制备和应用的科学基础.北京:化学工业出版社.2008.5.
    [170]R.H. Johnson, D.W. Blowes, W.D. Robertson, J.L. Jambor. The hydrogeochemistry of the Nickel Rim mine tailings impoundment, Sudbury, Ontario. Journal of Contaminant Hydrology.2000; (41):49-80.
    [171]Zehra Gulten Altin, Seyfettin Erturan and Abdulkadir Tepecik. Use of glazed ceramic waste as additive in mortar and the mathematical modelling of its strength. Waste Management&Research.2008; 26: 209-213
    [172]M. L. D. Gougar, B. E. Scheetz, D. M. Roy. Ettringite and C-S-H Portland cement phases for waste ion immobilization A review. Waste Management.1996;4(16):295-303
    [173]R.Vedalakshmi, A.Sundara Raj, S. Srinivasan, K. Ganesh Babu. Quantification of hydrated cement products of blended cements in low and medium strength concrete using TG and DTA technique. Thermochimica Acta.2003; (407):49-60.
    [174]高隽.人工神经网络原理及仿真实例.北京:机械工业出版社,2003.8.
    [175]韩力群.人工神经网络理论、设计及应用.北京:化学工业出版社,2007.9.
    [176]董长虹.Matlab神经网络与应用(第2版).北京:国防工业出版社,2007.9.
    [177]S. Igarashi, M. Kawamura, A. Watanabe Analysis of cement pastes and mortars by a combination of backscatter-based SEM image analysis and calculations based on the Powers model. Cement& Concrete Composites.2004; (26):977-985.
    [178]Dongxu Li, Xuyan Song, Chenchen Gong, Zhihua Pan. Research on cementitious behavior and mechanism of pozzolanic cement with coal gangue. Cement and Concrete Research.2006; (36): 1752-1759.
    [179]长沙有色冶金设计院.金属矿山尾矿综合利用.北京:冶金工业出版社,1979.12
    [180]Wenlong Wang, Wenlong Wang, Zhongyang Luo, Zhenglun Shi and Kefa Cen. Experimental study on cement clinker co-generation in pulverized coal combustion boilers of power plants. Waste Manage Re. 2006; 24:207-214
    [181]Zhengwu Jiang, Zhenping Sun, Peiming Wang. Internal relative humidity distribution in high-performance cement paste due to moisture diffusion and self-desiccation. Cement and Concrete Research.2006; (36):320-325.
    [182]马先伟,牛季收.煤矸石活性激发方法探讨.矿产综合利用.2008;(2):41-49.
    [183]Ayhan Kesimal, Erol Yilmaz, Bayram Ercikdi. Evaluation of paste backfill mixtures consisting of sulphide-rich mill tailings and varying cement contents. Cement and Concrete Research.2004; (34): 1817-1822.
    [184]Ayhan Kesimal, Erol Yilmaz, Bayram Ercikdi, Ibrahim Alp, Haci Deveci. Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill.Materials Letters. 2005; (59):3703-3709.
    [185]陈友德,武晓萍.水泥预分解窑工艺与耐火材料技术.北京:化学工业出版社,,2011.5.
    [186]傅圣勇,来正新.秦至刚.水泥烧成节能减排的探索-惰性Si02→活性[Si04]4-节能浅析.中国水泥.2008;9:49-53.
    [187]傅圣勇,来正新,秦至刚.水泥烧成节能减排的探索-CaO与Si02不匹配性到匹配性的节能方向.四川水泥.2012;1:28-36.
    [188]傅圣勇,俞寿苗,袁小琴等.拓开铜铅锌尾矿在水泥制造中的全面应用(一).四川水泥.2007;2:5-7.
    [189]K. Kolovos, S. Tsivilis, G. Kakali. The effect of foreign ions on the reactivity of the CaO SiO2-Al2O3-Fe2O3 system. Cement and Concrete Research.2002; (32):463-469.
    [190]王拈生,傅圣勇,杨国建.岩矿潜能与水泥节能-三谈小水泥节能的方向与途径.能源工程.1996;(1):17-23.
    [191]马宝国,田键.水泥热工过程与节能关键技术.北京:化学工业出版社.2009;10:P147.
    [192]Papadpkis V G. Experimental investigation and theoretical modeling of silica fume activity concrete. Cement and Concrete Research.1999:29:79-86.
    [193]刘宝元,崔恩书,张玉昌.尾矿配料的水泥熟料形成机理研究.中国建材科技.1995;4(3):10-18.
    [194]Zafer Utlu, Ziya Sogut, Arif Hepbasli etal.Energy and exergy analyses of a raw mill in a cement production. Applied Thermal Engineering.2006;26(17):2479-2489.
    [195]Guohua Qiu, Weiqiang Zeng, Zhenglun Shi, Leming Cheng, Zhongyang Luo. Recycling Coal Gangue as Raw Material for Portland Cement Production in Dry Rotary Kiln.2010 International Conference on Digital Manufacturing & Automation.141-144.
    [196]煤炭研究网.2011年水泥行业吨水泥利润接近50元[EB/OL][2012-6-17]. http://www.coalstudy. com /cn/Article/zxpd/dlzx/jc/201201/15835.html.
    [197]国家电网.嘉兴电力助部分农户享受农业生产用电电价[EB/OL][2012-6-17]. http://www.zj.sgcc. com.cn/zxzx/gsxw/201112/t20111201_35081.htm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700