用户名: 密码: 验证码:
在线拉曼分析系统关键技术研究与工业应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在线分析仪器越来越广泛地进入到工业过程的各个生产装置。它所提供的及时、准确的分析数据为稳定生产、优化操作、节能降耗起到了不可替代的作用。在线拉曼光谱分析具有可测量多种形态的样品、灵活的采样方式、无需样本预处理等优势,是过程分析技术(Process Analytical Technology, PAT)的重要组成。本文就在线拉曼技术中的多项关键技术进行了研究,开发了PX装置在线拉曼分析系统并投入工业应用,具体包括:
     1、在线拉曼分析系统中采用的背照式CCD阵列光谱仪具有干涉信号问题,本文提出了基于非特定荧光物质的干涉信号校正方法,并将其应用于某炼油厂催化重整装置的在线拉曼分析中。根据工业现场数据,与标准校正方法进行了对比,结果表明,随着仪器连续运行,光谱仪的部分特性发生改变,标准校正方法无法获得变化信息,未能实现对干涉信号的校正,本文提出的基于非特定荧光物质的干涉信号校正方法对干涉信号的去除更准确,并且能准确跟踪CCD固定模式的变化,对在线拉曼分析系统的长期稳定运行起到了重要作用。
     2、为了提高拉曼光谱基线校正的准确性,在现有方法的基础上提出了迭代加权最小二乘的基线校正算法。该算法将基线以多项式形式表示,将一阶微分计入加权系数,通过迭代求取加权最小二乘的方式得到基线方程,实现基线校正。结合仿真数据和实验数据的处理,结果表明:提出的算法在全谱范围内具有最低的光谱畸变;此外,相比其它多项式基线校正方法,该方法对多项式阶数选择的依赖程度最低。
     3、针对在线分析应用中的多类型定量分析问题,提出了一种结合支持向量机分类与回归的混合模型。由于光谱定量分析模型的准确度依赖于建模样本的选取,该模型对待测样本进行预分类,再选取局部样本建模分析属性值。应用该模型,对多类别汽油的辛烷值进行了拉曼光谱分析,实验对比结果验证了所提出模型的有效性。
     4、针对复杂体系中某特定组分的分析问题,在间接强建模方法的基础上,提出了扩展谱峰解析算法用于拉曼光谱的谱峰解析。该方法采用了Voigt函数快速算法,提高了最优化结果的稳定性;对于谱峰不存在非线性变化的组分光谱,直接以数值向量形式表示,降低了优化复杂度。同时通过迭代优化的方式将基线估计与谱峰解析分离,避免了高阶多项式参数优化可能带来的结果不一致。该方法已成功地应用于汽油中苯、甲苯含量的分析。实验结果表明,在少量建模样本下,扩展谱峰解析算法能有效提取特定组分的光谱特征,与光谱分析中常用的多元校正方法相比,大幅度提高了分析精度。
     5、以中石化镇海炼化PX装置模拟移动床色谱C8芳烃分离过程的在线拉曼分析仪为例,系统阐述在线拉曼光谱分析仪的工作原理、系统组成、模型分析方法与现场应用,并且给出了多个测量指标的现场实际运行趋势。在定量模型分析中,研究了C8芳烃混合物中各组分相对拉曼截面随浓度的变化规律,提出了基于扩展谱峰分解和拉曼截面校正的定量分析方法。该方法所需建模样本量少,与现有的PLS模型和基于恒定拉曼截面假设的多元线性回归方法相比具有更高的精度。该在线分析系统已在工业现场连续运行近一年,经现场连续运行表明,该在线拉曼仪具有分析速度快、分析精度高、维护工作量少等优势。其重复分析误差不超过±0.1%,各指标与标准色谱分析结果的误差不超过±0.5%,获得了用户的认可,并已经在厂方逐步取代常规气相色谱分析,为实现先进控制与实时优化提供关键测量信息。
Online analytical instruments are widely used in the industrial process. It provides timely and accurate analysis for optimizing operation, playing an irreplaceable role in saving energy. The capacity of online Raman spectroscopy to measure samples of a variety of forms with flexible sampling and without sample pretreatment makes it an important component of the Process Analytical Technology (PAT). In this thesis, several key technologies of online Raman technology are present; the development of online Raman system for the PX plants is described, which have been put into industrial applications. This thesis specifically including:
     1、Online Raman system using a back-illuminated CCD array spectrometer with interference signal, this thesis proposes a signal correction method based on the interference of non-specific fluorescent substance. The method was applied to monitoring an oil refinery catalytic reforming unit. In continuous operation, part of the characteristics of the spectrometer changed. The standard relative intensity correction method can not get the information and failed to achieve the correction of the interference signal, leading to the problem of spectrum distortion. The proposed interference signal correction method based on non-specific fluorescent substance can accurately track the changes, achieving an effective solution for on-line Raman system using back-illuminated CCD.
     2、A major problem in Raman spectroscopy is that the spectrum is often suffered from intrinsic fluorescence which is orders of magnitude greater than the Raman signal. Background subtraction is essential for further analysis, particularly for quantitative analysis using multivariate calibration. In this thesis, we propose a background removal algorithm which approximates the background by a polynomial and estimates the polynomial coefficients by iterative weighted least squares. The performance of the algorithm accompanied with two comparative methods are evaluated both on simulated and real Raman spectra. The results show that the proposed algorithm provides the best result using R2between the actual and extracted Raman peaks. It also improves the performance of background removal in quantitative Raman spectroscopy. Further more, the algorithm is least dependent on the choice of polynomial order.
     3、In the multivariate calibration, the model performance not only depends on the structure and parameters, but also influenced by the calibration sample distribution. In practical application, the calibration samples often distribute unevenly in space. Modeling based on the whole calibration set degrades the performance. To address the limitation, a new hybrid model based on support vector classification and regression is proposed in this thesis. The classification decision tree with the form of the binary tree is firstly built by least-squares support vector classifier; then the least-squares support vector regression is used to construct the regression model for each class. This model is applied to Raman spectral analysis of gasoline octane number. The result shows that the proposed model has greatly improved the accuracy of quantitative analysis.
     4、Based on Indirect hard modeling method, an extended peak resolution algorithm is proposed. A fast algorithm of the Voigt function is applied in the method, which improves the stability of the optimization results. By using numerical vector form for component spectrum without non-linear changes, it reduced the optimization complexity. Moreover, by alternating iterative optimization, the baseline estimation and peak resolution is separated, which improves the stability of parametric optimization with high order polynomial. The extended peak resolution algorithm is applied to Raman spectroscopy for quantitative analysis of benzene, toluene content in gasoline. The experimental results show that the proposed algorithm can effectively extract the spectral characteristics. Compared with the multivariate calibration methods, the proposed algorithm is of higher accuracy in quantitative analysis.
     5、Development of on-line Raman system for the PX plants and putting into industrial applications. For the online analysis of the PX plants in petrochemical factory, the thesis described details of the on-line Raman analyzer including the principle, system compostion, model-based analysis and field application. The quantative analysis of the mixture of C8aromatics components is based on the extended peak resolution algorithm. The on-line Raman analyzer has been successfully applied to the composition analysis of the C8aromatics at the feed of adsorption tower in PX plants. According to the result of field operation, the repeatability error does not exceed±0.1%and the accuracy is±0.5%, which fully meets the requirements of the adsorption and separation processes. Moreover, the factory is gradually replacing the conventional gas chromatographic analysis. The Raman analyzer provided key information for the real-time process optimization.
引文
Andersen C M, Bro R. (2010). Variable Selection in Regression-A tutorial. J. Chemometrics,24:728-737.
    Arguello C A, Mendes G F, Leite R C. (1974). Simple Technique to Suppress Spurious Luminescence in Raman Spectroscopy. Applied Optics,13(8):1731-1732.
    Alsmeyer F, Kob H J, Marquardt W. (2004a). Indirect Spectral Hard Modeling for the Analysis of Reactive and Interacting Mixtures. Appl. Spectrosc.,58(8):975-985.
    Alsmeyer F, Marquardt W. (2004b). Automatic Generation of Peak-Shaped Models. Appl. Spectrosc.,58(8):986-994.
    Bakeev K A. (2005). Process Analytical Technology. Oxford:Blackwell Publishing, 133-169.
    Balabin R M, Lomakina E I, Safieva R Z. (2011). Neural Network (ANN) Approach to Biodiesel Analysis:Analysis of Biodiesel Density, Kinematic Viscosity, Methanol and Water Contents Using Near Infrared (NIR) Spectroscopy. Fuel,92: 2007-2015.
    Barker M, Rayens W. (2003). Partial Least Squares for Discrimination. J. Chemometrics, 17:166-173.
    Barnes S, Gillian J, Diederich A, et al. (2005). In Process Monitoring of Polymorphic Form Conversion by Raman Spectroscopy and Turbidity Measurements. American Pharmaceutical Review, March/April:1-5.
    Bauer C, Amram B, Agnely M, et al. (2000). On-Line Monitoring of a Latex Emulsion Polymerization by Fiber-Optic FT-Raman Spectroscopy. Appl. Spectrosc., 54(4):528-535.
    Beattie J R, Glenn J V, Boulton M E, et al. (2009). Effect of Signal Intensity Normalization on the Multivariate Analysis of Spectral Data in Complex Real-World Datasets. J. Raman Spectrosc.,40(4):429-435.
    Bell S E J, Bourguignon E S O, Dennis A. (1998). Analysis of Luminescent Samples Using Subtracted Shifted Raman Spectroscopy. Analyst.123:1729-1734.
    Borin A, Ferrao M F, Mello C. (2006). Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk. Analytica Chimica Acta,579:25-32.
    Borysow J and Fink M. (2005). NIR Raman spectrometer for monitoring protonation reactions in gaseous hydrogen. Journal of Nuclear Materials,341:224-230.
    Brennan Ⅲ J F, Wang Y, Dasari R R, et al. (1997). Near-Infrared Raman Spectroscopy Systems for Human Tissue Studies. Appl. Spectrosc.,51(2):201-208.
    Bright F V, Hieftje G M. (1986). A New Technique for the Elimination of Fluorescence Interference in Raman Spectroscopy. Appl. Spectrosc.,40(5):583-586.
    Bruce S D, Higinbotham J, Marshall I, et al. (2000). An Analytical Derivation of a Popular Approximation of the Voigt Function for Quantification of NMR Spectra. Journal of Magnetic Resonance,142:57-63.
    Cai W S, Wang L Y, Pan Z X, et al. (2001). Application of Wavelet Transform Method in Quantitative Analysis of Raman Spectra. J. Raman Spectrosc.,32:207-209.
    Cai W S, Li Y K, Shao X G. (2008). A Variable Selection Method Based on Uninformative Variable Elimination for Multivariate Calibration of Near-Infrared Spectra. Chemometr. Intell. Lab. Syst.,90:188-194.
    Campion A, Woodruff W H. (1987). Multichannel Raman Spectroscopy. Anal. Chem., 59(22):1299A-1308A.
    Candolfi A, Maesschalck R De, Massart D L, et al. (1999). Identification of Pharmaceutical Excipients Using NIR Spectroscopy and SIMCA. Journal of Pharmaceutical and Biomedical Analysis,19:923-935.
    Cao A, Pandya A K, Serhatkulu G K, et al. (2007). A Robust Method for Automated Background Subtraction of Tissue Fluorescence. J. Raman Spectrosc.,38: 1199-1205.
    Chang S Y, Baughman E H, Mclntosh B C. (2001). Implementation of Locally Weighted Regression to Maintain Calibrations on FT-NIR Analyzers for Industrial Processes. Appl. Spectrosc.,55:1199-1206.
    Chase D B. (1986). Fourier Transform Raman Spectroscopy, J. Am. Chem. Soc., 108:7485-7488.
    Chauvel J P, Henslee W W and Melton L A. (2002). Teaching Process Analytical Chemistry. Anal. Chem.,74:381-384.
    Choquette S J, Chesler S N, Duewer D L. (1996). Identification and Quantitation of Oxygenates in Gasoline Ampules Using Fourier Transform Near-Infrared and Fourier Transform Raman Spectroscopy. Anal. Chem.,68:3526-3533.
    Choquette S J, Etz E S, Hurst W S, et al. (2007). Relative Intensity Correction of Raman Spectrometers:NIST SRMs 2241 Through 2243 for 785 nm,532 nm, and 488 nm/514.5 nm Excitation. Appl. Spectrosc.,61(2):117-129.
    Cooper J B, Wise K L,Groves J, Welch W T. (1995a). Determination of Octane Numbers and Reid Vapor Pressure of Commercial Petroleum Fuels Using FT-Raman Spectroscopy and Partial Least-Squares Regression Analysis. Anal. Chem.,67:4096-4100.
    Cooper J B, Flecher P E, Vess T M, Welch W. (1995b). Remote Fiber-optic Raman Analysis of Xylene Isomers in Mock Petroleum Fuels Using a Low-Cost Dispersive Instrument and Partial Least-Squares Regression Analysis. Appl. Spectrosc. 49(5):586-592.
    Cooper J B, Wise K L, Welch W T, et al. (1996). Determination of Weight Percent Oxygen in Commercial Gasoline:A Comparison between FT-Raman, FT-IR, and Dispersive Near-IR Spectroscopy. Appl. Spectrosc.50(7):917-921.
    Cooper J B, Wise K L, Welch W T, Sumner M B, et al. (1997). Comparison of Near-IR, Raman, and Mid-IR Spectroscopies for The Determination of BTEX in Petroleum Fuels. Appl. Spectrosc.51(11):1613-1620.
    Cooper J B. (1999). Chemometric Analysis of Raman Spectroscopic Data for Process Control Application. Chemom. Intell. Lab. Syst.46:231-247.
    Dearing T I, Thompson W J, Rechsteiner C E. (2011). Characterization of Crude Oil Products Using Data Fusion of Process Raman, Infrared, and Nuclear Magnetic Resonance (NMR) Spectra. Appl. Spectrosc.,65(2):181-186.
    Du Y P, Liang Y Z, Jiang J H, Berry R J, Ozaki Y. (2004). Spectral Regions Selection to Improve Prediction Ability of PLS Models by Changeable Size Moving Window Partial Least Squares and Searching Combination Moving Window Partial Least Squares. Analytica Chimica Acta,501:183-191.
    Ehrentreich F, Summchen L. (2001). Spike Removal and Denoising of Raman Spectra by Wavelet Transform Methods. Anal. Chem.,73:4367-4373.
    Estiene F, Massart D L, Zanier-Szydlowski N, Marteau Ph. (2000). Multivariate Calibration with Raman Spectroscopic Data:a Case Study. Analytica Chimica Acta,424:185-201.
    Faraji H, MacLean W J. (2006). CCD Noise Removal in Digital Image. IEEE Transactions on Image Processing,15(9):2676:2685.
    Favors R N, Jiang Y, Loethen Y L, et at. (2005). External Raman Standard for Absolute Intensity and Concentration Measurements. Rev. Sci. Instrum.,76,033108.
    Feld M S, Fisher D O, Freeman J F, et al. (1991). Apparatus for preparing phosphorus trichloride. US Patent:5260026.
    Ferraro J R, Nakamoto K, Brown C W. (2003). Introductory Raman Spectroscopy, Second Edition. San Diego:Academic Press,22-25.
    Flecher P E, Cooper J B, Vess T M, Welch W. (1996). Remote Fiber Optic Raman Analysis of Benzene, Toulene, and Ethylbenzene in Mock Petroleum Fuels Using Partial Least Squares Regression Analysis. Spectrochimica Acta Part A,52: 1235-1244.
    Flecher P E, Welch W T, Albin S, Cooper J B. (1997). Determination of Octane Numbers and Reid Vapor Pressure in Commercial Gasoline Using Dispersive Fiber-optic Raman Spectroscopy. Spectrochimica Acta Part A,53:199-206.
    Forster D. (1975). Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions, Frontiers in Physics:A Lecture Note and Reprint Series, MA:W. A. Benjamin Inc.
    Friedman J M, Hochstasser R M. (1975). The Use of Fluorescence Quenchers in Resonance Raman Spectroscopy. Chem. Phys. Lett.,33(2):225-227.
    Frost K J, McCreery R L (1998). Calibration of Raman Spectrometer Instrument Response Function with Luminescence Standards:An Update. Appl. Spectrosc., 52(12):1614-1618.
    Fryling M, Frank C J, McCreery R L. (1993). Intensity Calibration and Sensitivity Comparisons for CCD/Raman Spectrometers. Appl. Spectrosc.,47(12): 1965-1974.
    Goldman D S. (2000). Encyclopedia of Analytical Chemistry. New York:John Wiley & Sons,8256-8263
    Gresham C A, Gilmore D A, Denton M B. (1999). Direct Comparison of Near-infrared Aborbance Spectroscopy with Raman Scattering Spectroscopy for the Quantitative Analysis of Xylene Isomer Mixtures. Appl. Spectrosc., 53(10):1177-1182.
    Groom D E, Holland S E, Levi M E, et al. (1999). Quantum Efficiency of a Back-illuminated CCD Imager:an Optical Approach. Proc. SPIE,3649,80
    Gurden S P, Westerhuis J A, Smilde A K. (2002). Monitoring of batch processes using spectroscopy. AIChE Journal,48(10):2283-2289.
    Hansen S B, Berg R W, Stenby E H. (2000). Determination of Methyl Tertiary Butyl Ether (MTBE) in Gasoline by Raman Spectroscopy. Asian Chem. Letters, 4(1-2):65-74.
    Harz M, Kiehntopf M, Stockel S, et al. (2008). Analysis of Single Blood Cells for Diagnostics via a Combination of Fluorescence Staining and Micro-Raman Spectroscopy. Analyst,133:1416-1423.
    Huy N Q, Jouan M and Dao N Q. (1993). Use of a Mono-fiber Optrode in Remote and in Situ Measurements by the Raman/Laser/Fiber Optics (RLFO) Method. Appl. Spectrosc.,47(12):2013-2016.
    Ivanciuc O. (2008). Applications of support vector machine in chemistry. Reviews in Computational Chemistry,23:290-400.
    Janesick J R. (2001). Scientific Charge-Coupled Devices. Washington:SPIE Press.
    Jiang Y, Jedrkiewicz O, Minardi S, et al. (2003). Retrieval of Spatial Shot-Noise in the Full Dynamic Range of Calibrated CCD Cameras. Eur. Phys. J. D.,22:521-526.
    Kachrimanis K, Braun D E, Griesser U. (2007). Quantitative Analysis of Paracetamol Polymorphs in Powder Mixtures by FT-Raman Spectroscopy and PLS Regression. J. Pharm. Biomed. Anal.,43:407-412.
    Keresztury G. (2002). Raman Spectroscopy:Theory. New York:John Wiley & Sons, 1:4.
    Kirillov S A. (2004). Novel Approaches in Spectroscopy of Interparticle Interactions. Raman Line Profiles and Dynamics in Liquids and Glasses. Journal of Molecular Liquids,110:99-103.
    Kriesten E, Mayer D, Alsmeyer F, et al. (2008). Identification of Unknown Pure Component Spectra by Indirect Hard Modeling. Chemom. Intell. Lab. Syst., 93:108-119.
    Leardi R, Norgaard L. (2004). Sequential application of backward interval partial least squares and genetic algorithms for the selection of relevant spectral regions. Journal of Chemometrics,18:486-497.
    Letchworth K L; Benner D C. (2007). Rapid and Accurate Calculation of the Voigt Function. Journal of Quantitative Spectroscopy & Radiative Transfer, 107:173-192.
    Lewis I R, Edwards H G M. (2001). Handbook of Raman Spectroscopy. New York: Marcel Dekker,926-978.
    Li C, Stair P C. (1997). Ultraviolet Raman Spectroscopy Characterization of Coke Formation in Zeolites. Catalysis Today,33:353-360.
    Lieber C A, Mahadevan-Jansen A. (2003). Automated Method for Subtraction of Fluorescence from Biological Raman Spectra. Appl. Spectrosc.,57(11): 1363-1368.
    Lin-Vien D, Colthup N B, Fateley W G and Grasselli J G. (1991). The handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Boston: Academic Press.
    Limandri S P, Bonetto R D, Rocco H O Di, et al. (2008). Fast and Accurate Expression for the Voigt Function. Application to Determination of Uranium M Linewidths. Spectrochimica Acta Part B,63:962-967.
    Lipkowitz K B, Cundari T R, Ivanciuc O. (2007). Applications of Support Vector Machines in Chemistry. Reviews in Computational Chemistry, Vol 23, New York: John Wiley & Sons.
    Lipp E D and Grosse R L. (1998). On-Line Monitoring of Chlorosilane Streams by Raman Spectroscopy. Appl. Spectrosc.,52(1):42-46.
    Liu X, Smith M E, Tse S D. (2010). In Situ Raman Characterization of Nanoparticle Aerosols During Flame Synthesis. Appl. Phys. B,100:643-653.
    Long D A. (1977). Raman Spectroscopy. New York:McGraw-Hill.
    Loudon R. (2000). The Quantum Theory of Light,3rd. Oxford:Oxford University Press.
    MacDonald A M, Wyeth P. (2006). On the Use of Photo Bleaching to Reduce Fluorescence Background in Raman Spectroscopy to Improve the Reliability of Pigment Identification on Painted Textile. J. Raman Spectroscopy,37(8):830-835.
    Maddams W F. (1980). The Scope and Limitaion of Curve Fitting. Appl. Spectrosc., 34(3):245-267.
    Magnan P. (2003). Detection of Visible Photons in CCD and CMOS:A Comparative View. Nuclear Instruments and Methods in Physics Research A,504:199-212.
    Marteau P, Zanier-Szydlowski N, Aoufi A, et al. (1995). Remote Raman Spectroscopy for Process Control. Vibrational Spectroscopy,9:101-109.
    Martyshkin D V, Ahuja R C. (2004). Effective Suppression of Fluorescence Light in Raman Measurements Using Ultrafast Time Gated Charge Coupled Device Camera. Rev. Sci. Instrum.,75(3):630-635.
    Marschal A G, Verdun F R. (1990). Fourier Transforms in NMR, Optical, and Mass Spectroscopy, Amsterdam:Elsevier.
    Matousek P, Towrie M, Stanley A, et al. (1999). Efficient Rejection of Fluorescence from Raman Spectra Using Pico-Second Kerr Gating. Appl. Spectrosc., 53(12):1485-1489.
    Matousek P and Morris M D. (2010). Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields. New York:Springer,1-24.
    Mazet V, Carteret C, Brie D, et al. (2005). Background Removal From Spectra by Designing and Minimising a Non-quadratic Cost Function. Chemom. Intell. Lab. Syst.,76:121-133.
    McCain S. T., Willett R. M, Brady D. J. (2008). Multi-excitation Raman Spectroscopy Technique for Fluorescence Rejection. Optics Express,16(15):10975-10991.
    McCreery R L. (2000). Raman Spectroscopy for Chemical Analysis. New York:John Wiley & Sons,1-13.
    McShane M J. Cameron B D, Cote G L, et al. (1999). A Novel Peak-hopping Stepwise Feature Selection Method With Application to Raman Spectroscopy. Analytical Chimica Acta,388:251-264.
    Meier R J. (2005). On Art and Science in Curve-Fitting Vibrational Spectra. Vibrational Spectroscopy.39:266-269.
    Melendez Y, Schrum K F, Ben-Amotz D. (1997). Quantitation of Poly(ethylene glycol) Concentration Using Raman Spectroscopy. Appl. Spectrosc.,51(8):1176-1178.
    Mitra V, Wang C J, Banerjee S. (2007). Text Classification:A Least Square Support Vector Machine Approach. Applied Soft Computing,7:908-914.
    Monni J, Niemela, Alvila L, et al. (2008). Online monitoring of synthesis and curing of phenol-formaldehyde resol resins by Raman spectroscopy. Polymer, 49:3865-3874.
    Moreno T, Lopez M A M, Illera I H, et al. (2011). Quantitative Raman Determination of Hydrogen Peroxide Using the Solvent as Internal Standard:Online Application in The Direct Synthesis of Hydrogen Peroxide. Chemical Engineering Journal, 166:1061-1065.
    Mosier-Boss P A, Lieberman S H, Newbery R. (1995). Fluorescence Rejection in Raman Spectroscopy by Shifted-Spectra, Edge Detection, and FFT Filtering Techniques. Appl. Spectrosc.49(5):630-637.
    Murray C A, Dierker S B, Legrange J D, Schlotter N E. (1987). Characterization of order in langmuir-blodgett monolayers by unenhanced Raman spectroscopy. Chem. Phys. Lett.,137(5):453-457.
    Norgaard L, Saudland A, Wagner J, et al. (2000). Interval Partial Least-Squares Regression (iPLS):A Comparative Chemometric Study with an Example from Near-Infrared Spectroscopy. Appl. Spectrosc.,54(3):413:419.
    O'Grady A, Dennis A C, Denvir D, et al. (2001). Quantitative Raman Spectroscopy of Highly Fluorescence Samples Using Pseudosecond Derivatives and Multivariate Analysis. Anal. Chem.,73(9):2058:2065.
    Paepe A T G De, Dyke J M, Hendra P J, et al. (1997). The Use of Reference Materials in Quantitative Analysis Based on FT-Raman Spectroscopy. Spectrochimica Acta Part A,53:2267-2273.
    Pelletier M J. (1999). Analytical Application of Raman Spectroscopy. Oxford:Blackwell, 193:222.
    Pelletier M J. (2003). Quantitative Analysis Using Raman Spectrometry. Appl. Spectrosc.,57(1):20A-42A.
    Piccinini M, Fois S, Secchi, et al. (2012). The Application of NIR FT-Raman Spectroscopy to Monitor Starch Retrogradation and Crumb Firmness in Semolina Bread. DOI:10.1007/s12161-011-9360-8.
    Placzek G. (1934). Rayleigh-Streuung und Raman-Effekt in Handbuch der Radiologie, Leipzig:Acadeische-Verlag, E. Maarx, Ed.,6:205-374.
    Polat K, Gunes S. (2007). Breast Cancer Diagnosis Using Least Square Support Machine. Digital Signal Process,17:694-701.
    Quintero L, Matthaus C, Hunt S, Diem M. (2010). Denoising of Single Scan Raman Spectroscopy Signal. Proc. Of SPIE,7568,17-1.
    Rank D H, Scott R W, Fenske M R. (1942). Qualitative and Quantitative Analysis of Hydrocarbon Mixtures by Means of Their Raman Spectra. Industrial and Engineering Chemistry,14(10):816-819.
    Raman C V and Krishnan K S. (1928). A New Type of Secondary Radiation. Nature, 121:501-502.
    Ramos P M, Ruisanchez I, (2005). Noise and Background Removal in Raman Spectra of Ancient Pigments Using Wavelet Transform.J. Raman Spectrosc.,36:848-856.
    Ray K G, McCreery R L, (1997). Simplified Calibration of Instrument Response Function for Raman Spectrometers Based on Luminescent Intensity Standards. Appl. Spectrosc.51(1):108-116.
    Rocco H O DI, Iriarte D I, Pomarico J. (2001). General Expression for the Voigt Function that is of Special Interest for Applied Spectroscopy. Appl. Spectrosc., 55(7):822-826.
    Rodriguez J D, Westenberger B J, Buhse L F. (2011). Standardization of Raman Spectra for Transfer of Spectral Libraries Across Different Instruments. Analyst,136: 4232-4240.
    Rowlands C, Elliott S. (2011). Automated Algorithm for Baseline Subtraction in Spectra. J. Raman Spectrosc.,42:363-369.
    Saerens L, Dierickx L, Lenain B, et al. (2011). Raman Spectroscopy for The In-line Polymer-drug Quantification and Solid State Characterization During a Pharmaceutical Hot-melt Extrusion Process. European Journal of Pharmaceutics and Biopharmaceutics,77:158-163.
    Saleh B E A, Teich M C. (1991). Fundamentals of Photonics, New York:John Wiley & Sons.
    Santos V O,Oliveira F C C, Lima D G. (2005). A comparative study of diesel analysis by FTIR, FTNIR and FT-Raman spectroscopy using PLS and artificial neural network analysis. Analytica Chimica Acta,547(2):188-196.
    Savitzky A, Golay M J E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem.,36(8):1627-1639.
    Schulze G, Jirasek A, Yu M M L, et al. (2005). Investigation of Selected Baseline Removal Techniques as Candidates for Automated Implementation. Appl. Spectrosc.59(5):545:574.
    Shao X G, Leung A K M,Chau F T. (2003). Wavelet, A New Trend in Chemistry. Acc. Chem. Res.,36:276-283.
    Shreve A P, Cherepy N J, Mathies R A. (1992). Effective Rejection of Fluorescence in Raman Spectroscopy Using a Shifted Excitation Difference Technique. Appl. Spectrosc.,46(4):707-710.
    Smekal A. (1923). Zur Quantentheorie Der Dispersion. Naturwiss.,11:873.
    Smit H C. (1990). Specification and estimation of noisy analytical signals:Part Ⅰ. Characterization, time invariant filtering and signal approximation. Chemom. Intell.Lab.Syst.,8(1):15-27.
    Stellman C M, Bucholtz F. (1998). Suppression of Fluorescence Interference via Wavelength Shift-keyed Raman Spectroscopy Using an Argon Ion Laser and Acousto-optic Tunable Filter. Spectrochimica Acta Part A,54(8):1041-1047.
    Suykens J A K, Vandewalle J. (1999). Least Squares Support Vector Machine Classifiers. Neural Processing Letters,9(3):293-300.
    Suykens J A K, Van Getel T, de Brabanter J, et al. (2002). Least-Squares Support Vector Machines. Singapore:World Scientific.
    Szostak R, Mazurek S. (2009). Simple Transformation of Spectra to Effectively Reduce Quantification Errors in FT-Raman Multivariate Analysis of Complex Systems. Vibrational Spectroscopy,49:298-302.
    Tan H W, Brown S, (2002). Wavelet Analysis Applied to Removing Non-constant Varying Spectroscopy Background in Multivariate Calibration. J. Chemometrics, 16:228-240.
    Tan S. (2006). An Effective Refinement Strategy for KNN Text Classifier. Expert Systems with Application,30:290-298.
    Thissen U, Pepers M, Ustun B, et al. (2004). Comparing Support Vector Machine to PLS for Spectral Regression Application. Chemom. Intell. Lab. Syst.,73:169-179.
    Thomas E V, Haaland D M. (1990). Comparison of Multivariate Calibration Methods for Quantitative Spectral Analysis. Analytical Chemistry,62(10):1091-1099.
    Thorne A P. (1974). Spectrophysics, London:Chapman and Hall.
    Tiwari V S, Khijwania S K, Yueh F Y and Singh J P. (2004). Optical Fiber Raman Sensor for Monitoring Hydrocarbon in Fuel & Industrial Chemical Processing. Proc. Of SPIE. Vol.5589.
    Uibel R H, Smith L M. (2006). Raman Scattering Sensor for Control of the Acid Alkylation Process in Gasoline Production. DOI:10.2172/881280.
    Vankeirsbilck T, Vercauteren A, Baeyens W and Weken G V. (2002). Application of Raman spectroscopy in pharmaceutical analysis. Trends in Analytical Chemistry, 21(12):869-877.
    Vapnik V N. (1995). The Nature of Statistical Learning Theory. New York: Springer-Verlag.
    Vapnik V N. (1998). Statistical Learning Theory. New York:John Wiley & Sons.
    Vickers T J, Wambles R E, JR, Mann C K. (2001). Curve Fitting and Linearity:Data Processing in Raman Spectroscopy. Appl. Spectrosc.,55:389-393.
    Wells R J. (1999). Rapid Approximation to the Voigt/Faddeeva Function and Its Derivatives. Journal of Quantitative Spectroscopy & Radiative Transfer,62: 29-48.
    Wenz E, Buchholz V, Eichenauer H, et al. (2001). Process for the Production of Graft Polymers, US Patent:0130433 A1.
    Williams K P J, Aries R E, Cutler D J and Lidiard D P. (1990). Determination of Gas Oil Cetane Number and Cetane Index Using Near-Infrared Fourier Transform Raman Spectroscopy. Anal. Chem.62:2553-2556.
    Wold H. (1975). Soft Modeling by Latent Variables:The Nonlinear Iterative Partial Least Squares Approach. In:Gani, J. (Ed.); Perspectives in Probability and Statistics. London:Academic Press,411-444.
    Wu Z L, Zhang C, Starir P C. (2006). Influence of Absorption on Quantitative Analysis in Raman Spectroscopy. Catalysis Today,113:40-47.
    Yang S, Michielsen S. (2003). Orientation Distribution Functions Obtained via Polarized Raman Spectroscopy of Poly(ethylene terephthalate) Fibers. Macromolecules,36(17):6484-6492.
    Zhang Z M, Chen S, Liang Y Z, et al. (2010a). An Intelligent Background-Correction Algorithm for Highly Fluorescent Samples in Raman Spectroscopy. J. Raman Spectrosc.,41:659-669.
    Zhang Z M, Chen S, Liang Y Z. (2010b). Baseline Correction Using Adaptive Iteratively Reweighted Penalized Least Squares. Analyst,135:1138-1146.
    Zhao J H, Lui H, McLean D I, Zeng H S. (2007). Automated Autofluorescence Background Subtraction Algorithm for Biomedical Raman Spectroscopy. Appl. Spectrosc.61(11):1225-1232.
    Zheng X, Fu W, Albin S, Wise K L, Javey A, Cooper J B. (2001). Self-Referencing Raman Probes for Quantitative Analysis. Appl. Spectrosc.,55(4):382-388.
    包鑫,戴连奎.(2009).汽油多参数拉曼光谱分析中的稳健支持向量机方法.仪器仪表学报,30(9):1829-1835.
    褚小立,袁洪福,纪长青,陆婉珍.(2001).近红外光谱快速测得重整汽油详细族组成.石油化工,30(11):866-870.
    褚小立,袁洪福,陆婉珍.(2006).用于石化工业的光谱和波谱类过程分析技术.现代科学仪器,3:9-13.
    褚小立,袁洪福,陆婉珍.(2004).近红外分析中光谱预处理及波长选择方法进展和应用.化学进展,16(4):528-542.
    褚小立.(2011).化学计量学方法与分子光谱分析技术.北京:化学工业出版社.
    戴丽英,刘德林,李慧蕊等.(2005).背照式电荷耦合器件的研制.光电子技术,25(3):146-149.
    淡图南,戴连奎.(2010).结合异常样本检测的汽油族组成拉曼光谱分析.光谱学与光谱分析,30(4):979-983.
    林艺玲,戴连奎,阮华.(2010).基于低分辨率色散型拉曼光谱仪的汽油苯含量快速分析.光学学与光谱分析,30(11):3002-3006.
    梁仕普.(2001).在线红外光谱法检测汽油中的烯烃和芳烃(苯).精细石油化工4:69-71.
    梁逸曾,俞汝勤.(2001).分析化学手册(10)-化学计量学.北京:化工出版社.
    陆婉珍,袁洪福等.(2007).现代近红外光谱分析技术.北京:中国石化出版社.
    覃旭松.(2004)).基于拉曼光谱的汽油辛烷值测定方法.浙江大学硕士学位论文.
    史永刚,刘绍璞,宋世远等.(2007).基于支持向量机的汽油族组成近红外光谱分析方法研究.分析测试学报,26(3):343-346.
    史永刚,粟斌,李华峰等.(2010).拉曼光谱及其在石油产品分析中的应用.现代仪器.6:9-13.
    孙丽萍,范宇,张冬妍等.(2009).基于LSSVM的木材干燥在线建模研究.仪器仪表学报,30(9):1991-1995.
    谭永忠,施大鹏.(2003).镇海对二甲苯联合装置工艺技术特点.炼油技术与工程.33(7):15-17.
    田艳杰.(2007)Beta-胡萝卜素的共振拉曼散射及其荧光增强受激拉曼散射研究.吉林大学博士学位论文.
    许禄,邵学广.(2004).化学计量学方法 第二版.北京:科学出版社.
    尹建华.(2005).溶液浓度对单分子拉曼光谱散射截面影响的研究.吉林大学博士学位论文.
    张晓曼,戴连奎.(2008).结合分类与局部PLS的近红外光谱定量分析.光谱学与光谱分析,28:2847-2850.
    钟远利,胥立红,刘信阳.(2004).近红外光谱技术快速测定汽油中芳烃、烯烃含 量.后勤工程学院学报,2:28-31.
    朱远平,戴汝为.(2005)).基于SVM决策树的文本分类器.模式识别与人工智能18(4):412-416.
    朱德泉,钱良存,骆敏舟.(2009).谷物干燥过程模糊支持向量机控制器的设计.电子测量与仪器学报,23(4):80-85.
    皱文龙,蔡志坚,吴建宏.(2010).拉曼光谱测量中的荧光抑制方法综述.光学仪器32(5):89-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700